Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (18)

Search Parameters:
Keywords = eremophilane sesquiterpenes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4707 KiB  
Article
Secondary Metabolites from Rehmannia glutinosa Protect Mitochondrial Function in LPS-Injured Endothelial Cells
by Liwen Zhong, Mengkai Lu, Huiqi Fang, Chao Li, Hua Qu and Gang Ding
Pharmaceuticals 2025, 18(8), 1125; https://doi.org/10.3390/ph18081125 - 27 Jul 2025
Viewed by 297
Abstract
Background: Rehmannia glutinosa, a traditional Chinese herb, is commonly used to treat vascular-related disorders. Sepsis-associated vascular endothelial dysfunction is closely associated with mitochondrial damage. This study investigated the protective effects of secondary metabolites from R. glutinosa against LPS-induced mitochondrial dysfunction in [...] Read more.
Background: Rehmannia glutinosa, a traditional Chinese herb, is commonly used to treat vascular-related disorders. Sepsis-associated vascular endothelial dysfunction is closely associated with mitochondrial damage. This study investigated the protective effects of secondary metabolites from R. glutinosa against LPS-induced mitochondrial dysfunction in endothelial cells, providing potential therapeutic insights into sepsis-related vascular complications. Methods: Phytochemical profiling of fresh R. glutinosa roots was conducted, and the structures of new secondary metabolites (1 and 2) were elucidated through comprehensive spectroscopic analysis and ECD calculations. UPLC-Q-TOF-MS/MS characterized phenylethanoid glycosides. Mitochondrial function was assessed by measuring the membrane potential, ROS levels, and TOM20/DRP1 expression in LPS-injured HUVECs. Results: Two novel eremophilane-type sesquiterpenes, remophilanetriols J (1) and K (2), along with five known phenylethanoid glycosides (37), were isolated from the fresh roots of R. glutinosa. UPLC-Q-TOF-MS/MS analysis revealed unique fragmentation pathways for phenylethanoid glycosides (37). In LPS-injured HUVECs, all compounds collectively restored the mitochondrial membrane potential, attenuated ROS accumulation, and modulated TOM20/DRP1 expression. In particular, remophilanetriol K (2) exhibited potent protective effects at a low concentration (1.5625 μM). Conclusions: This study identifies R. glutinosa metabolites as potential therapeutics for sepsis-associated vascular dysfunction by preserving mitochondrial homeostasis. This study provides a mechanistic basis for the traditional use of R. glutinosa and offers valuable insights into the development of novel therapeutics targeting mitochondrial dysfunction in sepsis. Full article
Show Figures

Graphical abstract

18 pages, 2696 KiB  
Article
Isolation of Ten New Sesquiterpenes and New Abietane-Type Diterpenoid with Immunosuppressive Activity from Marine Fungus Eutypella sp.
by Nina Wang, Chunmei Chen, Qin Li, Qiqiang Liang, Yingjie Liu, Zongze Shao, Xiupian Liu and Qun Zhou
Pharmaceuticals 2025, 18(5), 737; https://doi.org/10.3390/ph18050737 - 16 May 2025
Viewed by 437
Abstract
Background: Ten new sesquiterpenes, including eight eremophilane-type sesquiterpenes (18) and two compounds (910) with a cyclopentane ring, representing an undescribed subtype of sesquiterpene, along with a new abietane-type diterpenoid (11), were isolated [...] Read more.
Background: Ten new sesquiterpenes, including eight eremophilane-type sesquiterpenes (18) and two compounds (910) with a cyclopentane ring, representing an undescribed subtype of sesquiterpene, along with a new abietane-type diterpenoid (11), were isolated and identified from a deep-sea-derived fungus: Eutypella sp. Methods: Their structures were elucidated on the basis of various spectroscopic analyses, mainly including nuclear magnetic resonance (NMR) and high-resolution electrospray ionization mass spectrometry (HRESIMS) data, 13C NMR calculations with DP4+ probability analyses, electronic circular dichroism (ECD) calculations, and single-crystal X-ray diffraction experiments. Results: Furthermore, compound 11 exhibited potent immunosuppressive activity with IC50 values of 8.99 ± 1.08 μM in a lipopolysaccharide (LPS) model and 5.39 ± 0.20 μM in a concanavalin A (ConA) model. Full article
(This article belongs to the Special Issue Natural Products Derived from Fungi and Their Biological Activities)
Show Figures

