Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (200)

Search Parameters:
Keywords = epoxy resin/glass fiber

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 9797 KiB  
Article
Rate-Dependent Tensile Behavior of Glass Fiber Composites Reinforced with Quadriaxial Fabrics, with or Without Coremat Xi3 Interlayer, for Marine Applications
by Lorena Deleanu, George Pelin, Ioana Gabriela Chiracu, Iulian Păduraru, Mario Constandache, George Ghiocel Ojoc and Alexandru Viorel Vasiliu
Polymers 2025, 17(15), 2074; https://doi.org/10.3390/polym17152074 - 29 Jul 2025
Viewed by 324
Abstract
This study is among the first to characterize the tensile response of composites with quadriaxial glass fiber fabrics designed for marine structural applications. Four composite configurations were fabricated at laboratory scale, combining two matrix types (unsaturated polyester resin and epoxy resin) and the [...] Read more.
This study is among the first to characterize the tensile response of composites with quadriaxial glass fiber fabrics designed for marine structural applications. Four composite configurations were fabricated at laboratory scale, combining two matrix types (unsaturated polyester resin and epoxy resin) and the presence or absence of a Coremat Xi3 middle layer. Tensile tests were conducted at four test rates (10 mm/min, 200 mm/min, 500 mm/min, and 1000 mm/min), ranging from quasi-static to moderately dynamic conditions. Tests were conducted using the Instron 5982 universal testing machine (from Laboratory for Advanced Materials and Tribology, INCAS Bucharest, Romania). The specimens have a rectangular cross section, in agreement with SR EN ISO 527-4:2023. For strain measurements, an Instron advanced video extensometer (AVE) was used. Key mechanical parameters, such as maximum force, tensile strength, Young’s modulus, strain at break, and energy absorption, were extracted and analyzed. Results show that the polyester-based composite without a mat interlayer displayed the best overall performance, with the highest ultimate strength (~280 MPa), significant energy absorption (~106 J), and a consistent increase in ductility with increasing test rate. In contrast, the epoxy composite with Coremat Xi3 exhibited lower stiffness and strength, but higher strain and energy absorption at higher test rates, indicating a progressive failure behavior. These findings enhance the understanding of the tensile response of composites made of quadriaxial glass fiber fabric and provide valuable design data for structural components in marine environments, where both strength and energy absorption are essential. These insights support producers and end-users of non-crimp fabrics in making experimentally based selections of a composite, technological strategies, and design optimization. Full article
(This article belongs to the Special Issue Epoxy Resins and Epoxy-Based Composites: Research and Development)
Show Figures

Figure 1

13 pages, 3428 KiB  
Article
Multi-Parametric Study on Flexural Behavior of Wool–Flax Hybrid Composites Under Thermal Conditions
by Tsegaye Lemmi, David Ranz and Clara Luna Martin
Materials 2025, 18(14), 3219; https://doi.org/10.3390/ma18143219 - 8 Jul 2025
Viewed by 334
Abstract
The increasing demand for sustainable materials has intensified the interest in natural fiber-reinforced composites (NFRCs) as environmentally friendly alternatives to synthetic composites. However, NFRCs often face limitations in thermal stability, restricting their use in high-temperature environments. To address this, the present study explores [...] Read more.
The increasing demand for sustainable materials has intensified the interest in natural fiber-reinforced composites (NFRCs) as environmentally friendly alternatives to synthetic composites. However, NFRCs often face limitations in thermal stability, restricting their use in high-temperature environments. To address this, the present study explores the hybridization of cellulosic flax fibers with protein-based wool fibers to improve thermal stability without compromising mechanical integrity. Wool–flax hybrid composites were fabricated using a bio-based epoxy resin through a resin infusion technique with different fiber proportions. The flexural properties of these composites were evaluated under varying temperature conditions to assess the influence of fiber composition and thermal conditions. This study specifically examined the impact of wool fiber content on the flexural performance of the composites under thermal conditions, including behavior near and above the matrix’s glass transition temperature. The results showed that the flexural properties of the hybrid biocomposites were significantly affected by temperature. Compared with specimens tested at room temperature, the flexural modulus of all variants decreased by 85–94%, while the flexural strength declined by 79–85% at 120 °C, depending on the variant. The composite variant with a higher wool content (variant 3W) exhibited enhanced flexural performance, demonstrating an average of 15% greater flexural strength than other variants at 60 °C and 5% higher at 120 °C. These findings suggest that incorporating wool fibers into flax-based composites can effectively improve thermal stability while maintaining flexural properties, supporting the development of sustainable biocomposites for structural applications. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

