Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (285)

Search Parameters:
Keywords = erlotinib

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
47 pages, 7003 KiB  
Review
Phthalocyanines Conjugated with Small Biologically Active Compounds for the Advanced Photodynamic Therapy: A Review
by Kyrylo Chornovolenko and Tomasz Koczorowski
Molecules 2025, 30(15), 3297; https://doi.org/10.3390/molecules30153297 - 6 Aug 2025
Abstract
Phthalocyanines (Pcs) are well-established photosensitizers in photodynamic therapy, valued for their strong light absorption, high singlet oxygen generation, and photostability. Recent advances have focused on covalently conjugating Pcs, particularly zinc phthalocyanines (ZnPcs), with a wide range of small bioactive molecules to improve selectivity, [...] Read more.
Phthalocyanines (Pcs) are well-established photosensitizers in photodynamic therapy, valued for their strong light absorption, high singlet oxygen generation, and photostability. Recent advances have focused on covalently conjugating Pcs, particularly zinc phthalocyanines (ZnPcs), with a wide range of small bioactive molecules to improve selectivity, efficacy, and multifunctionality. These conjugates combine light-activated reactive oxygen species (ROS) production with targeted delivery and controlled release, offering enhanced treatment precision and reduced off-target toxicity. Chemotherapeutic agent conjugates, including those with erlotinib, doxorubicin, tamoxifen, and camptothecin, demonstrate receptor-mediated uptake, pH-responsive release, and synergistic anticancer effects, even overcoming multidrug resistance. Beyond oncology, ZnPc conjugates with antibiotics, anti-inflammatory drugs, antiparasitics, and antidepressants extend photodynamic therapy’s scope to antimicrobial and site-specific therapies. Targeting moieties such as folic acid, biotin, arginylglycylaspartic acid (RGD) and epidermal growth factor (EGF) peptides, carbohydrates, and amino acids have been employed to exploit overexpressed receptors in tumors, enhancing cellular uptake and tumor accumulation. Fluorescent dye and porphyrinoid conjugates further enrich these systems by enabling imaging-guided therapy, efficient energy transfer, and dual-mode activation through pH or enzyme-sensitive linkers. Despite these promising strategies, key challenges remain, including aggregation-induced quenching, poor aqueous solubility, synthetic complexity, and interference with ROS generation. In this review, the examples of Pc-based conjugates were described with particular interest on the synthetic procedures and optical properties of targeted compounds. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Figure 1

32 pages, 3865 KiB  
Article
Purine–Hydrazone Scaffolds as Potential Dual EGFR/HER2 Inhibitors
by Fatemah S. Albalawi, Mashooq A. Bhat, Ahmed H. Bakheit, A. F. M. Motiur Rahman, Nawaf A. Alsaif, Alan M. Jones and Isolda Romero-Canelon
Pharmaceuticals 2025, 18(7), 1051; https://doi.org/10.3390/ph18071051 - 17 Jul 2025
Viewed by 562
Abstract
Background/Objectives: The dual targeting of epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER2) represents an effective approach for cancer treatment. The current study involved the design, synthesis, and biological evaluation of a new series of purine-containing hydrazones, 6 [...] Read more.
Background/Objectives: The dual targeting of epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER2) represents an effective approach for cancer treatment. The current study involved the design, synthesis, and biological evaluation of a new series of purine-containing hydrazones, 624 (a,b), as anticancer agents targeting EGFR and HER2 kinases. Methods: The proposed compounds were initially screened in silico using molecular docking to investigate their binding affinity to the active sites of EGFR and HER2 kinase domains. Subsequently, the compounds were synthesized and evaluated in vitro for their antiproliferative activity, using the MTT assay, against the various cancer cell lines A549, SKOV-3, A2780, and SKBR-3, with lapatinib as the reference drug. The most active derivatives were then examined to determine their inhibitory activity against EGFR and HER2 kinases. Results: Among the assessed compounds, significant antiproliferative activity was demonstrated by 19a, 16b, and 22b. 19a exhibited substantial anticancer efficacy against A549 and SKBR-3, with IC50 values of 0.81 µM and 1.41 µM, respectively. This activity surpassed lapatinib, which has an IC50 of 11.57 µM on A549 and 8.54 µM on SKBR-3 cells. Furthermore, 19a, 16b, and 22b exhibited superior EGFR inhibitory efficacy compared with lapatinib (IC50 = 0.13 µM), with IC50 values of 0.08, 0.06, and 0.07 µM, respectively. Regarding HER2, 22b demonstrated the greatest potency with an IC50 of 0.03 µM, equipotent to lapatinib (IC50 = 0.03 µM). Flow cytometry analysis of A549 cells treated with 19a and 22b indicated their ability to arrest the cell cycle during the G1 phase and to trigger cellular apoptosis. Conclusions: Compounds 19a, 16b, and 22b represent intriguing candidates for the development of an anticancer agent targeting EGFR and HER2 kinases. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