Figure 1

13 pages, 3232 KiB  
Article
Eremophilane- and Acorane-Type Sesquiterpenes from the Deep-Sea Cold-Seep-Derived Fungus Furcasterigmium furcatum CS-280 Cultured in the Presence of Autoclaved Pseudomonas aeruginosa QDIO-4
by Xiao-Dan Chen, Xin Li, Xiao-Ming Li, Sui-Qun Yang and Bin-Gui Wang
Mar. Drugs 2024, 22(12), 574; https://doi.org/10.3390/md22120574 - 22 Dec 2024
Viewed by 1265
Abstract
Six new sesquiterpenes, including four eremophilane derivatives fureremophilanes A–D (14) and two acorane analogues furacoranes A and B (5 and 6), were characterized from the culture extract of the cold-seep derived fungus Furcasterigmium furcatum CS-280 co-cultured with [...] Read more.
Six new sesquiterpenes, including four eremophilane derivatives fureremophilanes A–D (14) and two acorane analogues furacoranes A and B (5 and 6), were characterized from the culture extract of the cold-seep derived fungus Furcasterigmium furcatum CS-280 co-cultured with autoclaved Pseudomonas aeruginosa QDIO-4. All the six compounds were highly oxygenated especially 2 and 3 with infrequent epoxyethane and tetrahydrofuran ring systems. The structures of 16 were established on the basis of detailed interpretation of 1D and 2D NMR and MS data. Their relative and absolute configurations were assigned by a combination of NOESY and single crystal X-ray crystallographic analysis, and by time-dependent density functional (TDDFT) ECD calculations as well. All compounds were tested the anti-inflammatory activity against human COX-2 protein, among which, compounds 2 and 3 displayed activities with IC50 values 123.00 µM and 93.45 µM, respectively. The interaction mechanism was interpreted by molecular docking. Full article
(This article belongs to the Special Issue Bioactive Natural Products from the Deep-Sea-Sourced Microbes)
Show Figures

Graphical abstract

15 pages, 2539 KiB  
Article
New Eremophilane-Type Sesquiterpenes from the Marine Sediment-Derived Fungus Emericellopsis maritima BC17 and Their Cytotoxic and Antimicrobial Activities
by Jorge R. Virués-Segovia, Carlos Millán, Cristina Pinedo, Victoria E. González-Rodríguez, Sokratis Papaspyrou, David Zorrilla, Thomas A. Mackenzie, María C. Ramos, Mercedes de la Cruz, Josefina Aleu and Rosa Durán-Patrón
Mar. Drugs 2023, 21(12), 634; https://doi.org/10.3390/md21120634 - 11 Dec 2023
Cited by 8 | Viewed by 3879
Abstract
The fungal strain BC17 was isolated from sediments collected in the intertidal zone of the inner Bay of Cadiz and characterized as Emericellopsis maritima. On the basis of the one strain–many compounds (OSMAC) approach, four new eremophilane-type sesquiterpenes (14 [...] Read more.
The fungal strain BC17 was isolated from sediments collected in the intertidal zone of the inner Bay of Cadiz and characterized as Emericellopsis maritima. On the basis of the one strain–many compounds (OSMAC) approach, four new eremophilane-type sesquiterpenes (14), together with thirteen known derivatives (517) and two reported diketopiperazines (18, 19), were isolated from this strain. The chemical structures and absolute configurations of the new compounds were determined through extensive NMR and HRESIMS spectroscopic studies and ECD calculation. Thirteen of the isolated eremophilanes were examined for cytotoxic and antimicrobial activities. PR toxin (16) exhibited cytotoxic activity against HepG2, MCF-7, A549, A2058, and Mia PaCa-2 human cancer cell lines with IC50 values ranging from 3.75 to 33.44 µM. (+)-Aristolochene (10) exhibited selective activity against the fungal strains Aspergillus fumigatus ATCC46645 and Candida albicans ATCC64124 at 471 µM. Full article
(This article belongs to the Special Issue Marine Drugs Research in Spain 2nd Edition)
Show Figures

