Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (147)

Search Parameters:
Keywords = epoxy-silicone

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3814 KiB  
Article
Features of the Structure of Layered Epoxy Composite Coatings Formed on a Metal-Ceramic-Coated Aluminum Base
by Volodymyr Korzhyk, Volodymyr Kopei, Petro Stukhliak, Olena Berdnikova, Olga Kushnarova, Oleg Kolisnichenko, Oleg Totosko, Danylo Stukhliak and Liubomyr Ropyak
Materials 2025, 18(15), 3620; https://doi.org/10.3390/ma18153620 - 1 Aug 2025
Viewed by 224
Abstract
Difficult, extreme operating conditions of parabolic antennas under precipitation and sub-zero temperatures require the creation of effective heating systems. The purpose of the research is to develop a multilayer coating containing two metal-ceramic layers, epoxy composite layers, carbon fabric, and an outer layer [...] Read more.
Difficult, extreme operating conditions of parabolic antennas under precipitation and sub-zero temperatures require the creation of effective heating systems. The purpose of the research is to develop a multilayer coating containing two metal-ceramic layers, epoxy composite layers, carbon fabric, and an outer layer of basalt fabric, which allows for effective heating of the antenna, and to study the properties of this coating. The multilayer coating was formed on an aluminum base that was subjected to abrasive jet processing. The first and second metal-ceramic layers, Al2O3 + 5% Al, which were applied by high-speed multi-chamber cumulative detonation spraying (CDS), respectively, provide maximum adhesion strength to the aluminum base and high adhesion strength to the third layer of the epoxy composite containing Al2O3. On this not-yet-polymerized layer of epoxy composite containing Al2O3, a layer of carbon fabric (impregnated with epoxy resin) was formed, which serves as a resistive heating element. On top of this carbon fabric, a layer of epoxy composite containing Cr2O3 and SiO2 was applied. Next, basalt fabric was applied to this still-not-yet-polymerized layer. Then, the resulting layered coating was compacted and dried. To study this multilayer coating, X-ray analysis, light and raster scanning microscopy, and transmission electron microscopy were used. The thickness of the coating layers and microhardness were measured on transverse microsections. The adhesion strength of the metal-ceramic coating layers to the aluminum base was determined by both bending testing and peeling using the adhesive method. It was established that CDS provides the formation of metal-ceramic layers with a maximum fraction of lamellae and a microhardness of 7900–10,520 MPa. In these metal-ceramic layers, a dispersed subgrain structure, a uniform distribution of nanoparticles, and a gradient-free level of dislocation density are observed. Such a structure prevents the formation of local concentrators of internal stresses, thereby increasing the level of dispersion and substructural strengthening of the metal-ceramic layers’ material. The formation of materials with a nanostructure increases their strength and crack resistance. The effectiveness of using aluminum, chromium, and silicon oxides as nanofillers in epoxy composite layers was demonstrated. The presence of structures near the surface of these nanofillers, which differ from the properties of the epoxy matrix in the coating, was established. Such zones, specifically the outer surface layers (OSL), significantly affect the properties of the epoxy composite. The results of industrial tests showed the high performance of the multilayer coating during antenna heating. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