10 pages, 2764 KiB  
Proceeding Paper
Experimental Investigation on the Mechanical Properties of Woven Glass–Polyester–Polypropylene Fiber-Reinforced Epoxy Hybrid Composites
by Sundarapandiyan Murugesan and Palanikumar Kayaroganam
Eng. Proc. 2025, 93(1), 7; https://doi.org/10.3390/engproc2025093007 - 30 Jun 2025
Viewed by 135
Abstract
Natural composites find application in various fields because of their low specific weight and low investment cost. But due to their inherent nature, natural composites have lower strength and tend to absorb moisture, which makes them weak. In this work, woven glass, mono-bi-filament [...] Read more.
Natural composites find application in various fields because of their low specific weight and low investment cost. But due to their inherent nature, natural composites have lower strength and tend to absorb moisture, which makes them weak. In this work, woven glass, mono-bi-filament polypropylene, and polyester fibers in an epoxy matrix were developed with four and five different stacking layers of texture utilizing the hand-layup procedure. However, understanding the directional dependence of material properties is necessary for the application of these new materials. Three distinctive plates were fabricated for the purpose of the investigation. The laminated plates were tested on a universal testing machine (UTM) and a flexible test setup to examine the mechanical properties of the polymer fiber. By adding short fibers such as polypropylene, polyester fibers in a random manner improved the mechanical strength of the polymer composite compared to the other fiber types such as woven glass fiber sheets and woven polypropylene sheets placed in the middle of the composite. This is because short polymer fibers bond well with epoxy resin and have very good bonding strength. Full article
Show Figures

Figure 1

28 pages, 11703 KiB  
Article
Enhancing the Interfacial Adhesion and Mechanical Strength of Pultruded ECR–Glass Fiber Composites with Nanofiller-Infused Epoxy Resin
by Poorna Chandra, Ravikumar Venkatarayappa, Savitha D. Chandrashekar, Kiran Raveendra, Asha P. Bhaskararao, Suresha Bheemappa, Dayanand M. Goudar, Rajashekhar V. Kurhatti, K. Raju and Deesy G. Pinto
J. Compos. Sci. 2025, 9(7), 321; https://doi.org/10.3390/jcs9070321 - 23 Jun 2025
Viewed by 926
Abstract
The effect of the interaction between silica (nS) and hydroxyapatite (nHap) nanomaterials on the characteristics of unidirectional glass-fiber-reinforced epoxy (GF/Ep) composite systems is investigated in this work. The goal of the study is to use these nanofillers to improve the microstructure and mechanical [...] Read more.
The effect of the interaction between silica (nS) and hydroxyapatite (nHap) nanomaterials on the characteristics of unidirectional glass-fiber-reinforced epoxy (GF/Ep) composite systems is investigated in this work. The goal of the study is to use these nanofillers to improve the microstructure and mechanical characteristics. Pultrusion was used to produce hybrid nanocomposites while keeping the GF loading at a consistent 75% by weight. The hybrid nanocomposites were made with a total filler loading of 6 wt.%, including nHap, and a nS loading ranging from 2 to 4 wt.%. The mechanical performance of the composite was greatly improved by the use of these nanofillers. Compared to neat GF/Ep, hybrid nanocomposites with 6 wt.% combined fillers exhibited increased hardness (14%), tensile strength (25%), interlaminar shear strength (21.3%), and flexural strength (33%). These improvements are attributed to efficient filler dispersion, enhanced fiber-matrix adhesion, and crack propagation resistance. Incorporating 4 wt.% nS alone improved hardness (6%), tensile strength (9%), tensile modulus (21%), interlaminar shear strength (11.4%), flexural strength (12%), and flexural modulus (14%). FTIR analysis indicated Si-O-Si network formation and increased hydrogen bonding, supporting enhanced interfacial interactions. Ultraviolet reflectance measurements showed increased UV reflectivity with nS, especially in hybrid systems, due to synergistic effects. Impact strength also improved, with a notable 11.6% increase observed in the hybrid nanocomposite. Scanning and transmission electron microscopy confirmed that the nanofillers act as secondary reinforcements within the matrix. These hybrid nanocomposites present a promising material choice for various industries, including marine structural applications and automotive components. Full article
(This article belongs to the Special Issue Mechanical Properties of Composite Materials and Joints)
Show Figures

