Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (73)

Search Parameters:
Keywords = erbium ions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2149 KiB  
Article
Gain Characteristics of Hybrid Waveguide Amplifiers in SiN Photonics Integration with Er-Yb:Al2O3 Thin Film
by Ziming Dong, Guoqing Sun, Yuqing Zhao, Yaxin Wang, Lei Ding, Liqin Tang and Yigang Li
Photonics 2025, 12(7), 718; https://doi.org/10.3390/photonics12070718 - 16 Jul 2025
Viewed by 293
Abstract
Integrated optical waveguide amplifiers, with their compact footprint, low power consumption, and scalability, are the basis for optical communications. The realization of high gain in such integrated devices is made more challenging by the tight optical constraints. In this work, we present efficient [...] Read more.
Integrated optical waveguide amplifiers, with their compact footprint, low power consumption, and scalability, are the basis for optical communications. The realization of high gain in such integrated devices is made more challenging by the tight optical constraints. In this work, we present efficient amplification in an erbium–ytterbium-based hybrid slot waveguide consisting of a silicon nitride waveguide and a thin-film active layer/electron-beam resist. The electron-beam resist as the upper cladding layer not only possesses the role of protecting the waveguide but also has tighter optical confinement in the vertical cross-section direction. On this basis, an accurate and comprehensive dynamic model of an erbium–ytterbium co-doped amplifier is realized by introducing quenched ions. A modal gain of above 20 dB is achieved at the signal wavelength of 1530 nm in a 1.4 cm long hybrid slot waveguide, with fractions of quenched ions fq = 30%. In addition, the proposed hybrid waveguide amplifiers exhibit higher modal gain than conventional air-clad amplifiers under the same conditions. Endowing silicon nitride photonic integrated circuits with efficient amplification enriches the integration of various active functionalities on silicon. Full article
Show Figures

Figure 1

16 pages, 3766 KiB  
Article
The Efficacy of Erbium-Ion, Diode, and CO2 Lasers in Debonding Attachments Used During Overlay Orthodontic Treatment and the Risk of Hard Tooth Tissue Damage Compared to Traditional Methods—An In Vitro Study
by Alina Florczak-Matyjek, Anna Nikodem, Julia Kensy, Jacek Matys and Kinga Grzech-Leśniak
Photonics 2025, 12(6), 621; https://doi.org/10.3390/photonics12060621 - 18 Jun 2025
Viewed by 396
Abstract
Objective: This in vitro study evaluated the effectiveness of three laser systems—diode, CO2, and Er:YAG—for debonding composite attachments used in aligner orthodontic therapy. Materials and Methods: Fifty extracted human premolars with composite attachments were divided into five groups (n = [...] Read more.
Objective: This in vitro study evaluated the effectiveness of three laser systems—diode, CO2, and Er:YAG—for debonding composite attachments used in aligner orthodontic therapy. Materials and Methods: Fifty extracted human premolars with composite attachments were divided into five groups (n = 10): control, RT (rotary tools), diode laser (980 nm, irradiance was 4811 W/cm2), CO2 laser (10.6 µm, irradiance 1531 W/cm2), and Er:YAG laser (2940 nm, irradiance 471.7 W/cm2). Shear bond strength (SBS) testing measured debonding forces. Enamel surface changes were evaluated using micro-CT, optical profilometry, and stereomicroscopy. The Adhesive Remnant Index (ARI) assessed residual bonding material. Results: Laser treatment increased enamel roughness (p < 0.05). Er:YAG laser caused the highest roughness (Sa = 2.03 µm) and up to 0.17 mm enamel loss but left minimal adhesive remnants and no fractures. Diode laser preserved surface smoothness with moderate bond weakening. CO2 laser had intermediate effects. RT showed the highest SBS but resulted in greater enamel alteration. SBS was significantly reduced in the laser groups, lowest for Er:YAG (81.7 ± 45.5 MPa vs. control 196.2 ± 75.3 MPa). ARI indicated better adhesive removal in the laser-treated groups, with Er:YAG showing the highest percentage of clean enamel surfaces (67% vs. 25%). Conclusions: Er:YAG demonstrated the best balance between effective debonding and enamel preservation. Diode and CO2 lasers also offer viable alternatives to rotary tools. Further clinical studies are recommended. Full article
(This article belongs to the Special Issue Photonics: 10th Anniversary)
Show Figures