31 pages, 4404 KiB  
Review
Recent Advances in the Use of Ganoderma lucidum and Coriolus versicolor Mushrooms to Enhance the Anticancer Efficacy of EGFR-Targeted Drugs in Lung Cancer
by Hang Zhang, Longling Wang, Yuet Wa Chan, William C. Cho, Zhong Zuo and Kenneth K. W. To
Pharmaceutics 2025, 17(7), 917; https://doi.org/10.3390/pharmaceutics17070917 - 15 Jul 2025
Viewed by 717
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide. Non-small cell lung cancer (NSCLC) is the major subtype, accounting for more than 85% of all lung cancer cases. Recent advances in precision oncology have allowed NSCLC patients bearing specific oncogenic epidermal growth [...] Read more.
Lung cancer is the leading cause of cancer-related deaths worldwide. Non-small cell lung cancer (NSCLC) is the major subtype, accounting for more than 85% of all lung cancer cases. Recent advances in precision oncology have allowed NSCLC patients bearing specific oncogenic epidermal growth factor receptor (EGFR) mutations to respond well to EGFR tyrosine kinase inhibitors (TKIs). Due to the high EGFR mutation frequency (up to more than 50%) observed particularly in Asian NSCLC patients, EGFR-TKIs have produced unprecedented clinical responses. Depending on their binding interactions with EGFRs, EGFR-TKIs are classified as reversible (first-generation: gefitinib and erlotinib) or irreversible inhibitors (second-generation: afatinib and dacomitinib; third-generation: osimertinib). While the discovery of osimertinib represents a breakthrough in the treatment of NSCLC, most patients eventually relapse and develop drug resistance. Novel strategies to overcome osimertinib resistance are urgently needed. In Asian countries, the concomitant use of Western medicine and traditional Chinese medicine (TCM) is very common. Ganoderma lucidum (Lingzhi) and Coriolus versicolor (Yunzhi) are popular TCMs that are widely consumed by cancer patients to enhance anticancer efficacy and alleviate the side effects associated with cancer therapy. The bioactive polysaccharides and triterpenes in these medicinal mushrooms are believed to contribute to their anticancer and immunomodulating effects. This review presents the latest update on the beneficial combination of Lingzhi/Yunzhi and EGFR-TKIs to overcome drug resistance. The effects of Lingzhi/Yunzhi on various oncogenic signaling pathways and anticancer immunity, as well as their potential to overcome EGFR-TKI resistance, are highlighted. The potential risk of herb–drug interactions could become critical when cancer patients take Lingzhi/Yunzhi as adjuvants during cancer therapy. The involvement of drug transporters and cytochrome P450 enzymes in these herb–drug interactions is summarized. Finally, we also discuss the opportunities and future prospects regarding the combined use of Lingzhi/Yunzhi and EGFR-TKIs in cancer patients. Full article
(This article belongs to the Special Issue Combination Therapy Approaches for Cancer Treatment)
Show Figures

Figure 1

22 pages, 5156 KiB  
Article
The Role of Fat Mass and Obesity-Associated (FTO) Gene in Non-Small Cell Lung Cancer Tumorigenicity and EGFR Tyrosine Kinase Inhibitor Resistance
by Aayush Rastogi, Rong Qiu, Rachel Campoli, Usama Altayeh, Sarai Arriaga, Muhammad J. Khan, Subaranjana Saravanaguru Vasanthi, Robert Hillwig and Neelu Puri
Biomedicines 2025, 13(7), 1653; https://doi.org/10.3390/biomedicines13071653 - 7 Jul 2025
Viewed by 514
Abstract
Background/Objectives: The fat mass and obesity-associated (FTO) protein demethylates nuclear N6-Methyladenosine (m6A) on mRNA, facilitates tumor growth, and contributes to therapeutic resistance in multiple cancer types. Recent evidence demonstrates several roles of FTO in tumorigenesis. In this study, we seek to explore [...] Read more.
Background/Objectives: The fat mass and obesity-associated (FTO) protein demethylates nuclear N6-Methyladenosine (m6A) on mRNA, facilitates tumor growth, and contributes to therapeutic resistance in multiple cancer types. Recent evidence demonstrates several roles of FTO in tumorigenesis. In this study, we seek to explore the role of FTO in non-small cell lung cancer (NSCLC) tumorigenicity and its relationship with epidermal growth factor receptor (EGFR) tyrosine kinase resistance. Methods: We performed qPCR, immunoblotting, viability assays, migration assays, and ATP assays to investigate the functions of FTO in EGFR tyrosine kinase inhibitor (TKI) resistance, specifically to erlotinib, in three NSCLC cell lines harboring either wild-type or mutant EGFR. We also performed immunohistochemistry on lung tumor tissues from patients diagnosed at different stages of NSCLC. Results: Our study found an upregulation of FTO in erlotinib-resistant (ER) cell lines at both the gene and protein levels. FTO inhibition and knockdown significantly reduced cell viability of erlotinib-resistant H2170 and PC9 cells by over 30% when treated with 0.8 µM of Dac51 and about 20% when treated with siFTO. FTO inhibition also slowed down the migration of ER cells, and the effect was even more pronounced when combined with erlotinib. Furthermore, FTO was found to be overexpressed in late-stage NSCLC tumor tissues compared to early-stage tumors, and it was upregulated in patients who smoked. Conclusions: These findings suggest FTO might mediate resistance and tumor growth by augmenting cell proliferation. In addition, FTO can be a potential prognostic marker in NSCLC patients. Full article
(This article belongs to the Special Issue Signaling of Protein Kinases in Development and Disease)
Show Figures

