Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (41,427)

Search Parameters:
Keywords = equipment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 3588 KiB  
Article
An Intelligent Collaborative Charging System for Open-Pit Mines
by Jinbo Li, Lin Bi, Zhuo Wang and Liyun Zhou
Appl. Sci. 2025, 15(15), 8720; https://doi.org/10.3390/app15158720 (registering DOI) - 7 Aug 2025
Abstract
To address challenges in automated charging operations of bulk explosive trucks in open-pit mines—specifically difficulties in borehole identification, positioning inaccuracies, and low operational efficiency—this study proposes an intelligent collaborative charging system integrating three modular components: (1) an explosive transport vehicle (with onboard terminal, [...] Read more.
To address challenges in automated charging operations of bulk explosive trucks in open-pit mines—specifically difficulties in borehole identification, positioning inaccuracies, and low operational efficiency—this study proposes an intelligent collaborative charging system integrating three modular components: (1) an explosive transport vehicle (with onboard terminal, explosive compartment, and mobility system enabling optimal routing and quantitative dispensing), (2) a charging robot (equipped with borehole detection, loading mechanisms, and mobility system for optimized search path planning and precision positioning), and (3) interconnection systems (coupling devices and interfaces facilitating auxiliary explosive transfer). This approach resolves three critical limitations of conventional systems: (i) mechanical arm-based borehole detection difficulties, (ii) blast hole positioning inaccuracies, and (iii) complex transport routing. The experimental results demonstrate that the intelligent cooperative charging method for open-pit mines achieves an 18% improvement in operational efficiency through intelligent collaboration among its modular components, while simultaneously realizing automated and intelligent charging operations. This advancement has significant implications for promoting intelligent development in open-pit mining operations. Full article
(This article belongs to the Special Issue Novel Technologies in Intelligent Coal Mining)
Show Figures

Figure 1

19 pages, 17158 KiB  
Article
Deep Learning Strategy for UAV-Based Multi-Class Damage Detection on Railway Bridges Using U-Net with Different Loss Functions
by Yong-Hyoun Na and Doo-Kie Kim
Appl. Sci. 2025, 15(15), 8719; https://doi.org/10.3390/app15158719 (registering DOI) - 7 Aug 2025
Abstract
Periodic visual inspections are currently conducted to maintain the condition of railway bridges. These inspections rely on direct visual assessments by human inspectors, often requiring specialized equipment such as aerial ladders. However, this method is not only time-consuming and costly but also involves [...] Read more.
Periodic visual inspections are currently conducted to maintain the condition of railway bridges. These inspections rely on direct visual assessments by human inspectors, often requiring specialized equipment such as aerial ladders. However, this method is not only time-consuming and costly but also involves significant safety risks. Therefore, there is a growing need for a more efficient and reliable alternative to traditional visual inspections of railway bridges. In this study, we evaluated and compared the performance of damage detection using U-Net-based deep learning models on images captured by unmanned aerial vehicles (UAVs). The target damage types include cracks, concrete spalling and delamination, water leakage, exposed reinforcement, and paint peeling. To enable multi-class segmentation, the U-Net model was trained using three different loss functions: Cross-Entropy Loss, Focal Loss, and Intersection over Union (IoU) Loss. We compared these methods to determine their ability to distinguish actual structural damage from environmental factors and surface contamination, particularly under real-world site conditions. The results showed that the U-Net model trained with IoU Loss outperformed the others in terms of detection accuracy. When applied to field inspection scenarios, this approach demonstrates strong potential for objective and precise damage detection. Furthermore, the use of UAVs in the inspection process is expected to significantly reduce both time and cost in railway infrastructure maintenance. Future research will focus on extending the detection capabilities to additional damage types such as efflorescence and corrosion, aiming to ultimately replace manual visual inspections of railway bridge surfaces with deep-learning-based methods. Full article
Show Figures