Figure 1

1 pages, 128 KiB  
Correction
Correction: Nishimura et al. Charge Exchange Spectroscopy of Multiply Charged Erbium Ions. Atoms 2023, 11, 40
by Yuki Nishimura, Saki Imaizumi, Hajime Tanuma, Nobuyuki Nakamura, Yuichiro Sekiguchi, Shinya Wanajo, Hiroyuki A. Sakaue, Daiji Kato, Izumi Murakami, Masaomi Tanaka and Gediminas Gaigalas
Atoms 2025, 13(6), 50; https://doi.org/10.3390/atoms13060050 - 9 Jun 2025
Viewed by 212
Abstract
The journal’s Editorial Office and Editorial Board are jointly issuing a resolution and removal of the Journal Notice linked to this article [...] Full article
9 pages, 1297 KiB  
Communication
Near-Infrared Emitting Chiral Tetranuclear Erbium Cluster Containing Soft-Base Bisthiazolate Linkers
by Vasily A. Ilichev, Anton F. Rogozhin, Roman V. Rumyantcev, Georgy K. Fukin and Mikhail N. Bochkarev
Molbank 2025, 2025(2), M2015; https://doi.org/10.3390/M2015 - 29 May 2025
Viewed by 1158
Abstract
A tetraerbium cluster containing soft-base dianionic 4,8-difluorobenzo [1,2-d:5,4-d′]bisthiazole-2,6-dithiol (H2L) ligands, μ-OH, and coordinated 1,2-dimethoxyethane (DME) of the general formula {Er4(μ-L)4(μ-OH)4(DME)4} (1) was synthesized using [...] Read more.
A tetraerbium cluster containing soft-base dianionic 4,8-difluorobenzo [1,2-d:5,4-d′]bisthiazole-2,6-dithiol (H2L) ligands, μ-OH, and coordinated 1,2-dimethoxyethane (DME) of the general formula {Er4(μ-L)4(μ-OH)4(DME)4} (1) was synthesized using a one-pot method. X-ray analysis revealed that 1 is an asymmetrical tetramer in which there are four μ2-bridging bisthiazole ligands and four μ2-bridging hydroxide anions per four erbium ions. The molecule of 1 has inherent chirality, and the geometry of intramolecular F…F short contacts implies the formation of a classical halogen bond. Upon excitation by a 375 nm diode laser, compound 1 shows the moderate metal-centered emission of Er3+ ions that peaked at 1530 nm. Full article
(This article belongs to the Section Structure Determination)
Show Figures

Figure 1

20 pages, 6941 KiB  
Review
Random Lasers Based on Tellurite and Germanate Glasses and Glass-Ceramics Doped with Rare-Earth Ions
by Davinson M. da Silva, Josivanir G. Câmara, Niklaus U. Wetter, Jessica Dipold, Luciana R. P. Kassab and Cid B. de Araújo
Micromachines 2025, 16(5), 550; https://doi.org/10.3390/mi16050550 - 30 Apr 2025
Viewed by 360
Abstract
Random lasers (RLs) based on glasses and glass-ceramics doped with rare-earth ions (REI) deserve great attention because of their specific physical properties such as large thermal stability, possibility to operate at high intensities, optical wavelength tunability, and prospects to operate Fiber-RLs, among other [...] Read more.
Random lasers (RLs) based on glasses and glass-ceramics doped with rare-earth ions (REI) deserve great attention because of their specific physical properties such as large thermal stability, possibility to operate at high intensities, optical wavelength tunability, and prospects to operate Fiber-RLs, among other characteristics of interest for photonic applications. In this article, we present a brief review of experiments with RLs based on tellurite and germanate glasses and glass-ceramics doped with neodymium (Nd³⁺), erbium (Er³⁺), and ytterbium (Yb³⁺) ions. The glass samples were fabricated using the melt-quenching technique followed by controlled crystallization to achieve the glass-ceramics. Afterwards, the samples were crushed to obtain the powder samples for the RLs experiments. The experiments demonstrated RLs emissions at various wavelengths, with feedback mechanisms due to light scattering at grain/air and crystalline/glass interfaces. The phenomenon of replica symmetry breaking was verified through statistical analysis of the RLs intensity fluctuations, indicating a photonic phase-transition (corresponding to the RL threshold) analogous to the paramagnetic-to-spin glass transition in magnetic materials. The various results reported here highlight the potential of glasses and glass-ceramics for the development of RLs with improved performance in terms of reduction of laser threshold and large lifetime of the active media in comparison with organic materials. Full article
(This article belongs to the Collection Microdevices and Applications Based on Advanced Glassy Materials)
Show Figures