Figure 1

15 pages, 1401 KiB  
Communication
Evaluating the Effectiveness of Tyrosine Kinase Inhibitors on EGFR Mutations In Vitro
by Hanshuang Shao and Alan Wells
Int. J. Mol. Sci. 2025, 26(13), 6157; https://doi.org/10.3390/ijms26136157 - 26 Jun 2025
Viewed by 360
Abstract
Abnormal expressions and genetic mutations of EGFR are broadly involved in the progression of many human solid tumors, which has led to the development of small molecule inhibitors (TKIs). However, patients’ tumors usually develop resistance to targeted therapeutic TKIs after a period of [...] Read more.
Abnormal expressions and genetic mutations of EGFR are broadly involved in the progression of many human solid tumors, which has led to the development of small molecule inhibitors (TKIs). However, patients’ tumors usually develop resistance to targeted therapeutic TKIs after a period of treatment, mostly due to secondary mutations in EGFR. To date, three major and prevalent point mutations in EGFR, including L858R, T790M, and C797S, impact the use of TKIs in non-small cell lung cancer patients. Although at least four generations of TKIs have been designed and developed by targeting these mutations, how each mono, dual, or triple variant responds to clinical TKIs remains largely undeciphered. To fill this gap, we constructed a series of EGFR mutants and assessed their responses to clinical TKIs in vitro. The first-generation TKI, erlotinib, completely blocked the autophosphorylation of WT, L858R, C797S, and C797S/L858R, but only partially, if at all, in EGFR containing the T790M mutation alone or in combination. The third generation, osimertinib, completely abolished the autophosphorylation of WT, T790M, L858R, and T790M/L858R. It also significantly inhibited C797S and C790S/L858R, but had no effect on T790M/C797S or T790M/C797S/L858R. EAI045, as the fourth-generation TKI, almost completely inhibited WT and all mutants in complete growth media, but EGF-mediated phosphorylation of WT, C797S, and C797S/L858R were only partially inhibited in quiescence media, while the other mutants were fully inhibited. Furthermore, the abolishment of the enhanced tolerance to Dox in cells transiently expressing T790M/L858R and T790M/C797S/L858R by EAI045 suggests that their enhanced autophosphorylation is involved in their resistant ability. These findings provide some insights into how patients carrying typical mutations should be correctly and efficiently treated and why patients present side effects (because of non-specific inhibitory effects on cells without EGFR mutations). Full article
(This article belongs to the Special Issue Editorial Board Members’ Collection Series: "Enzyme Inhibition")
Show Figures