21 pages, 5017 KiB  
Article
Effects of Phase Structure Regulation on Properties of Hydroxyl-Terminated Polyphenylpropylsiloxane-Modified Epoxy Resin
by Yundong Ji, Jun Pan, Chengxin Xu and Dongfeng Cao
Polymers 2025, 17(15), 2099; https://doi.org/10.3390/polym17152099 - 30 Jul 2025
Viewed by 191
Abstract
4,4’-Methylenebis(N,N-diglycidylaniline) (AG80), as a high-performance thermosetting material, holds significant application value due to the enhancement of its strength, toughness, and thermal stability. However, conventional toughening methods often lead to a decrease in material strength, limiting their application. Modification of AG80 epoxy resin was [...] Read more.
4,4’-Methylenebis(N,N-diglycidylaniline) (AG80), as a high-performance thermosetting material, holds significant application value due to the enhancement of its strength, toughness, and thermal stability. However, conventional toughening methods often lead to a decrease in material strength, limiting their application. Modification of AG80 epoxy resin was performed using hydroxy-terminated polyphenylpropylsiloxane (Z-6018) and a self-synthesized epoxy compatibilizer (P/E30) to regulate the phase structure of the modified resin, achieving a synergistic enhancement in both strength and toughness. The modified resin was characterized by Fourier transform infrared analysis (FTIR), proton nuclear magnetic resonance (1H NMR) spectroscopy, silicon-29 nuclear magnetic resonance (29Si NMR) spectroscopy, and epoxy value titration. It was found that the phase structure of the modified resin significantly affects mechanical properties. Thus, P/E30 was introduced to regulate the phase structure, achieving enhanced toughness and strength. At 20 wt.% P/E30 addition, the tensile strength, impact strength, and fracture toughness increased by 50.89%, 454.79%, and 152.43%, respectively, compared to AG80. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) analyses indicate that P/E30 regulates the silicon-rich spherical phase and interfacial compatibility, establishing a bicontinuous structure within the spherical phase, which is crucial for excellent mechanical properties. Additionally, the introduction of Z-6018 enhances the thermal stability of the resin. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Figure 1

19 pages, 3737 KiB  
Article
Phosphorus–Silicon Additive Increases the Mechanical and Fire Resistance of Epoxy Resins
by Zhe Wang, Shuaijun Guo, Wenwen Yu and Xiaohong Liang
Materials 2025, 18(12), 2753; https://doi.org/10.3390/ma18122753 - 12 Jun 2025
Viewed by 412
Abstract
Epoxy resins are limited by their flammability and brittleness. In this study, a phosphorus- and silicon-based additive was synthesized to improve fire resistance and mechanical performance. The incorporation of just 1 wt% phosphorus from this additive into epoxy resin achieved a limiting oxygen [...] Read more.
Epoxy resins are limited by their flammability and brittleness. In this study, a phosphorus- and silicon-based additive was synthesized to improve fire resistance and mechanical performance. The incorporation of just 1 wt% phosphorus from this additive into epoxy resin achieved a limiting oxygen index of 33% and a V-0 fire rating. The modified epoxy exhibited a 52.43% reduction in the peak heat release rate and a 35.70% decrease in total smoke production compared to the unmodified resin, demonstrating enhanced heat resistance and smoke suppression. Notably, the modified epoxy thermoset displayed superior mechanical properties, with tensile and impact strengths increasing by 48.41% and 130%, respectively. This research presents a promising approach for developing high-performance epoxy resins with improved flame retardancy, smoke suppression, and mechanical strength. Full article
(This article belongs to the Section Polymeric Materials)
Show Figures

Figure 1

16 pages, 4322 KiB  
Article
Synthesis of Silver Nanocluster-Loaded FAU Zeolites and the Application in Light Emitting Diode
by Tianning Zheng, Ruihao Huang, Haoran Zhang, Song Ye and Deping Wang
Chemistry 2025, 7(3), 90; https://doi.org/10.3390/chemistry7030090 - 30 May 2025
Viewed by 488
Abstract
Silver nanoclusters that are confined inside zeolites can give off intensive tunable emission across the visible region under UV excitation. In this research, a series of silver nanoclusters loaded with R-FAU/Ag (R = Li, Na, K) zeolites were synthesized and then applied as [...] Read more.
Silver nanoclusters that are confined inside zeolites can give off intensive tunable emission across the visible region under UV excitation. In this research, a series of silver nanoclusters loaded with R-FAU/Ag (R = Li, Na, K) zeolites were synthesized and then applied as phosphors for LEDs. The XRD and SEM measurements showed the R-FAU/Ag (R = Li, Na, K) zeolites have high crystallinity and a size distribution of 0.7–1.25 μm. Under excitations of 310–330 nm ultraviolet radiation, Li-FAU/Ag, Na-FAU/Ag, and K-FAU/Ag exhibit monotonically declining emission intensities and red-shifted emissions with peak wavelengths of 520, 527, and 535 nm, respectively. By using silicone-based epoxy resin as the packaging material, a series of LEDs were fabricated by mixing R-FAU/Ag (R = Li, Na, K) phosphors. It is indicated that the Li-FAU/Ag-LED shows the strongest intensity of 94.9 mcd, much higher than that of the LEDs made from Na-FAU/Ag (63.7 mcd) and K-FAU/Ag (74.2 mcd) phosphors. Additionally, the chromaticity coordinate of the Li-FAU/Ag-LED is located at (0.2651, 0.4073) and has a high color temperature of 7873 K. Thermal test data showed that upon heating to 440 K, the intensities of R-FAU/Ag (R = Li, Na, K) LEDs decreased to 81%, 79%, and 75% of their initial intensities measured at 280 K, respectively. This research proposes a method for regulating the luminescent properties of silver nanoclusters in FAU zeolite by modifying the extra-framework cations and demonstrates excellent performance in LED products. Full article
(This article belongs to the Section Chemistry of Materials)
Show Figures