Figure 1

12 pages, 5231 KiB  
Article
Rare Earth Metal Ion-Associates in Ln3+—CO32−—H2O System
by Tatiana Litvinova, Stepan Gerasev, Vasiliy Sergeev and Egor Lidanovskiy
Metals 2025, 15(3), 239; https://doi.org/10.3390/met15030239 - 24 Feb 2025
Cited by 2 | Viewed by 762
Abstract
This study focused on the nature of rare earth metal complex compounds that can form during the carbonate–alkaline processing of industrial waste materials, such as phosphogypsum and red mud, at 70–100 °C and 1–10 atm. Experimental findings revealed that the dissolution of synthetic [...] Read more.
This study focused on the nature of rare earth metal complex compounds that can form during the carbonate–alkaline processing of industrial waste materials, such as phosphogypsum and red mud, at 70–100 °C and 1–10 atm. Experimental findings revealed that the dissolution of synthetic carbonates of rare earth elements (REEs) in a concentrated carbonate-ion medium (3 mol/L) leads to the formation of ion-associates of varying strengths. Light (lanthanum, praseodymium, and neodymium) and medium (samarium) REE groups exhibited a tendency to form loose ion-associates, whereas heavy REEs (terbium, dysprosium, holmium, erbium, thulium, lutetium, and yttrium) formed close ion-associates. To confirm the existence of these ion-associates, the specific conductivity of solutions was measured after dissolving thulium (III) and samarium (III) carbonates at phase ratios ranging from 1:2000 g/mL to 1:40 g/mL in a potassium carbonate medium. The decay of ion-associates, leading to the precipitation of rare earth metal (III) carbonates, was tested in an ammonium carbonate medium. Thermal decomposition of ammonium carbonate at 70–75 °C during 1–4 h was accompanied by full rare earth carbonates’ sedimentation and its in-the-way separation into groups because of the varied strength of ion-associates. The results of this study provide a basis for developing processes to separate rare earth metals into groups during their carbonate–alkaline extraction into solution. Full article
Show Figures