Figure 1

24 pages, 1558 KiB  
Review
Beyond the Basics: Exploring Pharmacokinetic Interactions and Safety in Tyrosine-Kinase Inhibitor Oral Therapy for Solid Tumors
by Laura Veronica Budău, Cristina Pop and Cristina Mogoșan
Pharmaceuticals 2025, 18(7), 959; https://doi.org/10.3390/ph18070959 - 26 Jun 2025
Viewed by 1030
Abstract
Cancer remains a major global health burden driven by complex biological mechanisms, and while targeted therapies like tyrosine kinase inhibitors (TKIs) have revolutionized treatment, their efficacy and safety are significantly influenced by drug–drug interactions (DDIs). Tyrosine-kinase receptors (RTKs) regulate critical cellular processes, and [...] Read more.
Cancer remains a major global health burden driven by complex biological mechanisms, and while targeted therapies like tyrosine kinase inhibitors (TKIs) have revolutionized treatment, their efficacy and safety are significantly influenced by drug–drug interactions (DDIs). Tyrosine-kinase receptors (RTKs) regulate critical cellular processes, and their dysregulation through mutations or overexpression drives oncogenesis, with TKIs designed to inhibit these aberrant signaling pathways by targeting RTK phosphorylation. Pharmacokinetic DDIs can critically impact the efficacy and safety of TKIs such as erlotinib, gefitinib, and pazopanib by affecting their absorption, distribution, and metabolism. The modification of pH can influence drug absorption; furthermore, the inhibition or induction of metabolizing enzymes may affect biotransformation, while distribution can be altered through the modulation of transmembrane transporters. Additionally, ensuring quality of life during TKI treatment requires vigilant monitoring and management of adverse events, which range from mild (e.g., rash, diarrhea, fatigue) to severe (e.g., hepatotoxicity, cardiotoxicity). Drug-specific toxicities, such as hyperlipidemia with lorlatinib or visual disturbances with crizotinib, must be assessed using specific criteria, with dose adjustments and supportive care tailored to individual patient responses. Thus, optimal TKI therapy relies on managing drug interactions through multidisciplinary care, monitoring, and patient education to ensure safety and treatment efficacy. Full article
(This article belongs to the Special Issue Drug Treatment of Thyroid Cancer)
Show Figures

Figure 1

42 pages, 2266 KiB  
Review
Innovative Approaches in Cancer Treatment: Emphasizing the Role of Nanomaterials in Tyrosine Kinase Inhibition
by Antónia Kurillová, Libor Kvítek and Aleš Panáček
Pharmaceutics 2025, 17(6), 783; https://doi.org/10.3390/pharmaceutics17060783 - 16 Jun 2025
Viewed by 845
Abstract
Medical research is at the forefront of addressing pressing global challenges, including preventing and treating cardiovascular, autoimmune, and oncological diseases, neurodegenerative disorders, and the growing resistance of pathogens to antibiotics. Understanding the molecular mechanisms underlying these diseases, using advanced medical approaches and cutting-edge [...] Read more.
Medical research is at the forefront of addressing pressing global challenges, including preventing and treating cardiovascular, autoimmune, and oncological diseases, neurodegenerative disorders, and the growing resistance of pathogens to antibiotics. Understanding the molecular mechanisms underlying these diseases, using advanced medical approaches and cutting-edge technologies, structure-based drug design, and personalized medicine, is critical for developing effective therapies, specifically anticancer treatments. Background/Objectives: One of the key drivers of cancer at the cellular level is the abnormal activity of protein enzymes, specifically serine, threonine, or tyrosine residues, through a process known as phosphorylation. While tyrosine kinase-mediated phosphorylation constitutes a minor fraction of total cellular phosphorylation, its dysregulation is critically linked to carcinogenesis and tumor progression. Methods: Small-molecule inhibitors, such as imatinib or erlotinib, are designed to halt this process, restoring cellular equilibrium and offering targeted therapeutic approaches. However, challenges persist, including frequent drug resistance and severe side effects associated with these therapies. Nanomedicine offers a transformative potential to overcome these limitations. Results: By leveraging the unique properties of nanomaterials, it is possible to achieve precise drug delivery, enhance accumulation at target sites, and improve therapeutic efficacy. Examples include nanoparticle-based delivery systems for TKIs and the combination of nanomaterials with photothermal or photodynamic therapies to enhance treatment effectiveness. Combining nanomedicine with traditional treatments holds promise and perspective for synergistic and more effective cancer management. Conclusions: This review delves into recent advances in understanding tyrosine kinase activity, the mechanisms of their inhibition, and the innovative integration of nanomedicine to revolutionize cancer treatment strategies. Full article
Show Figures