Figure 1

17 pages, 1888 KiB  
Article
Effects of Coating Thickness and Aggregate Size on the Damping Properties of Concrete: A Numerical Simulation Approach
by Yisihak Gebre Tarekegn, Tom Lahmer, Abrham Gebre Tarekegn and Esayas Gebreyouhannes Ftwi
Coatings 2025, 15(5), 610; https://doi.org/10.3390/coatings15050610 - 21 May 2025
Cited by 1 | Viewed by 436
Abstract
Concrete properties are investigated using intensive physical testing processes that require large amounts of labor and materials that are costly and time-consuming. Properly validated computer models can replace most of the existing physical testing procedures with computer simulations that are relatively quick and [...] Read more.
Concrete properties are investigated using intensive physical testing processes that require large amounts of labor and materials that are costly and time-consuming. Properly validated computer models can replace most of the existing physical testing procedures with computer simulations that are relatively quick and inexpensive. Therefore, in this study, the effects of coating thickness and aggregate size on the damping properties of concrete were investigated using numerical simulation with Abaqus/CAE 6.14-1 software. Two different groups of aggregates were used in the simulation, with maximum aggregate sizes of 25 mm and 32 mm. The coating thickness ranged from 0.4 mm to 5.0 mm, using epoxy, silicone, and rubber coatings. The results showed that coatings with smaller aggregate size led to an increase in the damping ratio compared to those with larger aggregate size. Moreover, replacing 20% of coarse aggregates with rubber-coated aggregates results in a damping ratio of 5.75% to 6.21%, reflecting an increase of 22.8% to 32.7%. This variation occurs with coating thicknesses ranging from 0.4 mm to 5.0 mm, with the optimal thickness of 5.0 mm leading to the maximum increase (32.7%) in the damping ratio of concrete. Full article
(This article belongs to the Section Environmental Aspects in Colloid and Interface Science)
Show Figures

Figure 1

14 pages, 3853 KiB  
Article
Preparation and Characterization of Composite Hydrogen Barrier Coatings with (Graphene–Epoxy Resin)/(Silicon Carbide–Epoxy Resin)/(Graphene–Epoxy Resin) Sandwich Structures
by Ke Cai and Bailing Jiang
Coatings 2025, 15(5), 518; https://doi.org/10.3390/coatings15050518 - 25 Apr 2025
Cited by 1 | Viewed by 768
Abstract
How to solve hydrogen embrittlement (HE) is a key issue that urgently needs to be addressed in the hydrogen energy industry. The use of hydrogen barrier coatings can effectively reduce the occurrence of HE. In this article, we utilized the epoxy resin (ER) [...] Read more.
How to solve hydrogen embrittlement (HE) is a key issue that urgently needs to be addressed in the hydrogen energy industry. The use of hydrogen barrier coatings can effectively reduce the occurrence of HE. In this article, we utilized the epoxy resin (ER) as the base coating and the graphene (GN) and the silicon carbide (SiC) as the additives to prepare the (GN-ER)/(SiC-ER)/(GN-ER) sandwich structure composite hydrogen barrier coatings by the spin coating method and investigated the effect of coating composite ways on the hydrogen barrier performance. The GN-ER and the SiC-ER are used as the hydrogen barrier layer and the hydrogen capture layer, respectively, in order to improve the hydrogen barrier performances jointly. The XRD and the SEM were used to characterize their phase compositions and microstructures, and the hydrogen barrier performances were analyzed by the electrochemical hydrogen permeation curves. The adhesive strength was characterized through the pull-out method. Compared to the single-layer and the double-layer structures, sandwich structures can effectively enhance the hydrogen barrier performance of the coatings, such as the relatively low electrochemical hydrogen diffusion coefficient (Dt, 3.88 × 10−8 cm2·s−1), the relatively high permeation reduction factor (PRF, 59) and adhesive strength (10.9 MPa). This research may provide a theoretical basis for improving the hydrogen barrier performance of coatings. The (GN-ER)/(SiC ER)/(GN-ER) sandwich structures composite hydrogen barrier coatings can be expected to be used in the field of safe hydrogen storage and transportation. Full article
Show Figures