Graphical abstract

14 pages, 629 KiB  
Communication
Comment on Pyrrolizidine Alkaloids and Terpenes from Senecio (Asteraceae): Chemistry and Research Gaps in Africa
by Nicholas John Sadgrove
Molecules 2022, 27(24), 8868; https://doi.org/10.3390/molecules27248868 - 13 Dec 2022
Cited by 7 | Viewed by 2852
Abstract
The genus Senecio is one of the largest in Asteraceae. There are thousands of species across the globe, either confirmed or awaiting taxonomic delimitation. While the species are best known for the toxic pyrrolizidine alkaloids that contaminate honeys (as bees select pollen from [...] Read more.
The genus Senecio is one of the largest in Asteraceae. There are thousands of species across the globe, either confirmed or awaiting taxonomic delimitation. While the species are best known for the toxic pyrrolizidine alkaloids that contaminate honeys (as bees select pollen from the species) and teas via lateral transfer and accumulation from adjacent roots of Senecio in the rhizosphere, they are also associated with more serious cases leading to fatality of grazing ruminants or people by contamination or accidental harvesting for medicine. Surprisingly, there are significantly more sesquiterpenoid than pyrrolizidine alkaloid-containing species. The main chemical classes, aside from alkaloids, are flavonoids, cacalols, eremophilanes, and bisabolols, often in the form of furan derivatives or free acids. The chemistry of the species across the globe generally overlaps with the 469 confirmed species of Africa. A small number of species express multiple classes of compounds, meaning the presence of sesquiterpenes does not exclude alkaloids. It is possible that there are many species that express the pyrrolizidine alkaloids, in addition to the cacalols, eremophilanes, and bisabolols. The aim of the current communication is, thus, to identify the research gaps related to the chemistry of African species of Senecio and reveal the possible chemical groups in unexplored taxa by way of example, thereby creating a summary of references that could be used to guide chemical assignment in future studies. Full article
(This article belongs to the Collection Bioactive Compounds)
Show Figures

Figure 1

17 pages, 3156 KiB  
Article
Eremophilane-Type Sesquiterpenes from a Marine-Derived Fungus Penicillium Copticola with Antitumor and Neuroprotective Activities
by Jianping Zhang, Dong Liu, Aili Fan, Jian Huang and Wenhan Lin
Mar. Drugs 2022, 20(11), 712; https://doi.org/10.3390/md20110712 - 13 Nov 2022
Cited by 11 | Viewed by 3189
Abstract
Chemical examination of a marine sponge-associated Penicillium copticola fungus resulted in the isolation of ten undescribed eremophilanes, namely copteremophilanes A–J (110), along with two new glycosides, 5-glycopenostatin F (11) and 5-glucopenostatin I (12). Their structures [...] Read more.
Chemical examination of a marine sponge-associated Penicillium copticola fungus resulted in the isolation of ten undescribed eremophilanes, namely copteremophilanes A–J (110), along with two new glycosides, 5-glycopenostatin F (11) and 5-glucopenostatin I (12). Their structures were determined by extensive spectroscopic data, in association with ECD data and chemical conversions for configurational assignments. Analogs 1, 2, and 10 represent a group of uncommon skeletons of eremophilanes with an aromatic ring and a methyl migration from C-5 to C-9, and analogs 11 and 12 are characteristic of a PKS scaffold bearing a glucose unit. The incorporation of a chlorinated phenylacetic unit in 39 is rarely found in nature. Analog 7 showed neuroprotective effect, whereas 8 exhibited selective inhibition against human non-small cell lung cancer cells (A549). This study enriched the chemical diversity of eremophilanes and extended their bioactivities to neuroprotection. Full article
Show Figures