Figure 1

19 pages, 2511 KiB  
Article
Exploring the Thermal and Mechanical Properties of Thermoset-Based Composites Reinforced with New Continuous and Chopped Phosphate Glass Fibers
by Iliass Daki, Nezha Saloumi, Mohamed Yousfi, Caroline Parajua-sejil, Vivien Truchot, Jean-François Gérard, Omar Cherkaoui, Hassan Hannache, Mehdi El Bouchti and Mina Oumam
Polymers 2025, 17(12), 1627; https://doi.org/10.3390/polym17121627 - 11 Jun 2025
Viewed by 1208
Abstract
Currently, the main drivers for the production of phosphate glass fiber-reinforced composites are the growing demand for lightweight materials, reduced energy consumption, improved durability, and minimized environmental impact. This study aims to develop thermoset-based composites using chopped and continuous phosphate glass fibers (PGFs) [...] Read more.
Currently, the main drivers for the production of phosphate glass fiber-reinforced composites are the growing demand for lightweight materials, reduced energy consumption, improved durability, and minimized environmental impact. This study aims to develop thermoset-based composites using chopped and continuous phosphate glass fibers (PGFs) combined with polyester and epoxy matrices, processed via contact molding. Physical, mechanical, thermal, and morphological characterizations were conducted. The addition of PGFs led to a steady increase in density and fiber volume fraction. For polyester composites with short PGFs, density rose from 1.60 g/cm3 (0 wt%) to 1.77 g/cm3 (22.8 wt%), with a corresponding volume fraction increase from 0% to 14.4%. Similarly, epoxy composites showed density values from 1.70 g/cm3 to 1.87 g/cm3 and volume fractions up to 15.2%. Thermogravimetric analysis (TGA) showed that as the fiber content increased, the thermal degradation of the resin was delayed, as evidenced by a rise in onset degradation temperature and greater residual mass—indicating improved thermal stability of the composites. Tensile strength increased from 20.8 MPa to 71.3 MPa (polyester) and from 26.8 MPa to 75.9 MPa (epoxy) with chopped fibers, reaching 145.7 MPa and 187.9 MPa, respectively, with continuous fibers. Flexural strength reached 167.9 MPa (polyester) and 218.0 MPa (epoxy) in continuous-fiber configurations. Young’s modulus values closely matched Hirsch model predictions. These findings confirm the potential of PGF-reinforced thermoset composites for high-performance and sustainable material applications. Full article
(This article belongs to the Section Polymer Fibers)
Show Figures