Graphical abstract

24 pages, 6078 KiB  
Article
Impact of Thermal Variations on the Fatigue and Fracture of Bi-Material Interfaces (Polyimide–EMC, Polyimide–SiO2, and Silicon–EMC) Found in Microchips
by Pedro F. C. Videira, Renato A. Ferreira, Payam Maleki, Alireza Akhavan-Safar, Ricardo J. C. Carbas, Eduardo A. S. Marques, Bala Karunamurthy and Lucas F. M. da Silva
Polymers 2025, 17(4), 520; https://doi.org/10.3390/polym17040520 - 17 Feb 2025
Cited by 1 | Viewed by 1011
Abstract
As the trend towards the densification of integrated circuit (IC) devices continues, the complexity of interfaces involving dissimilar materials and thermo-mechanical interactions has increased. Highly integrated systems in packages now comprise numerous thin layers made from various materials. The interfaces between these different [...] Read more.
As the trend towards the densification of integrated circuit (IC) devices continues, the complexity of interfaces involving dissimilar materials and thermo-mechanical interactions has increased. Highly integrated systems in packages now comprise numerous thin layers made from various materials. The interfaces between these different materials represent a vulnerable point in ICs due to imperfect adhesion and stress concentrations caused by mismatches in thermo-mechanical properties such as Young’s modulus, coefficients of thermal expansion (CTE), and hygro-swelling-induced expansion. This study investigates the impact of thermal variations on the fracture behavior of three bi-material interfaces used in semiconductor packaging: epoxy molding compound–silicon (EMC–Si), silicon oxide–polyimide (SiO2–PI), and PI–EMC. Using double cantilever beam (DCB) tests, we analyzed these interfaces under mode I loading at three temperatures: −20 °C, 23 °C, and 100 °C, under both quasi-static and cyclic loading conditions. This provided a comprehensive analysis of the thermal effects across all temperature ranges in microelectronics. The results show that temperature significantly alters the failure mechanism. For SiO2–PI, the weakest point shifts from silicon at low temperatures to the interface at higher temperatures due to thermal stress redistribution. Additionally, the fracture energy of the EMC–Si interface was found to be highly temperature-dependent, with values ranging from 0.136 N/mm at low temperatures to 0.38 N/mm at high temperatures. SiO2–PI’s fracture energy at high temperature was 42% less than that of EMC–Si. The PI–EMC interface exhibited nearly double the crack growth rate compared to EMC–Si. The findings of this study provide valuable insights into the fracture behavior of bi-material interfaces, offering practical applications for improving the reliability and design of semiconductor devices, especially in chip packaging. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

