Effect of the Use of Some Rare Earth Compounds as Corrosion Inhibitors for API 5L X70 Steel in Saline Medium
Abstract
:1. Introduction
2. Materials and Methods
2.1. Surface Preparation of API 5L X70 Steel
2.2. Inhibitor Preparation
2.3. Electrochemical Test
2.4. Surface Characterization
2.5. Computational Details
3. Results and Discussion
3.1. Evaluation at Different Concentrations via OCP (Open Circuit Potential) and EIS
3.2. Evaluation at Different Concentrations by Potentiodynamic Polarization
3.3. Scanning Electron Microscopy (SEM) Results
3.4. Atomic Force Microscopy (AFM) Results
3.5. Computational Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Askari, M.; Aliofkhazraei, M.; Afroukhteh, S. A comprehensive review on internal corrosion and cracking of oil and gas pipelines. J. Nat. Gas Sci. Eng. 2019, 71, 102971. [Google Scholar] [CrossRef]
- Hussein, A.; Xiao, Y.; Xiao, N.; Wu, B.; Li, H.; Lin, B.; Nie, Z.; Tang, J. Emerging AI technologies for corrosion monitoring in oil and gas industry: A comprehensive review. Eng. Fail. Anal. 2024, 155, 107735. [Google Scholar] [CrossRef]
- Quraishi, M.A.; Chauhan, D.S.; Ansari, F.A. Development of environmentally benign corrosion inhibitors for organic acid environments for oil-gas industry. J. Mol. Liq. 2021, 329, 115514. [Google Scholar] [CrossRef]
- Zu, P.; Zhang, Y.; Zhang, S.; Li, Y.; Hu, L. Excellent corrosion inhibition and lubrication performance of MMT based ionic liquids as ester oil additives. Tribol. Int. 2024, 194, 109473. [Google Scholar] [CrossRef]
- Tian, Y.; Bao, J.; Xie, D.; Wang, B.; Zhang, P.; Zhao, T.; Lei, D. The effects of organic corrosion inhibitor on concrete properties and frost resistance. J. Build. Eng. 2025, 65, 105762. [Google Scholar] [CrossRef]
- Razizadeh, M.; Mahdavian, M.; Ramezanzadeh, B.; Alibakhshi, E.; Jamali, S. Synthesis of hybrid organic–inorganic inhibitive pigment based on basil extract and zinc cation for application in protective construction coatings. Constr. Build. Mater. 2021, 287, 123034. [Google Scholar] [CrossRef]
- Holla, B.R.; Mahesh, R.; Manjunath, H.R.; Anjanapura, V.R. Plant extracts as green corrosion inhibitors for different kinds of steel: A review. Heliyon 2024, 10, e33748. [Google Scholar] [CrossRef] [PubMed]
- Khan, G.; Newaz, K.; Basirun, W.J.; Ali, H.B.M.; Faraj, F.L.; Khan, G.M. Application of Natural Product Extracts as Green Corrosion Inhibitors for Metals and Alloys in Acid Pickling Processes—A review. Int. J. Electrochem. Sci. 2015, 10, 6120–6134. [Google Scholar] [CrossRef]
- Somers, A.E.; Hinton, B.R.W.; De Bruin-Dickason, C.; Deacon, G.B.; Junk, P.C.; Forsyth, M. New, environmentally friendly, rare earth carboxylate corrosion inhibitors for mild Steel. Corros. Sci. 2018, 139, 430–437. [Google Scholar] [CrossRef]
- Peng, Y.; Hughes, A.E.; Deacon, G.B.; Junk, P.C.; Hinton, B.R.W.; Forsyth, M.; Mardel, J.I.; Somers, A.E. A study of rare-earth 3-(4-methylbenzoyl)-propanoate compounds as corrosion inhibitors for AS1020 mild steel in NaCl solutions. Corros. Sci. 2018, 145, 199–211. [Google Scholar] [CrossRef]