Graphical abstract

10 pages, 2281 KiB  
Article
Four New Highly Oxygenated Eremophilane Sesquiterpenes from an Endophytic Fungus Boeremia exigua Isolated from Fritillaria hupehensis
by Hong-Lian Ai, Xiao Lv, Ke Ye, Meng-Xi Wang, Rong Huang, Bao-Bao Shi and Zheng-Hui Li
J. Fungi 2022, 8(5), 492; https://doi.org/10.3390/jof8050492 - 8 May 2022
Cited by 4 | Viewed by 2895
Abstract
Four new eremophilane-type sesquiterpenes, boeremialanes A–D (14) were obtained from solid substrate cultures of Boeremia exigua (Didymellaceae), an endophytic fungus isolated from Fritillaria hupehensis (Liliaceae). Boeremialanes A–C (13) are highly oxygenated eremophilanes with a benzoate [...] Read more.
Four new eremophilane-type sesquiterpenes, boeremialanes A–D (14) were obtained from solid substrate cultures of Boeremia exigua (Didymellaceae), an endophytic fungus isolated from Fritillaria hupehensis (Liliaceae). Boeremialanes A–C (13) are highly oxygenated eremophilanes with a benzoate unit attached at the C-13 position and are rarely found in nature. Their structures and absolute configurations were determined by extensive spectroscopic methods, electronic circular dichroism (ECD), and nuclear magnetic resonance (NMR) calculations with DP4+ analysis. Boeremialane D (4) potently inhibited nitric oxide production in lipopolysaccharide-treated RAW264.7 macrophages with an IC50 of 8.62 μM and was more potent than the positive control, pyrrolidinedithiocarbamate (IC50 = 23.1 μM). Full article
Show Figures

Figure 1

9 pages, 2343 KiB  
Article
Citreobenzofuran D–F and Phomenone A–B: Five Novel Sesquiterpenoids from the Mangrove-Derived Fungus Penicillium sp. HDN13-494
by Qian Wu, Yimin Chang, Qian Che, Dehai Li, Guojian Zhang and Tianjiao Zhu
Mar. Drugs 2022, 20(2), 137; https://doi.org/10.3390/md20020137 - 13 Feb 2022
Cited by 20 | Viewed by 3568
Abstract
Five new sesquiterpenoids, citreobenzofuran D–F (13) and phomenone A–B (45), along with one known compound, xylarenone A (6), were isolated from the culture of the mangrove-derived fungus Penicillium sp. HDN13-494. Their structures were [...] Read more.
Five new sesquiterpenoids, citreobenzofuran D–F (13) and phomenone A–B (45), along with one known compound, xylarenone A (6), were isolated from the culture of the mangrove-derived fungus Penicillium sp. HDN13-494. Their structures were deduced from extensive spectroscopic data, high-resolution electrospray ionization mass spectrometry (HRESIMS), and electronic circular dichroism (ECD) calculations. Furthermore, the absolute structures of 1 were determined by single-crystal X-ray diffraction analysis. Citreobenzofuran E–F (23) are eremophilane-type sesquiterpenoids with rare benzofuran frameworks, while phomenone A (4) contains a rare thiomethyl group, which is the first report of this kind of sesquiterpene with sulfur elements in the skeleton. All the compounds were tested for their antimicrobial and antitumor activity, and phomenone B (5) showed moderate activity against Bacillus subtilis, with an MIC value of 6.25 μM. Full article
Show Figures

Graphical abstract

18 pages, 4015 KiB  
Article
Sesquiterpene-Loaded Co-Polymer Hybrid Nanoparticle Effects on Human Mast Cell Surface Receptor Expression, Granule Contents, and Degranulation
by Narcy Arizmendi, Hui Qian, Yiming Li and Marianna Kulka
Nanomaterials 2021, 11(4), 953; https://doi.org/10.3390/nano11040953 - 8 Apr 2021
Cited by 5 | Viewed by 2961
Abstract
Biodegradable polymeric nanoparticles (NPs) such as poly(lactic-co-glycolic acid) (PLGA) and polyvinyl alcohol (PVA) have been used as drug delivery systems for natural and synthetic compounds and are designed to control the loading and release of biodegradable materials to target cells, tissues, and organs. [...] Read more.
Biodegradable polymeric nanoparticles (NPs) such as poly(lactic-co-glycolic acid) (PLGA) and polyvinyl alcohol (PVA) have been used as drug delivery systems for natural and synthetic compounds and are designed to control the loading and release of biodegradable materials to target cells, tissues, and organs. Eremophilane-type sesquiterpenes have anti-inflammatory properties but are lipophilic, cytotoxic, and not biocompatible with many cells. To determine whether biodegradable PLGA/PVA could improve the biocompatibility of sesquiterpenes, sesquiterpene-loaded NPs were synthesized and their effects on human mast cells (LAD2), the major effector cells of allergic inflammation, were determined. NPs composed of PLGA/PVA and two types of sesquiterpenes (fukinone, PLGA/PVA-21 and 10βH-8α,12-epidioxyeremophil-7(11)-en-8β-ol, PLGA/PVA-22) were produced using a microfluidic synthesis method. The NPs’ size distribution and morphology were evaluated by dynamic light scattering and cryogenic transmission electron microscopy (TEM). PLGA/PVA-21 and PLGA/PVA-22 were 60 to 70 nm and were readily internalized by LAD2 as shown by flow cytometry, fluorescence microscopy, and TEM. While unencapsulated sesquiterpenes decreased LAD2 cell viability by 20%, PLGA/PVA-21 and PLGA/PVA-22 did not alter LAD2 viability, showing that encapsulation improved the biocompatibility of the sesquiterpenes. PLGA/PVA-21 and PLGA/PVA-22 decreased the expression of genes encoding the subunits of the high affinity immunoglobulin E receptor (FcεR1α, FcεR1β, FcεR1γ) and the stem cell factor receptor (Kit,), suggesting that hybrid NPs could alter mast cell responses to antigens and shift their maturation. Similarly, PLGA/PVA-21 and PLGA/PVA-22 inhibited tryptase expression but had no effect on chymase expression, thereby promoting a shift to the tryptase-positive phenotype (MCT). Lastly, PLGA/PVA-21 and PLGA/PVA-22 inhibited mast cell degranulation when the LAD2 cells were activated by IgE crosslinking and FcεRI. Overall, our results suggest that PLGA/PVA-21 and PLGA/PVA-22 alter human mast cell phenotype and activation without modifying viability, making them a more biocompatible approach than treating cells with sesquiterpenes alone. Full article
Show Figures