39 pages, 11956 KiB  
Review
Comprehensive Review: Optimization of Epoxy Composites, Mechanical Properties, & Technological Trends
by Jozef Jaroslav Fekiač, Michal Krbata, Marcel Kohutiar, Róbert Janík, Lucia Kakošová, Alena Breznická, Maroš Eckert and Pavol Mikuš
Polymers 2025, 17(3), 271; https://doi.org/10.3390/polym17030271 - 22 Jan 2025
Cited by 15 | Viewed by 5236
Abstract
Epoxy composites play a crucial role in modern materials technologies, with their exceptional properties such as high strength and thermal and chemical resistance, making them ideal for a wide range of industrial applications, including aerospace, automotive, construction, and energy. This review article provides [...] Read more.
Epoxy composites play a crucial role in modern materials technologies, with their exceptional properties such as high strength and thermal and chemical resistance, making them ideal for a wide range of industrial applications, including aerospace, automotive, construction, and energy. This review article provides a comprehensive overview of the current trends and advancements in epoxy composites, focusing on mechanical properties and their optimization. Attention is given to technological innovations, including the use of nanotechnologies, hybrid reinforcement, and eco-friendly materials, which are key to enhancing the performance and sustainability of these materials. The analysis shows that the introduction of nanomaterials, such as graphene, titanium dioxide, and silicon dioxide, can significantly improve the strength, fatigue resistance, and electrical properties of epoxy composites, opening new possibilities in advanced technologies. Another significant contribution is the development of hybrid composites, which combine different types of fibers, such as carbon, aramid, and glass fibers, enabling the optimization of key properties, including interlayer strength and delamination resistance. The article also highlights the importance of environmental innovations, such as bio-based resins and self-healing mechanisms, which enable more sustainable and long-term effective use of composites. The combination of theoretical knowledge with practical applications provides valuable guidance for designing materials with precisely defined properties for future industrial use. This text thus offers a comprehensive view of the possibilities of epoxy composites in the context of increasing demands for performance, reliability, and environmental sustainability. Full article
(This article belongs to the Special Issue Advances in High-Performance Polymer Materials)
Show Figures

Figure 1

17 pages, 3242 KiB  
Article
A Multi-Phase Analytical Model for Effective Electrical Conductivity of Polymer Matrix Composites Containing Micro-SiC Whiskers and Nano-Carbon Black Hybrids
by Usama Umer, Mustufa Haider Abidi, Zeyad Almutairi and Mohamed K. Aboudaif
Polymers 2025, 17(2), 128; https://doi.org/10.3390/polym17020128 - 7 Jan 2025
Viewed by 1123
Abstract
Multifunctional polymer composites containing micro/nano hybrid reinforcements have attracted intensive attention in the field of materials science and engineering. This paper develops a multi-phase analytical model for investigating the effective electrical conductivity of micro-silicon carbide (SiC) whisker/nano-carbon black (CB) polymer composites. First, CB [...] Read more.
Multifunctional polymer composites containing micro/nano hybrid reinforcements have attracted intensive attention in the field of materials science and engineering. This paper develops a multi-phase analytical model for investigating the effective electrical conductivity of micro-silicon carbide (SiC) whisker/nano-carbon black (CB) polymer composites. First, CB nanoparticles are dispersed within the non-conducting epoxy to achieve a conductive CB-filled nanocomposite and its electrical conductivity is predicted. Some critical microstructures such as volume percentage and size of nanoparticles, and interphase characteristics surrounding the CB are micromechanically captured. Next, the electrical conductivity of randomly oriented SiC-containing composites in which the nanocomposite and whisker are considered as the matrix and reinforcement phases, respectively, is estimated. Influences of whisker aspect ratio and volume fraction on the effective electrical conductivity of the SiC/CB-containing polymer composites are explored. Some comparison studies are performed to validate the accuracy of the model. It is observed before the percolation threshold that the addition of nanoparticles with a uniform dispersion can improve the electrical conductivity of the polymer composites containing SiC/CB hybrids. Moreover, the results show that the electrical conductivity is more enhanced by the decrease in nanoparticle size. Interestingly, the composite percolation threshold is significantly reduced when SiC whiskers with a higher aspect ratio are added. This work will be favorable for the design of electro-conductive polymer composites with high performances. Full article
(This article belongs to the Special Issue Modeling of Polymer Composites and Nanocomposites)
Show Figures