- Behrsing, T.; Deacon, G.B.; Junk, P.C. The chemistry of rare earth metals, compounds, and corrosion inhibitors. In Rare Earth-Based Corrosion Inhibitors; Elsevier: Amsterdam, The Netherlands, 2014; pp. 1–37. [Google Scholar]
- Hughes, A.E.; Mol, J.M.C.; Cole, I.S. The cost and availability of rare earth-based corrosion inhibitors. In Rare Earth-Based Corrosion Inhibitors; Elsevier: Amsterdam, The Netherlands, 2014; pp. 291–305. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhuang, J.; Yu, Y.; Zeng, X. Research on anti-corrosion property of rare earth inhibitor for X70 steel. J. Rare Earths 2013, 31, 734–740. [Google Scholar] [CrossRef]
- Zhang, J.; Sun, Y.; Zhang, S.; Zhang, L. Effect of rare earth element yttrium modified inclusion on corrosion properties of stainless steel. Mater. Today Commun. 2024, 39, 109185. [Google Scholar] [CrossRef]
- Bethencourt, M.; Botana, F.J.; Calvino, J.J.; Marcos, M.; Rodríguez-Chacón, M.A. Lanthanide compounds as environmentally-friendly corrosion inhibitors of aluminium alloys: A review. Corros. Sci. 1998, 40, 1803–1819. [Google Scholar] [CrossRef]
- Hossain, M.K.; Rubel, M.H.K.; Akbar, M.A.; Ahmed, M.H.; Haque, N.; Rahman, M.d.F.; Hossain, J.; Hossain, K.M. A review on recent applications and future prospects of rare earth oxides in corrosion and thermal barrier coatings, catalysts, tribological, and environmental sectors. Ceram. Int. 2022, 48, 32588–32612. [Google Scholar] [CrossRef]
- Luo, Z.; Jiang, J.; Dong, S.; Zhou, C.; Lü, K.; Xie, Y.; Duan, Z.; Huang, Y.; Chen, T.; Deng, L.; et al. (Gd0.2Ho0.2Er0.2Yb0.2Lu0.2)2Si2O7 and (Sc0.2Ho0.2Er0.2Yb0.2Lu0.2)2Si2O7 high-entropy rare-earth disilicates as promising materials for environmental barrier coatings. Ceram. Int. 2024, 50, 23342–23355. [Google Scholar] [CrossRef]
- Zhou, B.; Wang, Y.; Zuo, Y. Evolution of the corrosion process of AA 2024-T3 in an alkaline NaCl solution with sodium dodecylbenzenesulfonate and lanthanum chloride inhibitors. Appl. Surf. Sci. 2015, 357, 35–744. [Google Scholar] [CrossRef]
- Nguyen, V.T.; Van Vuong, Q.; Bowyer, M.C.; Van Altena, I.A.; Scarlett, C.J. Effects of Different Drying Methods on Bioactive Compound Yield and Antioxidant Capacity of Phyllanthus amarus. Drying Technol. 2015, 33, 1006–1017. [Google Scholar] [CrossRef]
- Ivušić, F.; Lahodny-Šarc, O.; Ćurković, H.O.; Alar, V. Synergistic inhibition of carbon steel corrosion in seawater by cerium chloride and sodium gluconate. Corros. Sci. 2015, 98, 88–97. [Google Scholar] [CrossRef]
- Palaniappan, N.; Cole, I.S.; Kuznetsov, A.E.; Thomas, K.R.J.; Ruszkowski, P.; Kujawska, M. Samarium functionalized few-layer nano graphene oxide redox behavior, cytotoxicity and corrosion inhibition on Mg AZ31 alloy in 3.5% NaCl environment. J. Mol. Struct. 2023, 1294, 136353. [Google Scholar] [CrossRef]
- Liu, B.; Wang, H.-H.; Zhang, Y.; Yang, Y.; Ren, X.; Du, H.; Hou, L.; Wei, Y.; Song, G. The influence of adding samarium on the microstructure, mechanical performance and corrosion behavior of as-extruded AZ41 alloys. J. Phys. Chem. Solids 2021, 150, 109851. [Google Scholar] [CrossRef]