Figure 1

16 pages, 2565 KiB  
Article
Postharvest Quality of Plums Treated with Chitosan-Based Edible Coatings
by Gabor Zsivanovits, Stoil Zhelyazkov and Petya Sabeva
Polysaccharides 2025, 6(3), 68; https://doi.org/10.3390/polysaccharides6030068 (registering DOI) - 7 Aug 2025
Abstract
This study aims to investigate the differences in the effects of spraying and immersing methods on edible coatings for halved and pitted plums. Earlier studies have shown that these biodegradable packaging materials can preserve the quality and safety of fruits for an extended [...] Read more.
This study aims to investigate the differences in the effects of spraying and immersing methods on edible coatings for halved and pitted plums. Earlier studies have shown that these biodegradable packaging materials can preserve the quality and safety of fruits for an extended shelf life. Halved and pitted plums (variety Stanley) were treated with chitosan and rosehip oil edible coating emulsions by spraying and immersing methods. The treated series were analyzed by physical, physicochemical, microbiological, and sensorial methods during refrigerated storage for nine days, until the onset of microbiological spoilage. At the beginning of the storage, there was a visible difference between the differently treated samples. The untreated series showed the fastest browning. The emulsion-sprayed samples presented the least changes in color, shape, and volume. A weaker effect of the immersion technique can be explained by a deep standing of the fruits in a treating solution or emulsion. Some of the immersed samples have an aqueous texture and received a smaller sensory rating. The advantages and disadvantages of the methods need further investigation, but on a production scale, spraying can guarantee uniform batches. In laboratory circumstances, immersion is an easier method that does not need expensive and difficult-to-use equipment and gives good results. Full article
Show Figures

Figure 1

23 pages, 725 KiB  
Article
Enabling Technologies of Industry 4.0 for the Modernization of an Industrial Process
by Rafael S. Mendonca, Renan L. P. Medeiros, Luiz Eduardo Sales e Silva, Renato G. G. Silva, Luis G. S. Santos and Vicente Ferreira de Lucena
Processes 2025, 13(8), 2488; https://doi.org/10.3390/pr13082488 (registering DOI) - 7 Aug 2025
Abstract
The retrofitting of legacy systems enables upgrades that extend the lifespan of outdated equipment, improve efficiency, and reduce environmental impacts. This manuscript builds on existing approaches to retrofitting legacy systems using Industry 4.0 technologies. Therefore, it explores how the proposed modernization envisions the [...] Read more.
The retrofitting of legacy systems enables upgrades that extend the lifespan of outdated equipment, improve efficiency, and reduce environmental impacts. This manuscript builds on existing approaches to retrofitting legacy systems using Industry 4.0 technologies. Therefore, it explores how the proposed modernization envisions the transition from Industry 4.0 to Industry 5.0, which emphasizes human-centric approaches, sustainability, and resilience. Tools such as RAMI 4.0 (a reference architecture model for Industry 4.0), Lean Six Sigma (a methodology for process improvement), and Big Data analytics are highlighted throughout the text as essential for optimizing processes and ensuring alignment with global challenges, including resource efficiency and environmental sustainability. This work addresses both conceptual and technical aspects of system modernization. It provides a comprehensive framework for retrofitting systems and integrating advanced technologies such as digital twins. These efforts ensure that industries are prepared for the evolving demands of Industry 4.0 and beyond. Full article
(This article belongs to the Section Process Control and Monitoring)
Show Figures

Figure 1

19 pages, 1835 KiB  
Article
Methods for Enhancing Energy and Resource Efficiency in Sunflower Oil Production: A Case Study from Bulgaria
by Penka Zlateva, Angel Terziev, Nikolay Kolev, Martin Ivanov, Mariana Murzova and Momchil Vasilev
Eng 2025, 6(8), 195; https://doi.org/10.3390/eng6080195 - 6 Aug 2025
Abstract
The rising demand for energy resources and industrial goods presents significant challenges to sustainable development. Sunflower oil, commonly utilized in the food sector, biofuels, and various industrial applications, is notably affected by this demand. In Bulgaria, it serves as a primary source of [...] Read more.
The rising demand for energy resources and industrial goods presents significant challenges to sustainable development. Sunflower oil, commonly utilized in the food sector, biofuels, and various industrial applications, is notably affected by this demand. In Bulgaria, it serves as a primary source of vegetable fats, ranking second to butter in daily consumption. The aim of this study is to evaluate and propose methods to improve energy and resource efficiency in sunflower oil production in Bulgaria. The analysis is based on data from an energy audit conducted in 2023 at an industrial sunflower oil production facility. Reconstruction and modernization initiatives, which included the installation of high-performance, energy-efficient equipment, led to a 34% increase in energy efficiency. The findings highlight the importance of adjusting the technological parameters such as temperature, pressure, grinding level, and pressing time to reduce energy use and operational costs. Additionally, resource efficiency is improved through more effective raw material utilization and waste reduction. These strategies not only enhance the economic and environmental performance of sunflower oil production but also support sustainable development and competitiveness within the industry. The improvement reduces hexane use by approximately 2%, resulting in energy savings of 12–15 kWh/t of processed seeds and a reduction in CO2 emissions by 3–4 kg/t, thereby improving the environmental profile of sunflower oil production. Full article
(This article belongs to the Special Issue Interdisciplinary Insights in Engineering Research)
Show Figures