Figure 1

18 pages, 12458 KiB  
Article
An Evaluation of the Biocompatibility and Chemical Properties of Two Bioceramic Root Canal Sealers in a Sealer Extrusion Model of Rat Molars
by Shintaro Takahara, Naoki Edanami, Razi Saifullah Ibn Belal, Kunihiko Yoshiba, Shoji Takenaka, Naoto Ohkura, Nagako Yoshiba, Susan Gomez-Kasimoto and Yuichiro Noiri
J. Funct. Biomater. 2025, 16(1), 14; https://doi.org/10.3390/jfb16010014 - 4 Jan 2025
Cited by 1 | Viewed by 1936
Abstract
This study assessed the biocompatibility and chemical properties of two bioceramic root canal sealers, EndoSequence BC Sealer (EBC) and Nishika Canal Sealer BG (NBG), using a sealer extrusion model. Eight-week-old male Wistar rats were used. The mesial root canals of the upper first [...] Read more.
This study assessed the biocompatibility and chemical properties of two bioceramic root canal sealers, EndoSequence BC Sealer (EBC) and Nishika Canal Sealer BG (NBG), using a sealer extrusion model. Eight-week-old male Wistar rats were used. The mesial root canals of the upper first molars were pulpectomized and overfilled with EBC, NBG, or, as reference, epoxy resin-based AH Plus (AHP). After 28 days, periapical tissue reactions were assessed using microcomputed tomography and histological staining. The elemental composition and chemical composition of the extruded EBC and NBG were analyzed at Day 1 and 28 using an electron probe microanalyzer and micro-Raman spectroscopy. No periapical lesions were observed with the sealer extrusion. Additionally, inflammation around the extruded EBC and NBG was minimal to mild on Day 28, whereas moderate inflammation was found around the extruded AHP. Silicon concentration in the extruded EBC and NBG decreased significantly from Day 1 to 28, with almost no silicon present on Day 28. Furthermore, the extruded EBC and NBG became calcium- and phosphorus-rich, showing a Raman band for hydroxyapatite on Day 28. In conclusion, EBC and NBG demonstrated favorable biocompatibility and the ability to release silicon elements and produce hydroxyapatite when extruded into the periapical tissues. AHP showed moderate periapical tissue irritancy. Full article
(This article belongs to the Special Issue Advanced Materials for Clinical Endodontic Applications (2nd Edition))
Show Figures

Figure 1

19 pages, 5303 KiB  
Article
Effects of Temperature on the Fracture Response of EMC-Si Interface Found in Multilayer Semiconductor Components
by João Valdoleiros, Alireza Akhavan-Safar, Payam Maleki, Pedro F. C. Videira, Ricardo J. C. Carbas, Eduardo A. S. Marques, Bala Karunamurthy and Lucas F. M. da Silva
Surfaces 2025, 8(1), 2; https://doi.org/10.3390/surfaces8010002 - 3 Jan 2025
Cited by 2 | Viewed by 1498
Abstract
Despite the fact that temperature is an important condition that affects the behavior of material interfaces used in integrated circuits (ICs), such as the case for epoxy molding compound (EMC) and silicon (Si), this has not been thoroughly studied. To fill this gap, [...] Read more.
Despite the fact that temperature is an important condition that affects the behavior of material interfaces used in integrated circuits (ICs), such as the case for epoxy molding compound (EMC) and silicon (Si), this has not been thoroughly studied. To fill this gap, the present work aims to examine the fracture of the bi-material interfaces in multilayered semiconductor components and, more specifically, the EMC-Si, through the experimental quasi-static mode I fracture experiments conducted at different temperatures. The experiments were followed by numerical simulations using cohesive zone modeling (CZM) implemented using Abaqus. Simulation results were aimed at matching experimental data using an inverse CZM approach to determine cohesive properties such as initial stiffness and maximum traction. Experimental results revealed temperature-dependent variations in fracture behavior, with low temperature (−20 °C) showing a decrease in stiffness with values around 650 MPa/mm and a maximum tensile strength of 48 MPa; high temperature (100 °C) revealed a maximum traction and stiffness of 120 MPa and 1200 MPa/mm, respectively. A possible explanation for the results obtained at high temperatures is that temperature changes cause a significant redistribution of residual stresses in the sample and at the interfaces, reducing the stiffness at lower temperatures. Full article
(This article belongs to the Special Issue Surface Science: Polymer Thin Films, Coatings and Adhesives)
Show Figures