Figure 1

19 pages, 5751 KiB  
Article
Effect of the Use of Some Rare Earth Compounds as Corrosion Inhibitors for API 5L X70 Steel in Saline Medium
by Salvador Hernández García, Araceli Espinoza Vázquez, Laura Nadxieli Palacios-Grijalva, Anatolio Martínez Jiménez, Francisco Javier Rodríguez Gómez, Óscar Armando Gómez Vargas, Alan Miralrio, Miguel Castro and Ricardo Orozco Cruz
Metals 2025, 15(2), 195; https://doi.org/10.3390/met15020195 - 13 Feb 2025
Viewed by 1010
Abstract
This work presents a comparative study of five rare earth compounds—Erbium nitrate pentahydrate lll (Er), Neodymium nitrate pentahydrate (Nd), Samarium III Nitrate Hexahydrate (Sm), Yterbium III Chloride Hexahydrate (Yb) and Praseodymium nitrate hexahydrate lll (Pr)—protecting API 5L X70 steel from corrosion in saline [...] Read more.
This work presents a comparative study of five rare earth compounds—Erbium nitrate pentahydrate lll (Er), Neodymium nitrate pentahydrate (Nd), Samarium III Nitrate Hexahydrate (Sm), Yterbium III Chloride Hexahydrate (Yb) and Praseodymium nitrate hexahydrate lll (Pr)—protecting API 5L X70 steel from corrosion in saline medium that uses electrochemical impedance spectroscopy (EIS) and polarization curves (CPs) at different concentrations and in static mode. The results show that Erbium is the best corrosion inhibitor, containing 50 ppm and reaching an inhibition efficiency of about 89%, and similar result was shown by Sm with an IE~87.9%, while the other rare earths (Nd, Yb and Pr) showed a decrease in corrosion protection at the same concentration, since they were below an IE~80%. On the other hand, with the Langmuir model it was possible to describe that the adsorption process of the three rare earths follows a combined physisorption–chemisorption process to protect the metal’s surface. The observed adsorption free energy, ΔG°ads, reaches −38.7 kJ/mol for Er, −34.4 kJ/mol for Nd, and −33.6 kJ/mol for Pr; whereas Sm and Yb have adsorption free energies of −33.9 and −35.0 kJ/mol, respectively. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) further confirmed the formation of a protective film. Their characterization using density functional theory showed the transference of charge from the iron cluster towards the rare earth metal compounds. The adsorption process produced a slightly polarized region of interaction with the metal surface. Also, it was found that the adsorption of the rare earths affected the magnetic properties of the surface of the iron cluster. Quantum chemical descriptors, such as Pearson’s HSAB (Hard and Soft Acids and Bases) descriptors, were useful in predicting the behavior of the flow of electrons between the metal surface and the interacting rare earth ions. Full article
(This article belongs to the Special Issue Advances in Corrosion and Protection of Materials (Third Edition))
Show Figures

Figure 1

21 pages, 3737 KiB  
Article
Structural Analysis of Erbium-Doped Silica-Based Glass-Ceramics Using Anomalous and Small-Angle X-Ray Scattering
by Helena Cristina Vasconcelos, Maria Meirelles, Reşit Özmenteş and Luís Santos
Foundations 2025, 5(1), 5; https://doi.org/10.3390/foundations5010005 - 12 Feb 2025
Cited by 1 | Viewed by 1363
Abstract
This study employs advanced structural characterization techniques, including anomalous small-angle X-ray scattering (ASAXS), small-angle X-ray scattering (SAXS), and X-ray photoelectron spectroscopy (XPS), to investigate erbium (Er3+)-doped silica-based glass-ceramic thin films synthesized via the sol–gel method. This research examines the SiO2 [...] Read more.
This study employs advanced structural characterization techniques, including anomalous small-angle X-ray scattering (ASAXS), small-angle X-ray scattering (SAXS), and X-ray photoelectron spectroscopy (XPS), to investigate erbium (Er3+)-doped silica-based glass-ceramic thin films synthesized via the sol–gel method. This research examines the SiO2-TiO2 and SiO2-TiO2-PO2.5 systems, focusing on the formation, dispersion, and structural integration of Er3+-containing nanocrystals within the amorphous matrix under different thermal treatments. Synchrotron radiation tuned to the LIII absorption edge of erbium enabled ASAXS measurements, providing element-specific details about the localization of Er3+ ions. The findings confirm their migration into crystalline phases, such as erbium phosphate (EPO) and erbium titanate (ETO). SAXS and Guinier analysis quantified nanocrystal sizes, revealing trends influenced by their composition and heat treatment. Complementary XPS analysis of the Er 5p core-level states provided detailed information on the chemical and electronic environment of the Er3+ ions, confirming their stabilization within the crystalline structure. Transmission electron microscopy (TEM) highlighted the nanoscale morphology, verifying the aggregation of Er3+ ions into well-defined nanocrystals. The results offer a deeper understanding of their size, distribution, and interaction with the surrounding matrix. Full article
(This article belongs to the Section Physical Sciences)
Show Figures