Figure 1

23 pages, 12563 KiB  
Article
Optimization of Grouser–Track Structural Parameters for Enhanced Tractive Performance in Unmanned Amphibious Tracked Vehicles
by Yaoyao Chen, Xiaojun Xu, Wenhao Wang, Xue Gao and Congnan Yang
Actuators 2025, 14(8), 390; https://doi.org/10.3390/act14080390 - 6 Aug 2025
Abstract
This study focuses on optimizing track and grouser structural parameters to enhance UATV drawbar pull, particularly under soft soil conditions. A numerical soil thrust model for single-track shoes was developed based on track–soil interaction mechanics, revealing distinct mechanistic roles: track structural parameters (length/width) [...] Read more.
This study focuses on optimizing track and grouser structural parameters to enhance UATV drawbar pull, particularly under soft soil conditions. A numerical soil thrust model for single-track shoes was developed based on track–soil interaction mechanics, revealing distinct mechanistic roles: track structural parameters (length/width) govern pressure–sinkage relationships at the track base, while grouser structural parameters (height, spacing, V-shaped angle) dominate shear stress–displacement dynamics on grouser shear planes. A novel DEM-MBD coupling simulation framework was established through soil parameter calibration and multi-body dynamics modeling, demonstrating that soil thrust increases with grouser height and V-shaped angle, but decreases with spacing, with grouser height exhibiting the highest sensitivity. A soil bin test validated the numerical model’s accuracy and the coupling method’s efficacy. Parametric optimization via the Whale Optimization Algorithm (WOA) achieved a 55.86% increase in drawbar pull, 40.38% reduction in ground contact pressure and 57.33% improvement in maximum gradability. These advancements substantially improve the tractive performance of UATVs in soft beach terrains. The proposed methodology provides a systematic framework for amphibious vehicle design, integrating numerical modeling, high-fidelity simulation, and experimental validation. Full article
Show Figures

Figure 1

17 pages, 2536 KiB  
Article
A Study of the Profiling of the Screws in Conical Screw Compressors Using the Virtual Contact Point Method
by Virgil Gabriel Teodor, Nicușor Baroiu, Georgiana Alexandra Moroșanu, Răzvan Sebastian Crăciun and Vasilica Viorica Toniţă
Appl. Mech. 2025, 6(3), 58; https://doi.org/10.3390/applmech6030058 - 6 Aug 2025
Abstract
Conical screw compressors are equipment used to compress air or other gases, using a mechanism consisting of two conically shaped rotors (screws), which rotate one inside the other. This specific design offers advantages in terms of its efficiency, durability and compactness. These compressors [...] Read more.
Conical screw compressors are equipment used to compress air or other gases, using a mechanism consisting of two conically shaped rotors (screws), which rotate one inside the other. This specific design offers advantages in terms of its efficiency, durability and compactness. These compressors are characterized by high efficiency, efficient compression, low air loss, durability, compact dimensions and silent operation. In conical screw compressors, the screw axes are arranged at an angle, due to the conical shape of the screws. This arrangement allows for the progressive compression of the gas as it advances along the screws. On the one hand, the arrangement of the axes and the conical shape of the screws contribute significantly to the high performance of this type of compressor, but on the other hand, this shape makes it difficult to profile these active elements. The screw profiles of conical screw compressors are mutually enveloping, and this aspect is essential for the correct operation of the compressor. In this paper, a new algorithm for profiling the compressor’s external rotor starting from a known internal rotor shape is proposed. The proposed algorithm was developed at “Dunarea de Jos” University of Galati and was based on the observation that the compression chambers in conical screw compressors are sealed according to a curve that follows the axial section of the two screws, in a plane determined by their axes. Practically, the two screws admit a common contour of the axial section in the plane determined by their axes. Taking this aspect into account, the transverse profile of the outer screw can be determined by identifying the positions where contact will take place with the points belonging to the transverse profile of the inner screw. In order to verify the viability of this method, the volume occupied by the inner screw during its relative movement with respect to the outer screw was determined. This volume was compared with the volume of the outer rotor cavity, with the result demonstrating the identity of the two volumes. Full article
Show Figures