Graphical abstract

14 pages, 5132 KiB  
Article
Analysis of Residual Stress at the Interface of Epoxy-Resin/Silicon-Wafer Composites During Thermal Aging
by Jianyu Wu, Fangzhou Chen, Jiahao Liu, Rui Chen, Peijiang Liu, Hao Zhao and Zhenbo Zhao
Polymers 2025, 17(1), 50; https://doi.org/10.3390/polym17010050 - 28 Dec 2024
Viewed by 1228
Abstract
During the thermal aging process of epoxy resin, microcracks, interfacial delamination, and warpage are the key factors leading to semiconductor device damage. Here, epoxy-resin specimens (EP-Ss) and epoxy-resin/silicon-wafer composites (EP-SWs) were prepared to analyze the distribution of residual stress (RS) in epoxy resin [...] Read more.
During the thermal aging process of epoxy resin, microcracks, interfacial delamination, and warpage are the key factors leading to semiconductor device damage. Here, epoxy-resin specimens (EP-Ss) and epoxy-resin/silicon-wafer composites (EP-SWs) were prepared to analyze the distribution of residual stress (RS) in epoxy resin and its thermal aging process changes. The uniaxial tensile approach and Raman spectroscopy (RAS) showed that the peak shift of aliphatic C-O in EP-Ss was negatively correlated with the external stress, and that the stress correlation coefficient was −2.76 × 10−2 cm−1/MPa. Then, RAS was used to evaluate the RS distribution of EP-SWs, obtaining a high-resolution stress-distribution image of 50 × 50 pixels and revealing a strong stress concentration at the interface between the epoxy resin and the silicon wafer. Additionally, Fourier transform infrared spectroscopy (FTIR), Differential scanning calorimetry (DSC), Field-emission scanning electron microscopy (FE-SEM), and RAS were used to analyze the chemical composition, molecular structure, interfacial microstructure, and RS of the epoxy resin during the thermal aging process. With the increase in the thermal aging time, the epoxy resin underwent secondary curing, the RS at the interface changed from tensile stress to compressive stress, and cracks were formed. The results illuminate the effect of the thermal aging process on the interface-failure mechanism of composite materials, aiding in the reliability evaluation and safety design of semiconductor devices. Full article
(This article belongs to the Special Issue Polymer-Based Flexible Materials, 2nd Edition)
Show Figures

Figure 1

14 pages, 4915 KiB  
Article
Development and Evaluation of Steel Component Coatings for Substations/Converter Stations with Both Fire and Corrosion Prevention Functions
by Yu Liu, Baohui Chen, Chuanping Wu, Tiannian Zhou and Bichen Pan
Fire 2025, 8(1), 1; https://doi.org/10.3390/fire8010001 - 24 Dec 2024
Viewed by 1075
Abstract
There are a large number of steel components in substations/converter stations whose performance is seriously affected by being exposed to environmental corrosion and fire, endangering the operation of the substation/converter station. The current protective measures for steel components in substations/converter stations primarily involve [...] Read more.
There are a large number of steel components in substations/converter stations whose performance is seriously affected by being exposed to environmental corrosion and fire, endangering the operation of the substation/converter station. The current protective measures for steel components in substations/converter stations primarily involve the application of anti-corrosion and fireproof coatings. However, these coatings can easily peel off, resulting in a significant loss of their protective effectiveness. In response to this challenge, a new type of silicone-modified epoxy resin substrate has been synthesized by chemically grafting silicone resin onto epoxy resin segments, which retains the high adhesion of epoxy resin while enhancing its weather resistance. The use of synthesized nano zinc oxide-modified graphene oxide as a fireproof filler significantly improves the physical barrier effect and corrosion resistance of the coating. Additionally, the innovative addition of new metal anti-corrosion active pigments improves the adhesion and impermeability of the coating. Therefore, a steel structure coating for substations/converter stations with both fire and corrosion prevention functions has been developed. Standard tests conducted by national institutions have shown that the coating meets the performance requirements. Full article
(This article belongs to the Special Issue Fire Detection and Public Safety, 2nd Edition)
Show Figures