Figure 1

10 pages, 2741 KiB  
Article
Eudesmane and Eremophilane Sesquiterpenes from the Fruits of Alpinia oxyphylla with Protective Effects against Oxidative Stress in Adipose-Derived Mesenchymal Stem Cells
by Punam Thapa, Yoo Jin Lee, Tiep Tien Nguyen, Donglan Piao, Hwaryeong Lee, Sujin Han, Yeon Jin Lee, Ah-Reum Han, Hyukjae Choi, Jee-Heon Jeong, Joo-Won Nam and Eun Kyoung Seo
Molecules 2021, 26(6), 1762; https://doi.org/10.3390/molecules26061762 - 21 Mar 2021
Cited by 24 | Viewed by 3569
Abstract
Alpinia oxyphylla Miquel (Zingiberaceae) has been reported to show antioxidant, anti-inflammatory, and neuroprotective effects. In this study, two new eudesmane sesquiterpenes, 7α-hydroperoxy eudesma-3,11-diene-2-one (1) and 7β-hydroperoxy eudesma-3,11-diene-2-one (2), and a new eremophilane sesquiterpene, 3α-hydroxynootkatone (3), were isolated [...] Read more.
Alpinia oxyphylla Miquel (Zingiberaceae) has been reported to show antioxidant, anti-inflammatory, and neuroprotective effects. In this study, two new eudesmane sesquiterpenes, 7α-hydroperoxy eudesma-3,11-diene-2-one (1) and 7β-hydroperoxy eudesma-3,11-diene-2-one (2), and a new eremophilane sesquiterpene, 3α-hydroxynootkatone (3), were isolated from the MeOH extract of dried fruits of A. oxyphylla along with eleven known sesquiterpenes (414). The structures were elucidated by the analysis of 1D/2D NMR, high-resolution electrospray ionization mass spectrometry (HRESIMS), and optical rotation data. Compounds (13, 514) were evaluated for their protective effects against tert-butyl hydroperoxide (tBHP)-induced oxidative stress in adipose-derived mesenchymal stem cells (ADMSCs). As a result, treatment with isolated compounds, especially compounds 11 and 12, effectively reverted the damage of tBHP on ADMSCs in a dose-dependent manner. In particular, 11 and 12 at 50 µM improved the viability of tBHP-toxified ADMSCs by 1.69 ± 0.05-fold and 1.61 ± 0.03-fold, respectively. Full article
Show Figures