Figure 1

21 pages, 8352 KiB  
Article
Research on Vibration Characteristics of Electric Drive Systems Based on Open-Phase Self-Fault-Tolerant Control
by Wenyu Bai, Yun Kuang, Zhizhong Xu, Yawen Wang and Xia Hua
Appl. Sci. 2025, 15(15), 8707; https://doi.org/10.3390/app15158707 (registering DOI) - 6 Aug 2025
Abstract
This paper presents an electromechanical coupling model integrating an equivalent magnetic network (EMN) model of a dual three-phase permanent magnet synchronous motor (DTP-PMSM) with the dynamic model of a helical planetary gear transmission system. Using this model, this study analyzes the dynamic characteristics [...] Read more.
This paper presents an electromechanical coupling model integrating an equivalent magnetic network (EMN) model of a dual three-phase permanent magnet synchronous motor (DTP-PMSM) with the dynamic model of a helical planetary gear transmission system. Using this model, this study analyzes the dynamic characteristics of an electric drive system, specifically motor phase current, electromagnetic torque, and gear meshing force, under self-fault-tolerant control strategies. Simulation and experimental results demonstrate that the self-fault-tolerant control strategy enables rapid fault tolerance during open-phase faults, significantly reducing system fault recovery time. Meanwhile, compared to the open-phase faults conditions, the self-fault-tolerant control effectively suppresses most harmonic components within the system; only the second harmonic amplitude of the electromagnetic torque exhibited an increase. This harmonic disturbance propagates to the gear system through electromechanical coupling, synchronously amplifying the second harmonic amplitude in the gear system’s vibration response. This study demonstrates that self-fault-tolerant control strategies significantly enhance the dynamic response performance of the electric drive system under open-phase faults conditions. Furthermore, this study also investigates the electromechanical coupling mechanism through which harmonics generated by this strategy affect the gear system’s dynamic response, providing theoretical support for co-optimization electromechanical coupling design and fault-tolerant control in high-reliability electric drive transmission systems. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

19 pages, 276 KiB  
Article
Science Education as a Pathway to Sustainable Awareness: Teachers’ Perceptions on Fostering Understanding of Humans and the Environment: A Qualitative Study
by Ali Al-Barakat, Rommel AlAli, Sarah Alotaibi, Jawaher Alrashood, Ali Abdullatif and Ashraf Zaher
Sustainability 2025, 17(15), 7136; https://doi.org/10.3390/su17157136 - 6 Aug 2025
Abstract
Sustainability education has become a global priority in educational systems, aiming to equip learners with the knowledge, values, and skills necessary to address complex environmental and social challenges. This study specifically aims to understand the role of science education in promoting students’ awareness [...] Read more.
Sustainability education has become a global priority in educational systems, aiming to equip learners with the knowledge, values, and skills necessary to address complex environmental and social challenges. This study specifically aims to understand the role of science education in promoting students’ awareness of sustainability and their understanding of the interconnected relationship between humans and the environment, based on the perceptions and practices of primary science teachers in Al-Ahsa, Saudi Arabia. A qualitative approach was utilized, which included semi-structured interviews complemented by classroom observations as primary data collection instruments. The targeted participants comprised a purposive sample consisting of forty-nine primary-level science instructors from the Al-Ahsa district, located in eastern Saudi Arabia. Emergent concepts from open and axial coding processes by using grounded theory were developed with the gathered data. Based on the findings, teachers perceive science teaching not only as knowledge delivery but as an opportunity to cultivate critical thinking and nurture eco-friendly actions among pupils. Classroom practices that underscore environmental values and principles of sustainability foster a transformative view of the teacher’s role beyond traditional boundaries. The data also highlighted classroom practices that integrate environmental values and sustainability principles, reflecting a transformative perspective on the teacher’s educational role. Full article
26 pages, 7095 KiB  
Article
Collision Avoidance of Driving Robotic Vehicles Based on Model Predictive Control with Improved APF
by Lei Zhao, Hongda Liu and Wentie Niu
Machines 2025, 13(8), 696; https://doi.org/10.3390/machines13080696 - 6 Aug 2025
Abstract
To enhance road-testing safety for autonomous driving robotic vehicles (ADRVs), collision avoidance with sudden obstacles is essential during testing processes. This paper proposes an upper-level collision avoidance strategy integrating model predictive control (MPC) and improved artificial potential field (APF). The kinematic model of [...] Read more.
To enhance road-testing safety for autonomous driving robotic vehicles (ADRVs), collision avoidance with sudden obstacles is essential during testing processes. This paper proposes an upper-level collision avoidance strategy integrating model predictive control (MPC) and improved artificial potential field (APF). The kinematic model of the driving robot is established, and a vehicle dynamics model considering road curvature is used as the foundation for vehicle control. The improved APF constraints are constructed. The boundary constraint uses a three-circle vehicle shape suitable for roads with arbitrary curvatures. A unified obstacle potential field constraint is designed for static/dynamic obstacles to generate collision-free trajectories. An auxiliary attractive potential field is designed to ensure stable trajectory recovery after obstacle avoidance completion. A multi-objective MPC framework coupled with artificial potential fields is designed to achieve obstacle avoidance and trajectory tracking while ensuring accuracy, comfort, and environmental constraints. Results from Carsim-Simulink and semi-physical experiments validate that the proposed strategy effectively avoids various obstacles under different road conditions while maintaining reference trajectory tracking. Full article
Show Figures