Figure 1

18 pages, 6363 KiB  
Article
Hybrid Alumina–Silica Filler for Thermally Conductive Epoxidized Natural Rubber
by Hassarutai Yangthong, Phattarawadee Nun-Anan, Apinya Krainoi, Boonphop Chaisrikhwun, Seppo Karrila and Suphatchakorn Limhengha
Polymers 2024, 16(23), 3362; https://doi.org/10.3390/polym16233362 - 29 Nov 2024
Viewed by 1615
Abstract
Thermally conductive composites were prepared based on epoxidized natural rubber (ENR) filled with alumina, silica, and hybrid alumina and silica. The thermal conductivity and mechanical properties were assessed. It was observed that the interactions of polar functional groups in the fillers and epoxy [...] Read more.
Thermally conductive composites were prepared based on epoxidized natural rubber (ENR) filled with alumina, silica, and hybrid alumina and silica. The thermal conductivity and mechanical properties were assessed. It was observed that the interactions of polar functional groups in the fillers and epoxy group in ENR supported a fine dispersion of filler in the ENR matrix. The mechanical properties were improved with alumina, silica, and hybrid alumina/silica loadings. The ENR/Silica composite at 50 phr of silica provided the highest 60 shore A hardness, a maximum 100% modulus up to 0.37 MPa, and the highest tensile strength of 27.3 MPa, while ENR/Alumina with 50 phr alumina gave the best thermal conductivity. The hybrid alumina/silica filler at 25/25 phr significantly improved the mechanical properties and thermal conductivity in an ENR composite. That is, the thermal conductivity of the ENR/Hybrid filler was 2.23 W/mK, much higher than that of gum ENR (1.16 W/mK). The experimental results were further analyzed using ANOVA and it was found that the ENR/Hybrid filler showed significant increases in mechanical and thermal properties compared to gum ENR. Moreover, silica in the hybrid composites contributed to higher strength when compared to both gum ENR and ENR/Alumina composites. The hybrid filler system also favors process ability with energy savings. As a result, ENR filled with hybrid alumina/silica is an alternative thermally conductive elastomeric material to expensive silicone rubber, and it could have commercial applications in the fabrication of electronic devices, solar energy conversion, rechargeable batteries, and sensors. Full article
(This article belongs to the Special Issue Advances in Functional Rubber and Elastomer Composites II)
Show Figures

Graphical abstract

11 pages, 1900 KiB  
Article
Quantum Chemical Model Calculations of Adhesion and Dissociation between Epoxy Resin and Si-Containing Molecules
by Hao Xue, Yingxiao Xi and Naoki Kishimoto
Molecules 2024, 29(21), 5050; https://doi.org/10.3390/molecules29215050 - 25 Oct 2024
Viewed by 1241
Abstract
There is no doubt that when solid surfaces are modified, the functional groups and atoms directly bonded to solid atoms play a major role in adsorption interactions with molecules or resins. In this study, the adhesion and dissociation between epoxy resin and molecules [...] Read more.
There is no doubt that when solid surfaces are modified, the functional groups and atoms directly bonded to solid atoms play a major role in adsorption interactions with molecules or resins. In this study, the adhesion and dissociation between epoxy resin and molecules containing Si atoms were analyzed. The analysis, conducted in contact with the solid surface of silicon, utilized quantum chemical calculations based on a molecular model. We compared some Si-containing molecular models to test quantum chemical calculations that contribute to the study of adhesion and dissociation between epoxy resins and solid surfaces somehow other than simple potential energy curve calculations. The AFIR (artificial force induced reaction) method, implemented in the GRRM (global reaction route mapping) program, was employed to separate an epoxy resin model molecule and three types of silicon compounds (Si(CH3)2(OH)2, Si(CH3)4, and (CH3)2SiF2) in three directions, determining their minimum dissociation energy when changing the applied energy by 2.5 kJ/mol. In systems with weak hydrogen bonds, such as Si(CH3)4 or (CH3)2SiF2, the energy required for dissociation was not large; however, in systems with strong hydrogen bonds, such as Si(CH3)2(OH)2, dissociation was more difficult in the vertical direction. Although anisotropy due to hydroxyl groups was calculated in the horizontal direction, dissociation remained relatively easy. Full article
(This article belongs to the Special Issue Epoxy Resin Synthesis, Performance and Application Research)
Show Figures

Graphical abstract

Back to TopTop