- Chenghao, L.; Shusen, W.; Naibao, H.; Zhihong, Z.; Shuchun, Z.; Jing, R. Effects of Lanthanum and Cerium Mixed Rare Earth Metal on Abrasion and Corrosion Resistance of AM60 Magnesium Alloy. Rare Met. Mat. Eng. 2015, 44, 521–526. [Google Scholar] [CrossRef]
- Udunwa, D.I.; Onukwuli, O.D.; Nwanonenyi, S.C.; Ude, C.N.; Arukalam, I.O.; Uche, R. Newly synthesized 1-butyl-3-methylimidazolium p-toluenesulfonate ionic liquid for acid corrosion of API 5L X70 steel: Experimental, DFT/MD-simulation, statistical and machine learning predictions. Results Surf. Interfaces 2024, 18, 100398. [Google Scholar] [CrossRef]
- Espinoza-Vázquez, A.; Santiago Cárdenas, L.J.; Galván-Martínez, R.; Miralrio, A.; Castro, M.; Carmona Hernández, A.; Orozco-Cruz, R. Electrochemical evaluation of Trasar trac 102 as a corrosion inhibitor on API 5L X65 steel and theoretical study. J. Electroanal. Chem. 2023, 943, 117599. [Google Scholar] [CrossRef]
- Espinoza Vázquez, A.; González-Olvera, R.; Moreno Cerros, D.; Negrón Silva, G.E.; Figueroa, I.A.; Rodríguez Gómez, F.J.; Castro, M.; Miralrio, A.; Huerta, L. Inhibition of acid corrosion in API 5L X52 steel with 1,2,3-triazole derivatized from benzyl alcohol: Experimental and theoretical studies. J. Mol. Struct. 2021, 1242, 130731. [Google Scholar] [CrossRef]
- Frisch, M.; Trucks, G.; Schlegel, H.; Scuseria, G.; Robb, M.; Cheeseman, J.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.; et al. Gaussian 09, Revision D. 01; Gaussian: Wallingford, CT, USA, 2009. [Google Scholar]
- Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305. [Google Scholar] [CrossRef]
- Sun, Q.; Fu, S.; Peng, Y.; Li, P.; Ma, H.; Fang, Z.; Ma, T.; Zhang, R.; Liang, Z.; Li, J. Isoindigo derivatives as some potential corrosion inhibitors for mild steel in hydrochloric acid solution: Synthesis, experimental and theoretical studies. J. Mol. Struc. 2024, 1312, 138480. [Google Scholar] [CrossRef]
- Chen, M.; Chen, S.; Pi, J.; Chen, S.; Wang, Q.; Fu, C. An investigation of modified dialdehyde starch as a highly efficient green corrosion inhibitor for carbon steel in 1 M HCl medium: Synthesis, experimental and theoretical studies. Ind. Crops Prod. 2024, 215, 118534. [Google Scholar] [CrossRef]
- Zhu, J.; Lin, B.; Duan, T.; Lin, H.; Zhang, G.; Zhou, X.; Xu, Y. Zea mays bracts extract as an eco-friendly corrosion inhibitor for steel in HCl pickling solution: Experimental and simulation studies. Arab. J. Chem. 2024, 17, 105895. [Google Scholar] [CrossRef]
- Negi, R.; Thakur, S.; Singh, R.; Kaur, V.; Singh, K. Double-layer protection of stainless steel by using triethylammonium-3-silatranylpropyldithiocarbamate as a corrosion inhibitor: Experimental and computational studies. J. Mol. Struc. 2024, 1309, 138166. [Google Scholar] [CrossRef]
- Song, Z.; Liu, L.; Guo, M.-Z.; Cai, H.; Liu, Q.; Donkor, S.; Zhao, H. Inhibition performance of extract reinforcement corrosion inhibitor from waste Platanus acerifolia leaves in simulated concrete pore solution. Case Stud. Constr. Mater. 2024, 20, e02992. [Google Scholar] [CrossRef]