Figure 1

17 pages, 3532 KiB  
Article
The Separation of Y and Er Based on the Synergistic Effect of [N1444][P507] and TRPO
by Kejia Ning, Jingzheng Wang, Li Zhang, Mengting Hong, Biao Fu, Jiushuai Deng, Xiahui Gui, Yaowen Xing, Guixia Fan and Hongxiang Xu
Minerals 2025, 15(2), 153; https://doi.org/10.3390/min15020153 - 6 Feb 2025
Viewed by 831
Abstract
This systematic study was conducted on the separation of yttrium (Y) and erbium (Er) from a chloride medium using a mixed extractant system composed of [N1444][P507] and TRPO (trialkylphosphine oxide) in kerosene. This investigation focused on the effects of various extractants, extraction systems, [...] Read more.
This systematic study was conducted on the separation of yttrium (Y) and erbium (Er) from a chloride medium using a mixed extractant system composed of [N1444][P507] and TRPO (trialkylphosphine oxide) in kerosene. This investigation focused on the effects of various extractants, extraction systems, the initial acidity of the aqueous phase, and the phase contact time on the extraction efficiencies of Y and Er. This study showed that using the combination of [N1444][P507] and TRPO notably increased the extraction performance and enhanced the separation factor between Y and Er, outperforming the individual use of P507 or [N1444][P507] under identical conditions. The extraction efficiencies for Y and Er reached 88.4% and 93.3%, respectively, with a separation factor (Er/Y) of 1.84, highlighting the system’s effectiveness in selectively isolating rare earth elements. Optimal stripping conditions were obtained using 0.1 mol/L of HCl, resulting in a successful recovery of 93.1% of Y3+ and 78.9% of Er3+ from the organic phase. The extraction mechanism involved both ion exchange and ion association. The enthalpy changes (ΔH) associated with the extraction of Y3+ (−2.5 kJ·mol−1) and Er3+ (4.6 KJ·mol−1) demonstrate that the extraction processes are exothermic, reflecting the thermodynamic differences between the two ions. Full article
(This article belongs to the Special Issue Interfacial Chemistry of Critical Mineral Flotation)
Show Figures

Figure 1

12 pages, 28322 KiB  
Article
Optimization of Erbium-Doped Fiber to Improve Temperature Stability and Efficiency of ASE Sources
by Jia Guo, Hao Zhang, Wenbin Lin and Wei Xu
Photonics 2025, 12(2), 115; https://doi.org/10.3390/photonics12020115 - 27 Jan 2025
Viewed by 1235
Abstract
The ASE (Amplified Spontaneous Emission) light source, based on erbium-doped fiber (EDF), is a broadband light source with advantages such as high power, excellent temperature stability, and low coherent light generation. It is widely used in the field of fiber optic sensing. However, [...] Read more.
The ASE (Amplified Spontaneous Emission) light source, based on erbium-doped fiber (EDF), is a broadband light source with advantages such as high power, excellent temperature stability, and low coherent light generation. It is widely used in the field of fiber optic sensing. However, traditional ASE sources suffer from temperature sensitivity and low efficiency, which can compromise the accuracy and stability of the output light’s average wavelength. This study focuses on optimizing the erbium-doped fiber (EDF) to improve the temperature stability and efficiency of the ASE light source. Through simulations, we found that the appropriate doping concentration and length of the EDF are key factors in enhancing the stability and efficiency of the ASE source. Inorganic metal chloride vapor-phase doping combined with an improved chemical vapor deposition process was used to fabricate the erbium-doped fiber, ensuring low background loss, minimal OH absorption, and uniform distribution of the erbium ions in the core of the fiber. The optimized EDFs were integrated into the ASE source, achieving a power conversion efficiency of 53.6% and a temperature stability of 0.118 ppm/°C within the temperature range of −50 °C to 70 °C. This study offers a practical approach for improving the performance of ASE light sources and advancing the development of high-precision fiber optic sensing technologies. Full article
(This article belongs to the Special Issue Novel Two-Dimensional Materials Based on Nonlinear Photonics)
Show Figures