Figure 1

19 pages, 5240 KiB  
Article
Development of Lightweight Thermoplastic Acrylic PMMA Composites and Characterization of Their Mechanical Properties
by Jiming Sun, Hyeonseok Han, Sooyeon Ahn, Seongsu Jung and Sung Kyu Ha
Polymers 2025, 17(11), 1563; https://doi.org/10.3390/polym17111563 - 4 Jun 2025
Viewed by 550
Abstract
The effects of benzoyl peroxide (BPO) and dimethylaniline (DMA) composition on the induction time and the tensile strength of thermoplastic acrylic (PMMA) resins have been investigated in this study. Eighteen resin formulations were prepared with different BPO/DMA ratios (2.0–9.5) and DMA contents (0.28–0.65 [...] Read more.
The effects of benzoyl peroxide (BPO) and dimethylaniline (DMA) composition on the induction time and the tensile strength of thermoplastic acrylic (PMMA) resins have been investigated in this study. Eighteen resin formulations were prepared with different BPO/DMA ratios (2.0–9.5) and DMA contents (0.28–0.65 mol%), and it was observed that tensile strengths reached up to 66 MPa, and induction times (ITs) ranged from 100 to 207 min. Higher BPO/DMA ratios improved tensile strength but shortened IT, while greater DMA content accelerated curing. Polynomial regression models were successfully established, i.e., a third-order equation for the strength and a second-order equation for the IT, based on the BPO/DMA ratio and DMA content to identify the optimal formulation to balance the strength and the IT time. Two selected formulations, P-4-0.5 and P-3-0.3, were applied in vacuum-assisted resin infusion of glass fiber composites. The best-performing unidirectional (UD) laminate achieved a tensile strength of 1244 MPa. As regards ±45° biaxial (BX45) laminates, they exhibited a tensile strength of 124 MPa and a failure strain of 9.02%, which, while lower than that of epoxy, indicates competitive performance. These results demonstrate that the resin was well infused, resulting in 64% higher fiber volume fraction than typical infused glass/epoxy composites, and compositionally optimized PMMA resins can deliver epoxy-comparable strength and enhance damage tolerance in structural composite applications. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

21 pages, 3889 KiB  
Article
Effects of Organic Acidic Products from Discharge-Induced Decomposition of the FRP Matrix on ECR Glass Fibers in Composite Insulators
by Dandan Zhang, Zhiyu Wan, Kexin Shi, Ming Lu and Chao Gao
Polymers 2025, 17(11), 1540; https://doi.org/10.3390/polym17111540 - 31 May 2025
Viewed by 594
Abstract
This study investigates the degradation mechanisms of fiber-reinforced polymer (FRP) matrices in composite insulators under partial discharge (PD) conditions. The degradation products may further cause deterioration of the electrical and chemical resistance (ECR) glass fibers. Using pyrolysis–gas chromatography-mass spectrometry (PY-GC-MS) and high-performance liquid [...] Read more.
This study investigates the degradation mechanisms of fiber-reinforced polymer (FRP) matrices in composite insulators under partial discharge (PD) conditions. The degradation products may further cause deterioration of the electrical and chemical resistance (ECR) glass fibers. Using pyrolysis–gas chromatography-mass spectrometry (PY-GC-MS) and high-performance liquid chromatography–tandem mass spectrometry (HPLC-MS-MS), the thermal degradation gas and liquid products of the degraded FRP matrix were analyzed, revealing the presence of organic acids. These acids form when the epoxy resin’s cross-linked bonds break at high temperatures, generating anhydrides that hydrolyze into carboxylic acids in the presence of moisture. The hydrolyzation process is accelerated by hydroxyl radicals produced during PD. The resulting carboxylic acids deteriorate the glass fibers within the FRP matrix by degrading surface coupling agents and reacting with the alkali metal–silica network, leading to the substitution and precipitation of metal ions. Organic acids, particularly carboxylic acids, were found to have a more severe deteriorating effect on glass fibers compared to inorganic acids, with high temperatures exacerbating this process. These findings provide critical insights into the deterioration mechanisms of FRP under operational conditions, offering valuable guidance for optimizing manufacturing processes and enhancing the longevity of composite insulators. Full article
(This article belongs to the Special Issue New Insights into Fiber-Reinforced Polymer Composites)
Show Figures