- Somers, A.E.; Peng, Y.; Chong, A.L.; Forsyth, M.; MacFarlane, D.R.; Deacon, G.B.; Hughes, A.E.; Hinton, B.R.W.; Mardel, J.I.; Junk, P.C. Advances in the development of rare earth metal and carboxylate compounds as corrosion inhibitors for steel. Corros. Eng. Sci. Techn. 2020, 55, 311–321. [Google Scholar] [CrossRef]
- Tan, B.; Liu, Y.; Gong, Z.; Zhang, X.; Chen, J.; Guo, L.; Xiong, J.; Liu, J.; Marzouki, R.; Li, W. Pyracantha fortuneana alcohol extracts as biodegradable corrosion inhibitors for copper in H2SO4 media. J. Mol. Liq. 2024, 397, 124117. [Google Scholar] [CrossRef]
- Yang, H.; Deng, S.; Li, X. Eupatorium adenophorum Spreng root extract as an efficient inhibitor for the corrosion of steel in sulfamic acid solution. Int. J. Electrochem. Sci. 2024, 19, 100790. [Google Scholar] [CrossRef]
- Simović, A.; Milovanović, B.; Etinski, M.; Matović, L.; Bajat, J.B. Innovative hybrid and bifunctional rare earth complexes as corrosion inhibitors for AA2024 Alloy: Electrochemical and surface analysis enhanced by DFT/MD simulation. Appl. Surf. Sci. 2024, 670, 160718. [Google Scholar] [CrossRef]
- Cheng, Z.; Liao, B.; Zhou, Z.; Mai, W.; Chen, Q.; He, J. Exploration on the corrosion inhibition performance of Salvia miltiorrhiza extract as a green corrosion inhibitor for Q235 steel in HCl environment. J. Mater. Res. Technol. 2024, 32, 3857–3870. [Google Scholar] [CrossRef]
- Al-Amiery, A.; Betti, N.; Shaker, L. Exploring the effectiveness of 3-chloro-4-morpholin-4-yl-1,2,5-thiadiazole as an eco-friendly corrosion inhibitor for mild steel in HCl solution: Experimental and DFT analysis. Results Eng. 2024, 24, 103014. [Google Scholar] [CrossRef]
- Tang, J.; Shi, Y.; He, S.; Luo, J.; Liu, Y.; Zhai, K.; Duan, M.; Wang, H.; Xie, J. Study on the corrosion inhibition properties of some quinoline derivatives as acidizing corrosion inhibitors for steel. Int. J. Electrochem. Sci. 2024, 19, 100547. [Google Scholar] [CrossRef]
- Worden, E.F.; Solarz, R.W.; Paisner, J.A.; Conway, J.G. First ionization potentials of lanthanides by laser spectroscopy. J. Opt. Soc. Am. 1978, 68, 52. [Google Scholar] [CrossRef]
- Johnson, D.A.; Nelson, P.G. Lanthanide Ionization Energies and the Sub-Shell Break. Part 2. The Third and Fourth Ionization Energies. J. Phys. Chem. Ref. Data 2017, 46, 013109. [Google Scholar] [CrossRef]
- Xu, Z.; Zhang, X.; Zhang, W.; Huang, C.; Shen, L. Shift of the first ionization threshold of Sm atom in electric field. Chin. Opt. 2020, 13, 1385–1400. [Google Scholar] [CrossRef]
- Aymar, M.; Debarre, A.; Robaux, O. Highly excited levels of neutral ytterbium. II. Multichannel quantum defect analysis of odd- and even-parity spectra. J. Phys. B At. Mol. Phys. 1980, 13, 1089–1109. [Google Scholar] [CrossRef]
- Kramida, A.; Ralchenko, Y. NIST Atomic Spectra Database, NIST Standard Reference Database. 1999; p. 78. Available online: https://www.nist.gov/pml/atomic-spectra-database (accessed on 1 June 2024).