Graphical abstract

17 pages, 2251 KiB  
Systematic Review
Comparison of Erlotinib vs. Osimertinib for Advanced or Metastatic EGFR Mutation-Positive Non-Small-Cell Lung Cancer Without Prior Treatment: A Network Meta-Analysis
by Fernando M. Runzer-Colmenares, Rossana Ruiz, Lorenzo Maco, Mike Maldonado, Luis Puma-Villanueva, Marco Galvez-Nino, Carlos Aliaga, Vicente A. Benites-Zapata, Carlos Diaz-Arocutipa, Luis Mas and Diego Urrunaga-Pastor
Cancers 2025, 17(11), 1895; https://doi.org/10.3390/cancers17111895 - 5 Jun 2025
Viewed by 1161
Abstract
Non-small cell lung cancer (NSCLC) accounts for 85% of lung cancer cases globally and most patients receive their diagnosis at advanced or metastatic disease stages. The use of tyrosine kinase inhibitors (TKIs) such as erlotinib (first-generation) and osimertinib (third-generation) to treat NSCLC is [...] Read more.
Non-small cell lung cancer (NSCLC) accounts for 85% of lung cancer cases globally and most patients receive their diagnosis at advanced or metastatic disease stages. The use of tyrosine kinase inhibitors (TKIs) such as erlotinib (first-generation) and osimertinib (third-generation) to treat NSCLC is possible because of activating mutations in the epidermal growth factor receptor (EGFR). Although osimertinib has shown better results in recent trials, direct and updated comparisons with erlotinib, especially in combination regimens, are still limited. Background/Objectives: This study aimed to compare the efficacy and safety of osimertinib versus erlotinib, both as monotherapies and in combination, in treatment-naïve patients with advanced or metastatic EGFR-mutated NSCLC. Methods: A systematic review and network meta-analysis were conducted following PRISMA-NMA guidelines and registered in PROSPERO (CRD42025649761). PubMed, EMBASE, and Scopus were searched up to February 2025 for randomized controlled trials (RCTs) that compared erlotinib- or osimertinib-based regimens in previously untreated EGFR-mutated advanced NSCLC. Outcomes included overall survival (OS), progression-free survival (PFS), and grade ≥ 3 adverse events. A frequentist random-effects model was used, and treatments were ranked using p-scores. Results: Eleven RCTs (2341 patients) were included. Osimertinib, alone or with chemotherapy, resulted in significantly longer OS compared to erlotinib-based regimens (HR for OS vs. erlotinib: 1.59, 95% CI 1.09–2.31). All osimertinib and erlotinib regimens outperformed chemotherapy for PFS, but no statistically significant differences were observed between osimertinib and erlotinib. Severe adverse events were comparable, though osimertinib ranked highest for safety. The combination of osimertinib with chemotherapy achieved the highest p-scores for both OS and PFS. Conclusions: Osimertinib is associated with superior overall survival and comparable safety versus erlotinib-based strategies in first-line treatment of advanced EGFR-mutated NSCLC. These findings reinforce osimertinib as the preferred first-line option in this setting. Full article
(This article belongs to the Section Systematic Review or Meta-Analysis in Cancer Research)
Show Figures

Figure 1

17 pages, 1705 KiB  
Article
Associating Patient Responses with Drug Sensitivity in Non-Small Cell Lung Carcinoma Using an Immunoassay on Patient-Derived Cell Cultures
by Ana Podolski-Renić, Sofija Jovanović Stojanov, Dragana Marić, Jelena Dinić, Miodrag Dragoj, Ana Stepanović, Ema Lupšić, Milica Pajović, Sofija Glumac, Maja Ercegovac and Milica Pešić
Curr. Issues Mol. Biol. 2025, 47(4), 281; https://doi.org/10.3390/cimb47040281 - 17 Apr 2025
Viewed by 750
Abstract
Background/Objectives: Non-small cell lung carcinoma (NSCLC) is characterized by its diverse molecular profiles and varying responses to treatment, highlighting the importance of precision medicine in optimizing therapeutic outcomes. A promising approach involves using patient-derived cellular models, which provide insights into the unique [...] Read more.
Background/Objectives: Non-small cell lung carcinoma (NSCLC) is characterized by its diverse molecular profiles and varying responses to treatment, highlighting the importance of precision medicine in optimizing therapeutic outcomes. A promising approach involves using patient-derived cellular models, which provide insights into the unique biology of individual tumors and their responsiveness to treatment. Methods: We established short-term primary cell cultures from thirteen patients with NSCLC of different subtypes and stages, including both cancer and stromal cells. To evaluate the ex vivo cytotoxicity and selectivity of eight chemotherapeutics and erlotinib, we employed an immunoassay, and the results were analyzed using an automated imaging system. Scoring of the obtained results was also performed. The ex vivo responses to cisplatin, etoposide, and paclitaxel were correlated with the patients’ responses to therapy. We used Kaplan–Meier analysis to assess progression-free survival (PFS) differences among patient groups. Results: NSCLC cells exhibited significant variability in their responses to drugs, with stromal cells demonstrating greater sensitivity. Tumors at stages I-III responded to multiple treatments, whereas stage IV cells showed considerable resistance. Erlotinib effectively reduced cancer cell growth at lower doses but plateaued at higher concentrations. The immunoassay indicated 67% sensitivity and 100% specificity in predicting patient responses to chemotherapy. Sensitivity to etoposide and paclitaxel correlated with progression-free survival (PFS). Conclusions: A personalized treatment strategy, such as our immunoassay based on the ex vivo responses of cancer patients’ cells, can guide treatment decisions and, in some cases, serve as surrogate biomarkers for tumor types that lack actionable biomarkers. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Graphical abstract