Figure 1

12 pages, 8961 KiB  
Communication
Damage Characteristics in Glass Fiber-Reinforced Epoxy Resin Composites Under Continuous Wave and Pulsed Laser Modes
by Xue Zhang, Jian Peng, Tengfei Li, Jing Xiao, Guiyong Chen, Yanjun Tang, Miao He and Jinghua Han
Photonics 2025, 12(6), 526; https://doi.org/10.3390/photonics12060526 - 22 May 2025
Viewed by 463
Abstract
Composite materials have been extensively utilized in unmanned aerial vehicles (UAVs) and other aerospace applications due to their unique advantages, while laser countermeasures have emerged as a critical approach in anti-UAV warfare. Different laser modes produce significantly different effects. In this study, we [...] Read more.
Composite materials have been extensively utilized in unmanned aerial vehicles (UAVs) and other aerospace applications due to their unique advantages, while laser countermeasures have emerged as a critical approach in anti-UAV warfare. Different laser modes produce significantly different effects. In this study, we have mainly considered the ablation and damage characteristics of composite materials affected by continuous wave (CW) and pulsed laser (PL) modes. Through comparative analysis of damage morphologies and elemental variations, the damage characteristics and mechanisms of composite materials have been studied, and thermodynamic models have been established. The results demonstrate that the damage produced using the CW mode is primarily thermal ablation, induced through power intensification, whereas the PL mode predominantly causes thermal stress fractures via energy concentration. This investigation provides fundamental references for optimizing laser-based counter-UAV systems. Full article
Show Figures

Figure 1

21 pages, 8241 KiB  
Article
Chemical Recycling of Bio-Based Thermosetting Epoxy Composite Produced by Vacuum-Assisted Resin Infusion Process
by Liberata Guadagno, Raffaele Longo, Marialuigia Raimondo, Luigi Vertuccio, Francesca Aliberti, Lorenzo Bonadies, Simone Morciano, Luigia Longo, Roberto Pantani and Elisa Calabrese
Polymers 2025, 17(9), 1241; https://doi.org/10.3390/polym17091241 - 2 May 2025
Viewed by 801
Abstract
This research work focuses on the chemical recycling of a Carbon Fiber-Reinforced Composite (CFRC) manufactured through a vacuum-assisted resin infusion (VARI) process, characterized by a high Young’s modulus of approximately 7640 MPa. The recycling reaction was performed using a mixture of eco-sustainable solvents, [...] Read more.
This research work focuses on the chemical recycling of a Carbon Fiber-Reinforced Composite (CFRC) manufactured through a vacuum-assisted resin infusion (VARI) process, characterized by a high Young’s modulus of approximately 7640 MPa. The recycling reaction was performed using a mixture of eco-sustainable solvents, composed of acetic acid and hydrogen peroxide, and was conducted at three different temperatures (70, 80, and 90 °C). The reaction yield values, evaluated with an innovative approach that involved the use of thermogravimetric analysis (TGA), confirmed the importance to recycle at a temperature corresponding to the glass transition temperature (Tg = 90.3 °C) of the resin. Spectroscopic investigations highlighted that the chemical bond cleavage occurred through the selective breaking of the C-N bonds of the cross-linked matrix structure, allowing the recovery of both the reinforcing phase of the epoxy matrix and the initial oligomers/monomers of the epoxy matrix. The morphological and electrical investigations carried out on the recovered fibers further confirmed the efficiency of the recycling process conducted at the highest explored temperature, allowing the recovery of cleaner fibers with an electrical conductivity value (8.04 × 102 S/m) closer to that of virgin fibers (2.20 × 103 S/m). The proposed strategy is a true challenge in terms of saving energy, solving waste disposal problems, preserving the earth, and preventing the depletion of planet resources. Full article
(This article belongs to the Section Circular and Green Sustainable Polymer Science)
Show Figures