- Serrano, A.A.A.; Miralrio, A.; Beltran-Perez, C. Models for predicting corrosion inhibition efficiency of common drugs on steel surfaces: A rationalized comparison among methodologies. Appl. Surf. Sci. Adv. 2024, 22, 100621. [Google Scholar] [CrossRef]
C (ppm) | Rs (Ω cm2) | n | Cdl (µF/cm2) | Rct (Ω cm2) | n | CF (µF/cm2) | Rmol (Ω cm2) | Rtotal (Ω cm2) | IE (%) | Χ2 (Chi-squared) | |
---|---|---|---|---|---|---|---|---|---|---|---|
Without inhibitor | 0 | 12.7 | 0.7 | 2971.6 | 151.97 | - | - | 152.0 | 0.001281 | ||
Er | 10 | 34.4 | 0.8 | 28.8 | 234.42 | 0.8 | 124.07 | 67.7 | 302.1 | 49.7 | 0.002969 |
20 | 5.2 | 0.9 | 27.7 | 1994.3 | 0.9 | 19.07 | 195.7 | 2190.0 | 93.1 | 0.002733 | |
50 | 22.3 | 0.7 | 119.7 | 1404.97 | 0.6 | 71.78 | 27.3 | 1432.3 | 89.4 | 0.002655 | |
100 | 18.7 | 0.8 | 43.8 | 1005.19 | 0.5 | 56.32 | 1219.0 | 2224.2 | 93.2 | 0.002909 | |
200 | 37.1 | 0.7 | 116.6 | 980.55 | 0.7 | 10.14 | 567.4 | 1548.0 | 90.2 | 0.000831 | |
Nd | 10 | 42.82 | 0.8 | 32.5 | 1532.9 | 0.6 | 76.5 | 67.1 | 1600.0 | 90.5 | 0.00128 |
20 | 10.39 | 0.7 | 92.5 | 623.4 | 0.6 | 158.9 | 74.6 | 698.0 | 78.2 | 0.00345 | |
50 | 15.06 | 0.6 | 130.1 | 408.5 | 0.6 | 31.7 | 105.0 | 513.5 | 70.4 | 0.00210 | |
100 | 10.08 | 0.7 | 61.5 | 143.0 | 0.6 | 78.3 | 214.0 | 357.0 | 57.4 | 0.00100 | |
200 | 13.56 | 0.7 | 57.4 | 143.7 | 0.6 | 48.2 | 172.5 | 316.2 | 51.9 | 0.00171 | |
Pr | 10 | 6.7 | 0.6 | 188.7 | 466.6 | 0.6 | 106.5 | 34.6 | 501.18 | 69.7 | 0.00240 |
20 | 37.6 | 0.7 | 120.4 | 500.0 | 0.6 | 71.3 | 12.9 | 512.86 | 70.4 | 0.00671 | |
50 | 7.1 | 0.6 | 199.1 | 651.3 | 0.6 | 91.7 | 21.8 | 673.08 | 77.4 | 0.00057 | |
100 | 54.2 | 0.9 | 20.0 | 500.0 | 0.6 | 45.9 | 37.0 | 537.03 | 71.7 | 0.00669 | |
200 | 9.6 | 0.9 | 14.7 | 512.2 | 0.6 | 46.9 | 37.3 | 549.54 | 72.3 | 0.00068 | |
Sm | 10 | 3.5 | 0.8 | 49.1 | 390.6 | 0.8 | 41.36 | 7.6 | 398.14 | 51.9 | 0.00199 |
20 | 8.1 | 0.6 | 175.1 | 473.2 | 0.6 | 13.30 | 20.6 | 493.82 | 61.2 | 0.00203 | |
50 | 7.4 | 0.6 | 156.3 | 315.2 | 0.6 | 21.83 | 8.4 | 323.59 | 40.9 | 0.00396 | |
100 | 9.5 | 0.7 | 81.7 | 547.9 | 0.7 | 12.29 | 10.3 | 558.22 | 65.7 | 0.00240 | |
200 | 8.4 | 0.7 | 96.2 | 706.0 | 0.7 | 10.51 | 10.8 | 716.85 | 73.3 | 0.00052 | |
Yb | 10 | 3.0 | 0.6 | 156.7 | 670.8 | 0.7 | 97.8 | 19.2 | 690.0 | 72.3 | 0.00750 |
20 | 3.4 | 0.6 | 179.7 | 620.2 | 0.7 | 80.6 | 10.8 | 631.0 | 69.7 | 0.00086 | |
50 | 5.3 | 0.7 | 110.9 | 651.1 | 0.6 | 77.0 | 25.0 | 676.1 | 71.7 | 0.002156 | |
100 | 5.5 | 0.8 | 33.4 | 311.7 | 0.8 | 408.6 | 4.5 | 316.2 | 39.5 | 0.000307 | |
200 | 3.3 | 0.7 | 121.9 | 424.7 | 0.6 | 164.9 | 22.0 | 446.7 | 57.2 | 0.000574 |
Inhibitor | C (ppm) | Ecorr (mV) vs. Ag/AgCl sat | icorr (µA/cm2) | βa (mV/dec) | −βc (mV/dec) | IE (%) |
---|---|---|---|---|---|---|
Blank | 0 | −804.7 | 67.4 | 159.5 | 173 | - |
Er | 20 | −701.1 | 4.8 | 194.6 | 68.7 | 92.8 |
Nd | 20 | −746.2 | 25.4 | 167.3 | 48.6 | 62.3 |
Pr | 20 | −746.1 | 18.3 | 266.0 | 55.3 | 72.8 |
Sm | 50 | −642.7 | 46.2 | 93.2 | 288.3 | 31.5 |
Yb | 20 | −583.5 | 16.6 | 84.2 | 304.2 | 75.2 |
Inhibitor | Equation Regresion Linear | ln Kads | ΔG°ads (kJ/mol) |
---|---|---|---|
