Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (157)

Search Parameters:
Keywords = epithelium repair

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 7477 KiB  
Article
Bidirectional Hypoxic Extracellular Vesicle Signaling Between Müller Glia and Retinal Pigment Epithelium Regulates Retinal Metabolism and Barrier Function
by Alaa M. Mansour, Mohamed S. Gad, Samar Habib and Khaled Elmasry
Biology 2025, 14(8), 1014; https://doi.org/10.3390/biology14081014 - 7 Aug 2025
Viewed by 203
Abstract
The retina is highly sensitive to oxygen and blood supply, and hypoxia plays a key role in retinal diseases such as diabetic retinopathy (DR) and age-related macular degeneration (AMD). Müller glial cells, which are essential for retinal homeostasis, respond to injury and hypoxia [...] Read more.
The retina is highly sensitive to oxygen and blood supply, and hypoxia plays a key role in retinal diseases such as diabetic retinopathy (DR) and age-related macular degeneration (AMD). Müller glial cells, which are essential for retinal homeostasis, respond to injury and hypoxia with reactive gliosis, characterized by the upregulation of the glial fibrillary acidic protein (GFAP) and vimentin, cellular hypertrophy, and extracellular matrix changes, which can impair retinal function and repair. The retinal pigment epithelium (RPE) supports photoreceptors, forms part of the blood–retinal barrier, and protects against oxidative stress; its dysfunction contributes to retinal degenerative diseases such as AMD, retinitis pigmentosa (RP), and Stargardt disease (SD). Extracellular vesicles (EVs) play a crucial role in intercellular communication, protein homeostasis, and immune modulation, and have emerged as promising diagnostic and therapeutic tools. Understanding the role of extracellular vesicles’ (EVs’) signaling machinery of glial cells and the retinal pigment epithelium (RPE) is critical for developing effective treatments for retinal degeneration. In this study, we investigated the bidirectional EV-mediated crosstalk between RPE and Müller cells under hypoxic conditions and its impact on cellular metabolism and retinal cell integrity. Our findings demonstrate that RPE-derived extracellular vesicles (RPE EVs) induce time-dependent metabolic reprogramming in Müller cells. Short-term exposure (24 h) promotes pathways supporting neurotransmitter cycling, calcium and mineral absorption, and glutamate metabolism, while prolonged exposure (72 h) shifts Müller cell metabolism toward enhanced mitochondrial function and ATP production. Conversely, Müller cell-derived EVs under hypoxia influenced RPE metabolic pathways, enhancing fatty acid metabolism, intracellular vesicular trafficking, and the biosynthesis of mitochondrial co-factors such as ubiquinone. Proteomic analysis revealed significant modulation of key regulatory proteins. In Müller cells, hypoxic RPE-EV exposure led to reduced expression of Dyskerin Pseudouridine Synthase 1 (DKc1), Eukaryotic Translation Termination Factor 1 (ETF1), and Protein Ser/Thr phosphatases (PPP2R1B), suggesting alterations in RNA processing, translational fidelity, and signaling. RPE cells exposed to hypoxic Müller cell EVs exhibited elevated Ribosome-binding protein 1 (RRBP1), RAC1/2, and Guanine Nucleotide-Binding Protein G(i) Subunit Alpha-1 (GNAI1), supporting enhanced endoplasmic reticulum (ER) function and cytoskeletal remodeling. Functional assays also revealed the compromised barrier integrity of the outer blood–retinal barrier (oBRB) under hypoxic co-culture conditions. These results underscore the adaptive but time-sensitive nature of retinal cell communication via EVs in response to hypoxia. Targeting this crosstalk may offer novel therapeutic strategies to preserve retinal structure and function in ischemic retinopathies. Full article
Show Figures