Figure 1

9 pages, 378 KiB  
Article
Isolation Process and Compound Identification of Agarwood Essential Oils from Aquilaria crassna Cultivated at Three Different Locations in Vietnam
by Dinh Thi Thu Thuy, Tran Thi Tuyen, Tran Thi Thu Thuy, Pham Thi Hong Minh, Quoc Toan Tran, Pham Quoc Long, Duy Chinh Nguyen, Long Giang Bach and Nguyen Quyet Chien
Processes 2019, 7(7), 432; https://doi.org/10.3390/pr7070432 - 9 Jul 2019
Cited by 37 | Viewed by 8121
Abstract
Agarwood and agarwood essential oils are commodities with great commercial value. In Vietnam, the agarwood industry has been growing, with more than 10,000 ha of forest land reserved for the cultivation of Aquilaria crassna, an agarwood-producing tree. The aim of this study [...] Read more.
Agarwood and agarwood essential oils are commodities with great commercial value. In Vietnam, the agarwood industry has been growing, with more than 10,000 ha of forest land reserved for the cultivation of Aquilaria crassna, an agarwood-producing tree. The aim of this study was to present a hydrodistillation process to recover agarwood essential oil and to compare chemical compositions of agarwood samples harvested from various locations in Vietnam. Three agarwood samples representing products from A. crassna trees cultivated in the provinces of Bac Giang and Khanh Hoa, and on the Phu Quoc island (Kien Giang province) of Vietnam were subjected to hydrodistillation, resulting in essential oil yields of 0.32%, 0.27%, and 0.25% (w/w), respectively. Using GC–MS analysis, a total of 44 volatile compounds were identified in the obtained oils. Most of the constituents were oxygenated sesquiterpenes and had been previously found in other agarwood oil samples. Notable compounds of other chemical classes were aromatics and fatty acids. The three oil samples showed a common volatile profile, which is characterized by the dominance of eremophilane, agarofurans, and eudesmane sesquiterpenes, while vetispirane and guaiane sesquiterpenes were found in smaller quantities. Desired compounds, such as neopetasane (7.47–8.29%), dihydrokaranone (2.63–3.59%), β-agarofuran (3.04–6.18%), and agarospirol (2.98–3.42%), were present in substantial quantities, suggesting that the essential oils could be commercialized as fragrant materials of high value. Full article
(This article belongs to the Special Issue Green Separation and Extraction Processes)
Show Figures

Figure 1

10 pages, 1932 KiB  
Article
Terpenoids and Phenylpropanoids in Ligularia duciformis, L. kongkalingensis, L. nelumbifolia, and L. limprichtii
by Chiaki Kuroda, Ryohei Kobayashi, Ayumi Nagata, Yumi Nakadozono, Taketo Itoh, Yasuko Okamoto, Motoo Tori, Ryo Hanai and Xun Gong
Molecules 2017, 22(12), 2062; https://doi.org/10.3390/molecules22122062 - 25 Nov 2017
Cited by 3 | Viewed by 4558
Abstract
The diversity in root chemicals and evolutionally neutral DNA regions in the complex of Ligularia duciformis, L. kongkalingensis, and L. nelumbifolia (the d/k/n complex) was studied using eight samples collected in central and northern Sichuan Province of China. Cacalol (14 [...] Read more.
The diversity in root chemicals and evolutionally neutral DNA regions in the complex of Ligularia duciformis, L. kongkalingensis, and L. nelumbifolia (the d/k/n complex) was studied using eight samples collected in central and northern Sichuan Province of China. Cacalol (14) and epicacalone (15), rearranged eremophilanes, were isolated from the complex for the first time. Two new phenylpropanoids were also obtained. Seven of the eight samples produced phenylpropanoids and the other produced lupeol alone. Two of the seven samples also produced furanoeremophilanes or their derivatives and one produced oplopanes. The geographical distribution of the sesquiterpene-producing populations suggests that the production of sesquiterpenes evolved independently in separate regions. L. limprichtii collected in northern Sichuan was also analyzed and its chemical composition and the sequence of internal transcribed spacers (ITSs) in the ribosomal RNA gene cluster were found to be similar to that in the d/k/n complex and L. yunnanensis, which are morphologically similar. Full article
(This article belongs to the Special Issue Diversity of Terpenoids)
Show Figures