Figure 1

13 pages, 4438 KiB  
Article
Reverse Design of High Strength and High Modulus Epoxy Resin Systems Through Computational Modeling with Experimental Validation
by Yilin Tang, Shipeng Zhu, Boya Zhang, Haozhong Lv, Jingshu Wu, Yunhua Yang, Ben Zhang and Jianli Gao
Polymers 2025, 17(9), 1214; https://doi.org/10.3390/polym17091214 - 29 Apr 2025
Viewed by 723
Abstract
High-strength and high-modulus epoxy resins are key elements for preparing carbon-fiber-reinforced polymer composites, which play an irreplaceable role in aerospace. In this study, five optimal epoxy systems were developed utilizing the reverse design strategy. The reverse design strategy was based on the ideal [...] Read more.
High-strength and high-modulus epoxy resins are key elements for preparing carbon-fiber-reinforced polymer composites, which play an irreplaceable role in aerospace. In this study, five optimal epoxy systems were developed utilizing the reverse design strategy. The reverse design strategy was based on the ideal resin and curing agent structures offered by the AI polymer platform, and the rules were summarized to create an optimum resin formulation. The formulations used m-phenylenediamine (MPD) as the principal curing agent, which was modified with 10 wt% diethyltetramethylenediamine (DETDA), 10 wt% 4,4′-diaminodiphenylmethane (DDM), or 10 wt% triethylenetetramine (TETA) to establish multiple crosslinking networks. Systematic characterization using differential scanning calorimetry (DSC) and rheological analysis revealed that the optimized activation energy was 55.95–63.42 kJ/mol, and the processing viscosity was ≤500 mPa·s at 80 °C. A stepwise curing protocol (3 h@80 °C, 2 h@120 °C, and 3 h@180 °C) was established to achieve a complete crosslinking network. The results showed that the system with 10% DDM had a tensile strength of 132.6 MPa, a modulus of 5.0 GPa, and a glass transition temperature of 253.1 °C. This work advances the rational design of epoxy resins by bridging molecular architecture with macroscopic performance, offering a paradigm for developing a next-generation matrix tailored to accommodate extreme operational demands in high-end engineering sectors. Full article
(This article belongs to the Special Issue Epoxy Polymers and Composites)
Show Figures

Figure 1

26 pages, 14840 KiB  
Article
Experimental Investigation of Ultra-High Molecular Weight Polyethylene Fibers and Fabric for Flexural Reinforcement in Ultra-High-Performance Concrete
by Zengrui Pan, Faning Dang, Rabin Tuladhar, Shi Yin, Feng Shi, Peter To and Zisheng Tang
Materials 2025, 18(9), 2002; https://doi.org/10.3390/ma18092002 - 28 Apr 2025
Viewed by 465
Abstract
This study investigates the use of Ultra-High Molecular Weight Polyethylene (UHMWPE) fibers and fabric to enhance the flexural performance of Ultra-High-Performance Concrete (UHPC). A total of 45 specimens were tested to examine the effects of fiber type, fabric material, adhesive, and various combined [...] Read more.
This study investigates the use of Ultra-High Molecular Weight Polyethylene (UHMWPE) fibers and fabric to enhance the flexural performance of Ultra-High-Performance Concrete (UHPC). A total of 45 specimens were tested to examine the effects of fiber type, fabric material, adhesive, and various combined strengthening techniques. The main findings are that incorporating UHMWPE fiber into the ultra-high-strength mortar (HSM) matrix provides superior performance compared to steel fiber, particularly in enhancing crack resistance and energy absorption. UHMWPE fiber-reinforced UHPC achieved a flexural toughness of 307 KJ/m3, over three times higher than that of steel fiber-reinforced UHPC (98 KJ/m3). The use of UHMWPE fabrics was more effective in improving the ductility and toughness of the composites than the use of glass fabrics. The bonding effect of using epoxy resin with UHMWPE fabric is better than using magnesium phosphate cement (MPC). Increasing the number of fabric layers improved the flexural properties of externally bonded fabric but had no impact on internal reinforcement techniques. The best strengthening method in this study was a combination of incorporating UHMWPE fiber internally and externally bonded fabric on a concrete surface, yielding the highest toughness of 580 KJ/m3. Full article
(This article belongs to the Special Issue Study on Mechanical Properties of Concrete Structures and RC Beams)
Show Figures