Figure 1

13 pages, 603 KiB  
Article
Adapting Ophthalmology Practices in Puerto Rico During COVID-19: A Cross-Sectional Survey Study
by Surafuale Hailu, Andrea N. Ponce, Juliana Charak, Hiram Jimenez and Luma Al-Attar
Epidemiologia 2025, 6(3), 42; https://doi.org/10.3390/epidemiologia6030042 - 6 Aug 2025
Abstract
Background/Objectives: The COVID-19 pandemic caused pronounced disorder in healthcare delivery globally, including ophthalmology. Our study explores how ophthalmologists in Puerto Rico (PR) altered their practices during the pandemic, confronting obstacles such as resource shortages, evolving public health mandates, and unique socio-economic and [...] Read more.
Background/Objectives: The COVID-19 pandemic caused pronounced disorder in healthcare delivery globally, including ophthalmology. Our study explores how ophthalmologists in Puerto Rico (PR) altered their practices during the pandemic, confronting obstacles such as resource shortages, evolving public health mandates, and unique socio-economic and geographic constraints. The study aims to enhance preparedness for future public health crises. Methods: We conducted descriptive analyses on four online surveys distributed at crucial time points of the pandemic (March 2020, May 2020, August 2020, August 2021) to all practicing ophthalmologists in PR (N ≈ 200), capturing data on closures, patient volume, personal protective equipment (PPE) access, telemedicine use, and financial relief. Results: Survey responses ranged from 41% (n = 81) to 56% (n = 111). By March 2020, 22% (24/111) of respondents closed their offices. By May 2020, 20% (19/93) of respondents maintained a closed office, while 89% (64/72) of open offices reported seeing less than 25% of their usual patient volume. Access to PPE was a challenge, with 59% (65/111) reporting difficulty obtaining N95 masks in March 2020. Telemedicine usage increased initially, peaking in May 2020 and declining in July 2020. By August 2021, all respondents were fully vaccinated and most practices returned to pre-pandemic levels. Overall, 86% (70/81) of respondents found the surveys to be useful for navigating practice changes during the pandemic. Conclusions: PR ophthalmologists showed adaptability during the COVID-19 pandemic to maintain care given limited resources. Guidelines from professional organizations and real time surveys play an important role in future crisis preparedness. Full article
Show Figures