Graphical abstract

13 pages, 1712 KiB  
Article
Eremophilane Sesquiterpenes from a Deep Marine-Derived Fungus, Aspergillus sp. SCSIOW2, Cultivated in the Presence of Epigenetic Modifying Agents
by Liyan Wang, Mengjie Li, Jianqiang Tang and Xiaofan Li
Molecules 2016, 21(4), 473; https://doi.org/10.3390/molecules21040473 - 18 Apr 2016
Cited by 48 | Viewed by 6278
Abstract
Chemical epigenetic manipulation was applied to a deep marine-derived fungus, Aspergillus sp. SCSIOW2, resulting in significant changes of the secondary metabolites. Three new eremophilane-type sesquiterpenes, dihydrobipolaroxin B (2), dihydrobipolaroxin C (3), and dihydrobipolaroxin D (4), along with one known analogue, dihydrobipolaroxin (1), were [...] Read more.
Chemical epigenetic manipulation was applied to a deep marine-derived fungus, Aspergillus sp. SCSIOW2, resulting in significant changes of the secondary metabolites. Three new eremophilane-type sesquiterpenes, dihydrobipolaroxin B (2), dihydrobipolaroxin C (3), and dihydrobipolaroxin D (4), along with one known analogue, dihydrobipolaroxin (1), were isolated from the culture treated with a combination of histone deacetylase inhibitor (suberohydroxamic acid) and DNA methyltransferase inhibitor (5-azacytidine). 1–4 were not produced in the untreated cultures. 2 and 3 might be artificial because 1 could form 2 and 3 spontaneously in water by intracellular acetalization reaction. The absolute configurations of 1 and 2 were assigned based on ECD spectroscopy combined with time-dependent density functional theory calculations. All four compounds exhibited moderate nitric oxide inhibitory activities without cytotoxic effects. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

9 pages, 553 KiB  
Article
Oxygenated Eremophilane- and Neolemnane-Derived Sesquiterpenoids from the Soft Coral Lemnalia philippinensis
by Yun-Jie Xio, Jui-Hsin Su, Yen-Ju Tseng, Bo-Wei Chen, Wangta Liu and Jyh-Horng Sheu
Mar. Drugs 2014, 12(8), 4495-4503; https://doi.org/10.3390/md12084495 - 15 Aug 2014
Cited by 14 | Viewed by 6227
Abstract
Five sesquiterpene-related metabolites (15), including two new eremophilane-type compounds, philippinlins C and D (1 and 2) and a 4,5-seconeolemnane philippinlin E (3), were isolated from the organic extract of a Taiwanese soft coral Lemnalia philippinensis [...] Read more.
Five sesquiterpene-related metabolites (15), including two new eremophilane-type compounds, philippinlins C and D (1 and 2) and a 4,5-seconeolemnane philippinlin E (3), were isolated from the organic extract of a Taiwanese soft coral Lemnalia philippinensis. The structures of the new metabolites were determined on the basis of extensive spectroscopic analysis and by comparison of NMR data with those of related metabolites. Compound 3 was suggested to be derived from the neolemnane skeleton. Full article
(This article belongs to the Special Issue Terpenoids of Marine Origin)
Show Figures

Figure 1

10 pages, 944 KiB  
Article
Four New Chloro-Eremophilane Sesquiterpenes from an Antarctic Deep-Sea Derived Fungus, Penicillium sp. PR19N-1
by Guangwei Wu, Aiqun Lin, Qianqun Gu, Tianjiao Zhu and Dehai Li
Mar. Drugs 2013, 11(4), 1399-1408; https://doi.org/10.3390/md11041399 - 23 Apr 2013
Cited by 68 | Viewed by 8681
Abstract
A new chloro-trinoreremophilane sesquiterpene 1, three new chlorinated eremophilane sesquiterpenes 24, together with a known compound, eremofortine C (5), were isolated from an Antarctic deep-sea derived fungus, Penicillium sp. PR19N-1. Structures were established using IR, HRMS, 1D [...] Read more.
A new chloro-trinoreremophilane sesquiterpene 1, three new chlorinated eremophilane sesquiterpenes 24, together with a known compound, eremofortine C (5), were isolated from an Antarctic deep-sea derived fungus, Penicillium sp. PR19N-1. Structures were established using IR, HRMS, 1D and 2D NMR techniques. In addition, the plausible metabolic network of these isolated products is proposed. Compound 1 showed moderate cytotoxic activity against HL-60 and A549 cancer cell lines. Full article
(This article belongs to the Special Issue Deep-Sea Natural Products)
Show Figures

Graphical abstract

Back to TopTop