15 pages, 9293 KiB  
Article
The Interconnection Between UbcH10, p53, and EGFR in Lung Cancer Cells and Their Involvement in Treatment Response
by Cristina Quintavalle, Umberto Malapelle, Marco De Martino, Danilo Rocco, Alfredo Fusco, Francesco Pepe, Claudio Bellevicine, Francesco Esposito and Pierlorenzo Pallante
Genes 2025, 16(4), 404; https://doi.org/10.3390/genes16040404 - 30 Mar 2025
Viewed by 684
Abstract
Background/Objectives: The UbcH10 protein plays an important role in a variety of human malignancies, including thyroid, breast, ovarian, and colorectal carcinomas. It has been previously reported that UbcH10 is overexpressed in non-small cell lung cancer (NSCLC) compared to normal lungs and that [...] Read more.
Background/Objectives: The UbcH10 protein plays an important role in a variety of human malignancies, including thyroid, breast, ovarian, and colorectal carcinomas. It has been previously reported that UbcH10 is overexpressed in non-small cell lung cancer (NSCLC) compared to normal lungs and that its expression is directly and inversely correlated with the mutational status of p53 and EGFR, respectively. Methods: We transfected lung cancer cells with wild-type and mutant forms of EGFR, modulated the expression of UbcH10 and p53, and treated these cells with tyrosine kinase inhibitor (TKI) erlotinib. Using Western blotting, we evaluated the expression of UbcH10 induced by EGFR and p53. Finally, we employed immunohistochemistry to assess the levels of UbcH10 expression in a subset of NSCLC patients receiving TKI therapy. Results: We reported a possible modulation of UbcH10 expression by the overexpression of wild-type and mutant EGFR in H460 lung cancer cells, potentially through p53. The enforced expression of UbcH10 in cells transfected with mutant EGFR suggested a potential increase in resistance to erlotinib treatment. Finally, immunohistochemical analysis of samples from NSCLC patients with mutant EGFR indicated a possible connection between UbcH10 expression levels and progression-free survival. Conclusions: In NSCLC, UbcH10 may play a role in the regulation of TKI response via a molecular pathway potentially involving p53 and EGFR. However, further research is needed to fully understand this mechanism. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

28 pages, 4498 KiB  
Article
Synthesis, Antitumor Activities, and Apoptosis-Inducing Activities of Schiff’s Bases Incorporating Imidazolidine-2,4-dione Scaffold: Molecular Docking Studies and Enzymatic Inhibition Activities
by Fhdah S. Alanazi, Hamad M. Alkahtani, Alaa A.-M. Abdel-Aziz, Adel S. El-Azab, Hanadi H. Asiri, Ahmed H. Bakheit and Fatmah A. Al-Omary
Pharmaceuticals 2025, 18(4), 496; https://doi.org/10.3390/ph18040496 - 28 Mar 2025
Viewed by 873
Abstract
Background/Objective: Cancer is the leading cause of death worldwide despite the diversity of antitumor therapies, which highlights the necessity to explore new anticancer agents. Methods: We synthesized 5,5-diphenylhydantoin derivatives including Schiff’s bases 727 and evaluated their cytotoxicity via the MTT assay. [...] Read more.
Background/Objective: Cancer is the leading cause of death worldwide despite the diversity of antitumor therapies, which highlights the necessity to explore new anticancer agents. Methods: We synthesized 5,5-diphenylhydantoin derivatives including Schiff’s bases 727 and evaluated their cytotoxicity via the MTT assay. Enzymatic inhibition assays, cell cycle and apoptosis analyses, and molecular docking studies were also conducted. Results: Derivative 24 demonstrated the highest cytotoxic activity, with IC50 values of 12.83 ± 0.9 μM, 9.07 ± 0.8 μM, and 4.92 ± 0.3 μM against the cell lines HCT-116, HePG-2, and MCF-7, respectively. Compounds 10, 13, and 21 showed potent antitumor activities versus the examined cell lines (average IC50 = 13.2, 14.5, and 13.1 μM), respectively; moreover, these compounds also demonstrated promising EGFR and HER2 inhibitory activities, with IC50 values in the range 0.28–1.61 µM. Derivative 24 displayed the highest EGFR and HER2 inhibitory activity values (IC50 = 0.07 and 0.04 µM), respectively, which were close to those of the reference drugs erlotinib and lapatinib. Therefore, compound 24 was selected for further examinations and exhibited an inducing effect on apoptosis via diminishing the anti-apoptotic protein levels of BCL-2 (8.598 ± 0.29 ng/mL) and MCL-1 (261.20 ± 8.97 pg/mL) and promoting cell cycle arrest at the G2/M phase (33.46%). The binding relationships between compound 24 and the active sites of EGFR and HER2, which are similar to the co-crystallized inhibitors, were investigated using a molecular docking approach. Conclusions: These findings provide insights into the potential anticancer activities of the synthesized derivatives for further optimization to achieve therapeutic use. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Graphical abstract