Figure 1

9 pages, 2796 KiB  
Article
Luminescent Nanocrystal Probes for Monitoring Temperature and Thermal Energy Dissipation of Electrical Microcircuit
by Dawid Jankowski, Kamil Wiwatowski, Michał Żebrowski, Aleksandra Pilch-Wróbel, Artur Bednarkiewicz, Sebastian Maćkowski and Dawid Piątkowski
Nanomaterials 2024, 14(24), 1985; https://doi.org/10.3390/nano14241985 - 11 Dec 2024
Cited by 1 | Viewed by 987
Abstract
In this work, we present an experimental approach for monitoring the temperature of submicrometric, real-time operating electrical circuits using luminescence thermometry. For this purpose, we utilized lanthanide-doped up-converting nanocrystals as nanoscale temperature probes, which, combined with a highly sensitive confocal photoluminescence microscope, enabled [...] Read more.
In this work, we present an experimental approach for monitoring the temperature of submicrometric, real-time operating electrical circuits using luminescence thermometry. For this purpose, we utilized lanthanide-doped up-converting nanocrystals as nanoscale temperature probes, which, combined with a highly sensitive confocal photoluminescence microscope, enabled temperature monitoring with spatial resolution limited only by the diffraction of light. To validate our concept, we constructed a simple model of an electrical microcircuit based on a single silver nanowire with a diameter of approximately 100 nm and a length of about 50 µm, whose temperature increase was induced by electric current flow. By driving electric current only along one half of the nanowire, we created a dual-function microstructure, where one section is a resistive heater, while the other operates as a radiator. Such a combination realistically reflects the electronic circuit and its thermal behavior. We demonstrated that nanocrystals distributed around this circuit allow for remote temperature readout and enable precise monitoring of the thermal energy propagation and heat dissipation processes, which are crucial for designing and developing highly integrated electronic on-chip devices. Full article
Show Figures

Graphical abstract

12 pages, 19537 KiB  
Article
Growth, Spectroscopic Characterization and Continuous-Wave Laser Operation of Er,Yb:GdMgB5O10Crystal
by Konstantin N. Gorbachenya, Elena A. Volkova, Victor V. Maltsev, Victor E. Kisel, Diana D. Mitina, Elizaveta V. Koporulina, Nikolai N. Kuzmin, Ekaterina I. Marchenko and Vladimir L. Kosorukov
Inorganics 2024, 12(9), 240; https://doi.org/10.3390/inorganics12090240 - 31 Aug 2024
Cited by 2 | Viewed by 1116
Abstract
A transparent Er3+,Yb3+:GdMgB5O10 single crystal with dimensions up to 24 × 15 × 12 mm was grown successfully by the high-temperature solution growth on dipped seeds technique from K2Mo3O10-based solvent. [...] Read more.
A transparent Er3+,Yb3+:GdMgB5O10 single crystal with dimensions up to 24 × 15 × 12 mm was grown successfully by the high-temperature solution growth on dipped seeds technique from K2Mo3O10-based solvent. The grown crystal was characterized using PXRD, DSC and ATR techniques. Differential scanning calorimetry measurements and SEM analysis of the heat-treated solids revealed Er,Yb:GdMgB5O10 to be an incongruent melting compound with an onset point of 1087 °C. The absorption edge of the Er,Yb:GMBO sample is located in the region of 245 nm, which approximates a value of 4.8 eV. Absorption and emission spectra, and luminescence kinetics, were studied. The energy transfer efficiency from ytterbium to erbium ions was determined. The laser operation in continuous-wave mode was realized and output characteristics were measured. The maximal output power of 0.15 W with a slope efficiency of 11% was obtained at 1568 nm. Full article
(This article belongs to the Special Issue Synthesis and Application of Luminescent Materials)
Show Figures