Er | C/θ = 1.0814 C + 7 × 10−6 R2 = 0.9975 | 15.88 | −38.7 |
Nd | C/θ = 1.9883 C + 4 × 10−5 R2 = 0.9970 | 14.14 | −34.4 |
Pr | C/θ = 1.3806 C + 1 × 10−6 R2 = 0.9995 | 13.81 | −33.6 |
Sm | C/θ = 1.2938 C + 5 × 10−5 R2 = 0.9573 | 13.91 | −33.9 |
Yb | C/θ = 1.4952 C + 3 × 10−6 R2 = 0.9954 | 14.43 | −35.0 |
Inhibitor | Ra (nm) | Rq (nm) |
---|---|---|
NaCl | 143.0 | 141.0 |
Er | 7.32 | 9.21 |
Sm | 60.0 | 76.7 |
Yb | 23.9 | 31.3 |
System | M | Iexp (eV) | Itheo (eV) | Ref. |
---|---|---|---|---|
Er0 | 3.00 | 6.251 | 6.108 | [41] |
Er3+ | 4.00 | 44.929 | 42.42 | [42] |
Sm0 | 7.00 | 5.706 | 5.643 | [43] |
Sm3+ | 6.00 | 43.381 | 42.64 | [42] |
Yb0 | 1.00 | 6.291 | 6.254 | [44] |
Yb3+ | 2.00 | 46.019 | 43.61 | [42] |
Fe6-D2h | 21 | - | 6.220 | - |
System | I (eV) | A (eV) | η (eV) | χ (eV) | ω (eV) | ∆N |
---|---|---|---|---|---|---|
Er3+ | 44.929 | −24.784 | 34.857 | 10.073 | 2.518 | −0.044 |
Sm3+ | 43.381 | −25.277 | 34.329 | 9.052 | 2.263 | −0.030 |
Yb3+ | 46.019 | −26.514 | 36.267 | 9.753 | 2.438 | −0.038 |
Cl− | 6.694 | 10.280 | −1.793 | 8.487 | 2.122 | 0.415 |
System | M | Eads (eV) | dFe-ion (Å) | EHOMOα (eV) | EHOMOβ (eV) | ELUMOα (eV) | ELUMOβ (eV) | Egap (eV) |
---|---|---|---|---|---|---|---|---|
Fe6 + Er3+ | 20 | −4.150 | 3.155 | −3.244 | −2.637 | −2.198 | −2.525 | 0.112 |
Fe6 + Sm3+ | 20 | −3.647 | 3.357 | −2.880 | −3.192 | −2.711 | −2.803 | 0.077 |
Fe6 + Yb3+ | 20 | −5.100 | 3.234 | −3.034 | −2.991 | −2.893 | −2.810 | 0.098 |
Fe6 + Cl− | 19 | −0.456 | 2.267 | −2.869 | −2.360 | −1.811 | −2.057 | 0.303 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernández García, S.; Espinoza Vázquez, A.; Palacios-Grijalva, L.N.; Martínez Jiménez, A.; Rodríguez Gómez, F.J.; Gómez Vargas, Ó.A.; Miralrio, A.; Castro, M.; Orozco Cruz, R. Effect of the Use of Some Rare Earth Compounds as Corrosion Inhibitors for API 5L X70 Steel in Saline Medium. Metals 2025, 15, 195. https://doi.org/10.3390/met15020195
Hernández García S, Espinoza Vázquez A, Palacios-Grijalva LN, Martínez Jiménez A, Rodríguez Gómez FJ, Gómez Vargas ÓA, Miralrio A, Castro M, Orozco Cruz R. Effect of the Use of Some Rare Earth Compounds as Corrosion Inhibitors for API 5L X70 Steel in Saline Medium. Metals. 2025; 15(2):195. https://doi.org/10.3390/met15020195
Chicago/Turabian StyleHernández García, Salvador, Araceli Espinoza Vázquez, Laura Nadxieli Palacios-Grijalva, Anatolio Martínez Jiménez, Francisco Javier Rodríguez Gómez, Óscar Armando Gómez Vargas, Alan Miralrio, Miguel Castro, and Ricardo Orozco Cruz. 2025. "Effect of the Use of Some Rare Earth Compounds as Corrosion Inhibitors for API 5L X70 Steel in Saline Medium" Metals 15, no. 2: 195. https://doi.org/10.3390/met15020195
APA StyleHernández García, S., Espinoza Vázquez, A., Palacios-Grijalva, L. N., Martínez Jiménez, A., Rodríguez Gómez, F. J., Gómez Vargas, Ó. A., Miralrio, A., Castro, M., & Orozco Cruz, R. (2025). Effect of the Use of Some Rare Earth Compounds as Corrosion Inhibitors for API 5L X70 Steel in Saline Medium. Metals, 15(2), 195. https://doi.org/10.3390/met15020195