17 pages, 3166 KiB  
Article
Synergistic Anti-Cancer Activity of Melittin and Erlotinib in Non-Small Cell Lung Cancer
by Hairulislam M. Ibrahim, Jihad Alessa, Hala Badr Khalil, Gamal A. Bekhet and Ashraf Khalifa
Int. J. Mol. Sci. 2025, 26(7), 2903; https://doi.org/10.3390/ijms26072903 - 22 Mar 2025
Cited by 1 | Viewed by 1077
Abstract
Lung cancer remains a leading cause of cancer-related mortality worldwide. Despite advancements in current therapies, the development of drug resistance and the need for improved treatment outcomes necessitate the exploration of novel therapeutic approaches. This study aimed to investigate the synergistic anti-cancer effects [...] Read more.
Lung cancer remains a leading cause of cancer-related mortality worldwide. Despite advancements in current therapies, the development of drug resistance and the need for improved treatment outcomes necessitate the exploration of novel therapeutic approaches. This study aimed to investigate the synergistic anti-cancer effects of Melittin, a bee venom peptide, in combination with Erlotinib, an EGFR inhibitor, in non-small cell lung cancer (NSCLC). The study evaluated the combined effects of Melittin and Erlotinib on A549 NSCLC cells. Cell viability, proliferation, migration, and apoptosis were assessed using standard in vitro assays. Mechanistic studies investigated the impact of the combination treatment on key signaling pathways, including those involving JAK2 and JAK3. Molecular docking simulations were performed to predict the binding interactions between Melittin and these kinases. The combination of Melittin and Erlotinib significantly inhibited A549 cell proliferation and migration, with a marked reduction in cell viability and enhanced apoptosis compared to either agent alone. Mechanistically, Melittin demonstrated interactions with JAK2 and JAK3, key proteins involved in apoptotic signaling. Molecular docking simulations further supported these findings, predicting strong binding affinities between Melittin and both kinases. These findings demonstrate a synergistic anti-cancer effect of Melittin and Erlotinib in A549 NSCLC cells. The observed interactions with JAK2 and JAK3 suggest a potential mechanism for Melittin’s activity. These results highlight the potential of Melittin as a promising adjuvant to Erlotinib for the treatment of NSCLC. Full article
(This article belongs to the Special Issue Innovative Biological Molecules for Cancer Therapy)
Show Figures