Figure 1

18 pages, 11810 KiB  
Article
Silanized Graphene Oxide/Glass Fiber-Modified Epoxy Composite with Excellent Anti-Corrosion and Mechanical Properties as Offshore Oil Platform Safety Signs
by Guanglei Lv, Peng Xiao, Yuhua Su and Xinmei Liu
Materials 2025, 18(9), 1920; https://doi.org/10.3390/ma18091920 - 24 Apr 2025
Viewed by 496
Abstract
Epoxy resin (EP) is a candidate material for offshore oil platform safety signs due to its excellent corrosion resistance property. However, fabricating EP with good anti-corrosion as well as mechanical properties remains a significant challenge. Here, we report a new modification strategy to [...] Read more.
Epoxy resin (EP) is a candidate material for offshore oil platform safety signs due to its excellent corrosion resistance property. However, fabricating EP with good anti-corrosion as well as mechanical properties remains a significant challenge. Here, we report a new modification strategy to simultaneously improve the corrosion resistance and mechanical performance of EP by coupling it with KH550 silanized graphene oxide (KGO) and KH550 silanized glass fiber (KGF). KGO and KGF were grafted onto EP to obtain the modified EP material, i.e., KGO/KGF/EP composites and were characterized by FITR, XRD, SEM, and TGA to confirm the successful synthesis of the composites. It is shown that the tensile strength and adhesion strength of KGO/KGF/EP were 85.5 MPa and 16.0 MPa, which are 10.3% and 23.1% higher than KGO/GF/EP. Compared with KGF/EP, the corrosion potential increased by 9.9% and the corrosion rate decreased by 98.8%. Moreover, fluid–structure coupling simulation indicated the maximum stress of the material was within the criteria under extreme wind speeds, demonstrating its great potential for offshore oil platform safety sign applications. Full article
Show Figures

Figure 1

24 pages, 3714 KiB  
Article
Comparison of Bending Properties of Sandwich Structures Using Conventional and 3D-Printed Core with Flax Fiber Reinforcement
by Viktor Brejcha, Martin Böhm, Tomáš Holeček, Miloš Jerman, Klára Kobetičová, Ivana Burianová, Robert Černý and Zbyšek Pavlík
J. Compos. Sci. 2025, 9(4), 182; https://doi.org/10.3390/jcs9040182 - 9 Apr 2025
Cited by 1 | Viewed by 1166
Abstract
The growing demand for sustainable composites has increased interest in natural fiber reinforcements as alternatives to synthetic materials. This study evaluates the bending properties of sandwich structures with flax fibers and 3D-printed lightweight foaming PLA cores compared to conventional designs using glass fibers [...] Read more.
The growing demand for sustainable composites has increased interest in natural fiber reinforcements as alternatives to synthetic materials. This study evaluates the bending properties of sandwich structures with flax fibers and 3D-printed lightweight foaming PLA cores compared to conventional designs using glass fibers and traditional cores. Three-point bending tests (EN 310) and density profile analysis showed that, despite its lower density, the 3D-printed foaming PLA core achieved a modulus of elasticity of 2269.19 MPa and a bending strength of 31.46 MPa, demonstrating its potential for lightweight applications. However, natural fibers influenced resin absorption, affecting core saturation compared to glass fibers. The use of bio-based epoxy and foaming PLA contributes to a lower environmental footprint, while 3D printing enables precise material optimization. These findings confirm that 3D-printed cores offer a competitive and sustainable alternative, with future research focusing on further optimization of internal structure to enhance mechanical performance. Full article
(This article belongs to the Special Issue Feature Papers in Journal of Composites Science in 2024)
Show Figures