Figure 1

16 pages, 6921 KiB  
Article
Fabrication of Erbium-Doped Upconversion Nanoparticles and Carbon Quantum Dots for Efficient Perovskite Solar Cells
by Alhanouf Alotaibi, Farah Alsardi, Fatimah Alshwikhat, Madawey Aldossary, Fudhyah S. Almarwani, Faizah J. Talidi, Shouq A. Almenhali, Sarah F. Almotawa, Yahya A. Alzahrani, Sultan Alenzi, Anwar Alanazi and Masfer Alkahtani
Molecules 2024, 29(11), 2556; https://doi.org/10.3390/molecules29112556 - 29 May 2024
Cited by 4 | Viewed by 2716
Abstract
Upconversion nanoparticles (UCNPs) and carbon quantum dots (CQDs) have emerged as promising candidates for enhancing both the stability and efficiency of perovskite solar cells (PSCs). Their rising prominence is attributed to their dual capabilities: they effectively passivate the surfaces of perovskite-sensitive materials while [...] Read more.
Upconversion nanoparticles (UCNPs) and carbon quantum dots (CQDs) have emerged as promising candidates for enhancing both the stability and efficiency of perovskite solar cells (PSCs). Their rising prominence is attributed to their dual capabilities: they effectively passivate the surfaces of perovskite-sensitive materials while simultaneously serving as efficient spectrum converters for sunlight. In this work, we synthesized UCNPs doped with erbium ions as down/upconverting ions for ultraviolet (UV) and near-infrared (NIR) light harvesting. Various percentages of the synthesized UCNPs were integrated into the mesoporous layers of PSCs. The best photovoltaic performance was achieved by a PSC device with 30% UCNPs doped in the mesoporous layer, with PCE = 16.22% and a fill factor (FF) of 74%. In addition, the champion PSCs doped with 30% UCNPs were then passivated with carbon quantum dots at different spin coating speeds to improve their photovoltaic performance. When compared to the pristine PSCs, a fabricated PSC device with 30% UCNPs passivated with CQDs at a spin coating speed of 3000 rpm showed improved power conversion efficiency (PCE), from 16.65% to 18.15%; a higher photocurrent, from 20.44 mA/cm2 to 22.25 mA/cm2; and a superior fill factor (FF) of 76%. Furthermore, the PSCs integrated with UCNPs and CQDs showed better stability than the pristine devices. These findings clear the way for the development of effective PSCs for use in renewable energy applications. Full article
(This article belongs to the Special Issue Progress of Stable Organic Photovoltaic Materials)
Show Figures

Figure 1

17 pages, 4167 KiB  
Article
Synthesis, Crystal Structure, and Optical and Magnetic Properties of the New Quaternary Erbium Telluride EuErCuTe3: Experiment and Calculation
by Anna V. Ruseikina, Maxim V. Grigoriev, Ralf J. C. Locke, Vladimir A. Chernyshev, Alexander A. Garmonov and Thomas Schleid
Materials 2024, 17(10), 2284; https://doi.org/10.3390/ma17102284 - 11 May 2024
Cited by 1 | Viewed by 1519
Abstract
This paper reports for the first time on a new layered magnetic heterometallic erbium telluride EuErCuTe3. Single crystals of the compound were obtained from the elements at 1120 K using CsI as a flux. The crystal structure of EuErCuTe3 was [...] Read more.
This paper reports for the first time on a new layered magnetic heterometallic erbium telluride EuErCuTe3. Single crystals of the compound were obtained from the elements at 1120 K using CsI as a flux. The crystal structure of EuErCuTe3 was solved in the space group Cmcm (a = 4.3086(3) Å, b = 14.3093(9) Å, and c = 11.1957(7) Å) with the KZrCuS3 structure type. In the orthorhombic structure of erbium telluride, distorted octahedra ([ErTe6]9−) form two-dimensional layers (Er(Te1)2/2e(Te2)4/2k)2, while distorted tetrahedra ([CuTe4]7−) form one-dimensionally connected substructures (Cu(Te1)2/2e(Te2)2/1t51) along the [100] direction. The distorted octahedra and tetrahedra form parallel two-dimensional layers (CuErTe322) between which Eu2+ ions are located in a trigonal-prismatic coordination environment (EuTe610). The trigonal prisms are connected by faces, forming chains (Eu(Te1)2/2(Te2)4/221) along the [100] direction. Regularities in the variations in structural parameters were established in the series of erbium chalcogenides (EuErCuCh3 with Ch = S, Se, and Te) and tellurides (EuLnCuTe3 with Ln = Gd, Er, and Lu). Ab-initio calculations of the crystal structure, phonon spectrum, and elastic properties of the compound EuErCuTe3 were performed. The types and wavenumbers of fundamental modes were determined, and the involvement of ions in the IR and Raman modes was assessed. The experimental Raman spectra were interpreted. The telluride EuErCuTe3 at temperatures below 4.2 K was ferrimagnetic, as were the sulfide and selenide derivatives (EuErCuCh3 with Ch = S and Se). Its experimental magnetic characteristics were close to the calculated ones. The decrease in the magnetic phase transition temperature in the series of the erbium chalcogenides was discovered. Full article
(This article belongs to the Special Issue Obtaining and Characterization of New Materials, Volume IV)
Show Figures