Figure 1

15 pages, 255 KiB  
Review
New Treatment Strategies in Advanced Epidermal Growth Factor Receptor-Driven Non-Small Cell Lung Cancer: Beyond Single Agent Osimertinib
by Paolo Maione, Valentina Palma, Giuseppina Pucillo and Cesare Gridelli
Cancers 2025, 17(5), 847; https://doi.org/10.3390/cancers17050847 - 28 Feb 2025
Viewed by 1209
Abstract
Osimertinib has been the standard treatment for advanced Epidermal Growth Factor Receptor (EGFR)-driven non-small cell lung cancer (NSCLC) for many years. However, even with remarkable response rate, progression-free survival (PFS) and survival benefit as compared to the old generation EGFR tyrosine kinase inhibitors [...] Read more.
Osimertinib has been the standard treatment for advanced Epidermal Growth Factor Receptor (EGFR)-driven non-small cell lung cancer (NSCLC) for many years. However, even with remarkable response rate, progression-free survival (PFS) and survival benefit as compared to the old generation EGFR tyrosine kinase inhibitors (TKIs) gefitinib and erlotinib, treatment outcomes for these subsets of patients remain a challenge. Recently, in order to go beyond osimertinib, new treatment strategies have been developed. In particular, in the FLAURA 2 phase III randomized trial, the combination of platin-based chemotherapy and osimertinib showed impressive PFS benefits as compared to single-agent osimertinib. Furthermore, in the MARIPOSA phase III randomized study, the combination of the anti-EGFR and anti-MET monoclonal antibody amivantamab combined with the new anti-EGFR TKI lazertinib demonstrated remarkable PFS benefit as compared to single agent osimertinib. This paper will discuss these new treatment options and potential selection criteria for personalized treatment of patients. Full article
24 pages, 2538 KiB  
Article
Synthesis and Anticancer Evaluation of O-Alkylated (E)-Chalcone Derivatives: A Focus on Estrogen Receptor Inhibition
by Alwah R. Al-Ghamdi, Wahid U. Ahmed, Reem I. Al-Wabli, Maha S. Al-Mutairi and A. F. M. Motiur Rahman
Int. J. Mol. Sci. 2025, 26(2), 833; https://doi.org/10.3390/ijms26020833 - 20 Jan 2025
Cited by 2 | Viewed by 1484
Abstract
Cancer remains a leading cause of morbidity and mortality worldwide, highlighting the urgent need for novel therapeutic agents. This study investigated the synthesis and biological evaluation of O-alkyl (E)-chalcone derivatives (4a4v) as potential anticancer agents. The [...] Read more.
Cancer remains a leading cause of morbidity and mortality worldwide, highlighting the urgent need for novel therapeutic agents. This study investigated the synthesis and biological evaluation of O-alkyl (E)-chalcone derivatives (4a4v) as potential anticancer agents. The compounds were synthesized via aldol condensation of substituted aldehydes and acetophenones, with structures confirmed by IR, NMR, and mass spectrometry. In vitro cytotoxicity assays revealed varying effectiveness, with compounds 4a, 4b, 4q, and 4v exhibiting potent activity against MDA-MB-231 and MCF-7, showing IC50 values between 2.08 and 13.58 µM, besides HCT-116 and HeLa cancer cell lines (IC50 values between 6.59 and 22.64 µM). Notably, compound 4b displayed remarkable selectivity, with an IC50 of 54.59 µM against the non-cancerous WI-38 cell line. Additionally, protein kinase inhibition assays indicated that compounds 4b and 4q effectively inhibited EGFR and VEGFR-2, with 4b outperforming the standard inhibitor erlotinib. Molecular docking studies of compound 4q showed strong binding affinities in the ATP-binding pockets of EGFR, HER2, VEGFR2, and CDK2. In silico analyses further highlighted the favorable pharmacokinetic properties of compound 4q, underscoring its potential as a selective tyrosine kinase inhibitor. These findings suggest the therapeutic promise of O-alkyl (E)-chalcone derivatives in cancer treatment. Full article
(This article belongs to the Special Issue New Agents and Novel Drugs Use for the Oncological Diseases Treatment)
Show Figures

Figure 1

18 pages, 3115 KiB  
Article
Cancer Therapy-Induced Cardiotoxicity: Results of the Analysis of the UK DEFINE Database
by Stefanie Ho Yi Chan, Raymond W. Fitzpatrick, Deborah Layton, Sherael Webley and Sam Salek
Cancers 2025, 17(2), 311; https://doi.org/10.3390/cancers17020311 - 19 Jan 2025
Viewed by 1538
Abstract
Background: The accelerated development of novel cancer therapies necessitates a thorough understanding of the associated cardiotoxicity profiles, due to their significant implications for the long-term health and quality of life of cancer survivors. Objectives: The aim of this study was to determine the [...] Read more.
Background: The accelerated development of novel cancer therapies necessitates a thorough understanding of the associated cardiotoxicity profiles, due to their significant implications for the long-term health and quality of life of cancer survivors. Objectives: The aim of this study was to determine the association between cardiotoxicity and non-small cell lung cancer (NSCLC) treatments using a hospital medicines usage database in England. Methods: An observational study based on a retrospective design using real-world data from the UK DEFINE database was performed. Monthly secondary data of 40 shortlisted drugs from April 2017 to July 2022 were extracted. Results: The cardiology drug that was associated with most oncology drugs was apixaban. Atezolizumab, bevacizumab, nintedanib, osimertinib, paclitaxel, pembrolizumab, gemcitabine and vincristine were all mostly associated with apixaban, which indicated association with atrial fibrillation. Afatinib, erlotinib and methotrexate were mostly associated with atenolol, hence suggesting the association with ischaemia or hypertension. Docetaxel and epirubicin were associated with verapamil, which indicated association with arrhythmia or hypertension. Conclusions: From the correlation and regression analyses, it can be concluded that hypertension was the most associated cardiovascular disease with the 20 shortlisted oncology drugs. The findings of this study have provided a better understanding of the association between each NSCLC–Cardio drug pair. Full article
(This article belongs to the Special Issue New Era of Cancer Research: From Large-Scale Cohorts to Big-Data)
Show Figures

Figure 1

Back to TopTop