Figure 1

23 pages, 5773 KiB  
Article
Multi-Seasonal Risk Assessment of Hydrogen Leakage, Diffusion, and Explosion in Hydrogen Refueling Station
by Yaling Liu, Yao Zeng, Guanxi Zhao, Huarong Hou, Yangfan Song and Bin Ding
Energies 2025, 18(15), 4172; https://doi.org/10.3390/en18154172 - 6 Aug 2025
Abstract
To reveal the influence mechanisms of seasonal climatic factors (wind speed, wind direction, temperature) and leakage direction on hydrogen dispersion and explosion behavior from single-source leaks at typical risk locations (hydrogen storage tanks, compressors, dispensers) in hydrogen refueling stations (HRSs), this work established [...] Read more.
To reveal the influence mechanisms of seasonal climatic factors (wind speed, wind direction, temperature) and leakage direction on hydrogen dispersion and explosion behavior from single-source leaks at typical risk locations (hydrogen storage tanks, compressors, dispensers) in hydrogen refueling stations (HRSs), this work established a full-scale 1:1 three-dimensional numerical model using the FLACS v22.2 software based on the actual layout of an HRS in Xichang, Sichuan Province. Through systematic simulations of 72 leakage scenarios (3 equipment types × 4 seasons × 6 leakage directions), the coupled effects of climatic conditions, equipment layout, and leakage direction on hydrogen dispersion patterns and explosion risks were quantitatively analyzed. The key findings indicate the following: (1) Downward leaks (−Z direction) from storage tanks tend to form large-area ground-hugging hydrogen clouds, representing the highest explosion risk (overpressure peak: 0.25 barg; flame temperature: >2500 K). Leakage from compressors (±X/−Z directions) readily affects adjacent equipment. Dispenser leaks pose relatively lower risks, but specific directions (−Y direction) coupled with wind fields may drive significant hydrogen dispersion toward station buildings. (2) Southeast/south winds during spring/summer promote outward migration of hydrogen clouds, reducing overall station risk but causing localized accumulation near storage tanks. Conversely, north/northwest winds in autumn/winter intensify hydrogen concentrations in compressor and station building areas. (3) An empirical formula integrating climatic parameters, leakage conditions, and spatial coordinates was proposed to predict hydrogen concentration (error < 20%). This model provides theoretical and data support for optimizing sensor placement, dynamically adjusting ventilation strategies, and enhancing safety design in HRSs. Full article
Show Figures

Figure 1

32 pages, 1435 KiB  
Review
Smart Safety Helmets with Integrated Vision Systems for Industrial Infrastructure Inspection: A Comprehensive Review of VSLAM-Enabled Technologies
by Emmanuel A. Merchán-Cruz, Samuel Moveh, Oleksandr Pasha, Reinis Tocelovskis, Alexander Grakovski, Alexander Krainyukov, Nikita Ostrovenecs, Ivans Gercevs and Vladimirs Petrovs
Sensors 2025, 25(15), 4834; https://doi.org/10.3390/s25154834 - 6 Aug 2025
Abstract
Smart safety helmets equipped with vision systems are emerging as powerful tools for industrial infrastructure inspection. This paper presents a comprehensive state-of-the-art review of such VSLAM-enabled (Visual Simultaneous Localization and Mapping) helmets. We surveyed the evolution from basic helmet cameras to intelligent, sensor-fused [...] Read more.
Smart safety helmets equipped with vision systems are emerging as powerful tools for industrial infrastructure inspection. This paper presents a comprehensive state-of-the-art review of such VSLAM-enabled (Visual Simultaneous Localization and Mapping) helmets. We surveyed the evolution from basic helmet cameras to intelligent, sensor-fused inspection platforms, highlighting how modern helmets leverage real-time visual SLAM algorithms to map environments and assist inspectors. A systematic literature search was conducted targeting high-impact journals, patents, and industry reports. We classify helmet-integrated camera systems into monocular, stereo, and omnidirectional types and compare their capabilities for infrastructure inspection. We examine core VSLAM algorithms (feature-based, direct, hybrid, and deep-learning-enhanced) and discuss their adaptation to wearable platforms. Multi-sensor fusion approaches integrating inertial, LiDAR, and GNSS data are reviewed, along with edge/cloud processing architectures enabling real-time performance. This paper compiles numerous industrial use cases, from bridges and tunnels to plants and power facilities, demonstrating significant improvements in inspection efficiency, data quality, and worker safety. Key challenges are analyzed, including technical hurdles (battery life, processing limits, and harsh environments), human factors (ergonomics, training, and cognitive load), and regulatory issues (safety certification and data privacy). We also identify emerging trends, such as semantic SLAM, AI-driven defect recognition, hardware miniaturization, and collaborative multi-helmet systems. This review finds that VSLAM-equipped smart helmets offer a transformative approach to infrastructure inspection, enabling real-time mapping, augmented awareness, and safer workflows. We conclude by highlighting current research gaps, notably in standardizing systems and integrating with asset management, and provide recommendations for industry adoption and future research directions. Full article
Show Figures