Figure 1

16 pages, 3688 KiB  
Article
Aluminium 8-Hydroxyquinolinate N-Oxide as a Precursor to Heterometallic Aluminium–Lanthanide Complexes
by Elisa Gallo, Luca Bellucci, Silvia Carlotto, Gregorio Bottaro, Luca Babetto, Luca Giordano, Fabio Marchetti, Simona Samaritani, Lidia Armelao and Luca Labella
Molecules 2024, 29(2), 451; https://doi.org/10.3390/molecules29020451 - 17 Jan 2024
Cited by 3 | Viewed by 2692
Abstract
A reaction in anhydrous toluene between the formally unsaturated fragment [Ln(hfac)3] (Ln3+ = Eu3+, Gd3+ and Er3+; Hhfac = hexafluoroacetylacetone) and [Al(qNO)3] (HqNO = 8-hydroxyquinoline N-oxide), here prepared for the first time [...] Read more.
A reaction in anhydrous toluene between the formally unsaturated fragment [Ln(hfac)3] (Ln3+ = Eu3+, Gd3+ and Er3+; Hhfac = hexafluoroacetylacetone) and [Al(qNO)3] (HqNO = 8-hydroxyquinoline N-oxide), here prepared for the first time from [Al(OtBu)3] and HqNO, affords the dinuclear heterometallic compounds [Ln(hfac)3Al(qNO)3] (Ln3+ = Eu3+, Gd3+ and Er3+) in high yields. The molecular structures of these new compounds revealed a dinuclear species with three phenolic oxygen atoms bridging the two metal atoms. While the europium and gadolinium complexes show the coordination number (CN) 9 for the lanthanide centre, in the complex featuring the smaller erbium ion, only two oxygens bridge the two metal atoms for a resulting CN of 8. The reaction of [Eu(hfac)3] with [Alq3] (Hq = 8-hydroxyquinoline) in the same conditions yields a heterometallic product of composition [Eu(hfac)3Alq3]. A recrystallization attempt from hot heptane in air produced single crystals of two different morphologies and compositions: [Eu2(hfac)6Al2q4(OH)2] and [Eu2(hfac)6(µ-Hq)2]. The latter compound can be directly prepared from [Eu(hfac)3] and Hq at room temperature. Quantum mechanical calculations confirm (i) the higher stability of [Eu(hfac)3Al(qNO)3] vs. the corresponding [Eu(hfac)3Alq3] and (ii) the preference of the Er complexes for the CN 8, justifying the different behaviour in terms of the Lewis acidity of the metal centre. Full article
(This article belongs to the Special Issue Exclusive Feature Papers in Inorganic Chemistry, 2nd Edition)
Show Figures

Graphical abstract

Back to TopTop