Figure 1

14 pages, 3309 KiB  
Article
Self-Toughened Epoxy Resin via Hybridization of Structural Isomeric Curing Agents
by Woong Kwon, Jiyeon Cheon, Hei Je Jeong, Jong Sung Won, Byeong-Joo Kim, Man Young Lee, Seung Geol Lee and Euigyung Jeong
Polymers 2025, 17(5), 695; https://doi.org/10.3390/polym17050695 - 5 Mar 2025
Viewed by 1053
Abstract
Fracture toughness is a key property of epoxy resins with a high glass transition temperature (Tg), used in carbon fiber/epoxy composites for aerospace applications. Conventional toughening methods rely on adding toughening agents, often compromising the processibility and thermal stability. This study [...] Read more.
Fracture toughness is a key property of epoxy resins with a high glass transition temperature (Tg), used in carbon fiber/epoxy composites for aerospace applications. Conventional toughening methods rely on adding toughening agents, often compromising the processibility and thermal stability. This study introduces a simple self-toughening approach that enhances the fracture toughness without sacrificing other properties by controlling the cured epoxy network structure. Tetraglycidyl 4,4′-diaminodiphenylmethane (TGDDM) epoxy resin was cured using mixtures of structural isomeric curing agents, 3,3′- and 4,4′-diaminodiphenyl sulfone (3,3′- and 4,4′-DDS), at ratios of 7:3, 5:5, and 3:7. The optimal 7:3 ratio produced a resin with 30% higher fracture toughness compared to TGDDM/3,3′-DDS and 100% higher than the TGDDM/4,4′-DDS system. The Tg of the self-toughened resin ranged from 241 to 266 °C, which was intermediate between the Tg values of the TGDDM/3,3′-DDS and TGDDM/4,4′-DDS systems. This improvement is attributed to the higher crosslink density and reduced free volume of the epoxy network. These findings demonstrate that simply mixing isomeric curing agents enables self-toughening, providing a practical and efficient strategy to enhance the performance of high-Tg epoxy resins in advanced composite applications. Full article
(This article belongs to the Special Issue Development in Epoxy Polymers)
Show Figures

Graphical abstract

19 pages, 3979 KiB  
Article
The Fossil, the Green, and the In-Between: Life Cycle Assessment of Manufacturing Composites with Varying Bio-Based Content
by Ulrike Kirschnick, Bharath Ravindran, Manfred Sieberer, Ewald Fauster and Michael Feuchter
J. Compos. Sci. 2025, 9(3), 93; https://doi.org/10.3390/jcs9030093 - 20 Feb 2025
Viewed by 893
Abstract
Bio-based composites offer potential environmental benefits over fossil-based materials, but limited research exists on manufacturing processes with varying material combinations. This study performs a cradle-to-grave Life Cycle Assessment of five composite types to evaluate the role of fully and partially bio-based composites, focusing [...] Read more.
Bio-based composites offer potential environmental benefits over fossil-based materials, but limited research exists on manufacturing processes with varying material combinations. This study performs a cradle-to-grave Life Cycle Assessment of five composite types to evaluate the role of fully and partially bio-based composites, focusing on the manufacturing stage. The composite materials include glass or flax fiber-based reinforcements embedded in polymer matrices based on a fossil epoxy, a partially bio-based epoxy, or epoxidized linseed oil, fabricated using vacuum-assisted resin infusion. Flax fibers in a partially bio-based epoxy achieve the lowest environmental impacts in most categories when assessed at equal geometry. Glass fiber composites exhibit a higher fiber volume content and material properties and thus demonstrate competitive environmental performance at equal absolute and normalized tensile strength. Composites using epoxidized linseed oil are the least advantageous, with the manufacturing stage contributing a majority of the environmental impacts due to their comparatively long curing times. These results are based on methodological choices and technical constraints which are discussed together with benchmarking against previous studies. While partially bio-based materials can provide a middle ground for enhancing composite environmental performance, the further optimization of bio-based material functionality regarding material properties and processability is pivotal to exploit the full potential of bio-based composites. Full article
(This article belongs to the Special Issue Feature Papers in Journal of Composites Science in 2024)
Show Figures

Figure 1

Back to TopTop