Figure 1

22 pages, 734 KiB  
Article
An Assembly Accuracy Analysis Method for Weak Rigid Components
by Dongping Zhao, Zhe Yuan, Xiaosong Zhao and Gangfeng Wang
Machines 2025, 13(8), 694; https://doi.org/10.3390/machines13080694 - 6 Aug 2025
Abstract
Most existing assembly accuracy analysis methods focus on rigid assemblies or assume assemblies to be rigid bodies, neglecting the influence of assembly deformation in weak rigid components (WRCs) such as thin-walled structures, cantilever structures, etc. As a result, the assembly accuracy analysis becomes [...] Read more.
Most existing assembly accuracy analysis methods focus on rigid assemblies or assume assemblies to be rigid bodies, neglecting the influence of assembly deformation in weak rigid components (WRCs) such as thin-walled structures, cantilever structures, etc. As a result, the assembly accuracy analysis becomes inaccurate, and the accuracy of key components cannot be effectively controlled. This may lead to serious issues such as forced assembly, repair, and rework. To address these problems, this study proposes a rigid–flexible coupling-based assembly accuracy analysis method for WRCs. The stiffness matrix and assembly deformation of WRCs are calculated, and by coupling assembly deformation with other assembly deviations, a rigid–flexible coupling assembly accuracy data model is established. This model incorporates multiple deviation sources, including assembly process variations, design tolerances, and assembly deformations. Assembly deviation transfer modeling and accumulation calculation methods for WRCs are investigated, enabling assembly accuracy simulation and statistical analysis. A case study on WRC assembly accuracy analysis is conducted, and the results demonstrate that the proposed method improves the accuracy of assembly analysis for WRCs, verifying its reliability. Full article
44 pages, 7941 KiB  
Article
A Numerical Investigation of Plastic Energy Dissipation Patterns of Circular and Non-Circular Metal Thin-Walled Rings Under Quasi-Static Lateral Crushing
by Shunsong Guo, Sunting Yan, Ping Tang, Chenfeng Guan and Wei Zhang
Mathematics 2025, 13(15), 2527; https://doi.org/10.3390/math13152527 - 6 Aug 2025
Abstract
This paper presents a combined theoretical, numerical, and experimental analysis to investigate the lateral plastic crushing behavior and energy absorption of circular and non-circular thin-walled rings between two rigid plates. Theoretical solutions incorporating both linear material hardening and power-law material hardening models are [...] Read more.
This paper presents a combined theoretical, numerical, and experimental analysis to investigate the lateral plastic crushing behavior and energy absorption of circular and non-circular thin-walled rings between two rigid plates. Theoretical solutions incorporating both linear material hardening and power-law material hardening models are solved via numerical shooting methods. The theoretically predicted force-denting displacement relations agree excellently with both FEA and experimental results. The FEA simulation clearly reveals the coexistence of an upper moving plastic region and a fixed bottom plastic region. A robust automatic extraction method of the fully plastic region at the bottom from FEA is proposed. A modified criterion considering the unloading effect based on the resultant moment of cross-section is proposed to allow accurate theoretical estimation of the fully plastic region length. The detailed study implies an abrupt and almost linear drop of the fully plastic region length after the maximum value by the proposed modified criterion, while the conventional fully plastic criterion leads to significant over-estimation of the length. Evolution patterns of the upper and lower plastic regions in FEA are clearly illustrated. Furthermore, the distribution of plastic energy dissipation is compared in the bottom and upper regions through FEA and theoretical results. Purely analytical solutions are formulated for linear hardening material case by elliptical integrals. A simple algebraic function solution is derived without necessity of solving differential equations for general power-law hardening material case by adopting a constant curvature assumption. Parametric analyses indicate the significant effect of ovality and hardening on plastic region evolution and crushing force. This paper should enhance the understanding of the crushing behavior of circular and non-circular rings applicable to the structural engineering and impact of the absorption domain. Full article
(This article belongs to the Special Issue Numerical Modeling and Applications in Mechanical Engineering)
Back to TopTop