Graphical abstract

24 pages, 1115 KiB  
Review
Stem Cell-Derived Corneal Epithelium: Engineering Barrier Function for Ocular Surface Repair
by Emily Elizabeth Fresenko, Jian-Xing Ma, Matthew Giegengack, Atalie Carina Thompson, Anthony Atala, Andrew J. W. Huang and Yuanyuan Zhang
Int. J. Mol. Sci. 2025, 26(15), 7501; https://doi.org/10.3390/ijms26157501 - 3 Aug 2025
Viewed by 345
Abstract
The cornea, the transparent anterior window of the eye, critically refracts light and protects intraocular structures. Corneal pathologies, including trauma, infection, chemical injury, metabolic diseases, genetic conditions, and age-related degeneration, can lead to significant visual impairment. While penetrating keratoplasty or full-thickness corneal transplantation [...] Read more.
The cornea, the transparent anterior window of the eye, critically refracts light and protects intraocular structures. Corneal pathologies, including trauma, infection, chemical injury, metabolic diseases, genetic conditions, and age-related degeneration, can lead to significant visual impairment. While penetrating keratoplasty or full-thickness corneal transplantation remains a standard and effective intervention for severe corneal dysfunction, limitations in donor tissue availability and the risk of immunogenic graft rejection necessitate alternative therapeutic strategies. Furthermore, for cases of isolated epithelial disfunction, a full-thickness cornea graft may not be required or effective. This review examines the potential of corneal epithelial constructs derived from autologous stem cells with functional barrier properties for corneal reconstruction and in vitro pharmacotoxicity testing. In this review, we delineate the current limitations of corneal transplantation, the advantages of stem cell-based approaches, and recent advances in generating engineered corneal epithelium. Finally, we address remaining technical challenges and propose future research directions aimed at clinical translation. Full article
(This article belongs to the Special Issue Enhancing Stem Cell Grafting in Tissue Regeneration and Repair)
Show Figures

Figure 1

21 pages, 3935 KiB  
Article
The HIV Protease Inhibitor Ritonavir Reverts the Mesenchymal Phenotype Induced by Inflammatory Cytokines in Normal and Tumor Oral Keratinocytes to an Epithelial One, Increasing the Radiosensitivity of Tumor Oral Keratinocytes
by Silvia Pomella, Lucrezia D’Archivio, Matteo Cassandri, Francesca Antonella Aiello, Ombretta Melaiu, Francesco Marampon, Rossella Rota and Giovanni Barillari
Cancers 2025, 17(15), 2519; https://doi.org/10.3390/cancers17152519 - 30 Jul 2025
Viewed by 254
Abstract
Background/Objectives: During the repair of a wounded epithelium, keratinocytes become invasive via the epithelial-to-mesenchymal transition (EMT) process. Usually temporary and controlled, EMT persists in a chronically inflamed epithelium and is exacerbated in epithelial dysplasia and dysregulated in invasive carcinomas. Here we investigated the [...] Read more.
Background/Objectives: During the repair of a wounded epithelium, keratinocytes become invasive via the epithelial-to-mesenchymal transition (EMT) process. Usually temporary and controlled, EMT persists in a chronically inflamed epithelium and is exacerbated in epithelial dysplasia and dysregulated in invasive carcinomas. Here we investigated the effects that IL-1 beta, IL-6, and IL-8, inflammatory cytokines expressed in specimens from OPMDs and OSCCs, have on NOKs and OSCC cells. Methods: AKT activation and EMT induction were assessed along with cellular invasiveness. Results: IL-1 beta, IL-6, and IL-8 induced EMT in NOKs, ex novo conferring them invasive capacity. The same cytokines exacerbated the constitutive EMT and invasiveness of OSCC cells. Since these phenomena were accompanied by AKT activation, we tested whether they could be influenced by RTV, a long-used anti-HIV drug that was previously found to block the activation of human AKT and exert antitumor effects. We observed that therapeutic amounts of RTV counteract all the above-mentioned tumorigenic activities of ILs. Finally, consistent with the key role that AKT and EMT play in OSCC radio-resistance, RTV increased OSCC cells’ sensitivity to therapeutic doses of ionizing radiation. Conclusions: These preliminary in vitro findings encourage the use of RTV to prevent the malignant evolution of OPMDs, reduce the risk of OSCC metastasis, and improve the outcomes of anti-OSCC radiotherapy. Full article
Show Figures

Figure 1

23 pages, 4463 KiB  
Review
Stargardt’s Disease: Molecular Pathogenesis and Current Therapeutic Landscape
by Kunal Dayma, Kalpana Rajanala and Arun Upadhyay
Int. J. Mol. Sci. 2025, 26(14), 7006; https://doi.org/10.3390/ijms26147006 - 21 Jul 2025
Viewed by 605
Abstract
Stargardt’s disease (STGD1) is an autosomal recessive juvenile macular degeneration caused by mutations in the ABCA4 gene, impairing clearance of toxic retinoid byproducts in the retinal pigment epithelium (RPE). This leads to lipofuscin accumulation, oxidative stress, photoreceptor degeneration, and central vision loss. Over [...] Read more.
Stargardt’s disease (STGD1) is an autosomal recessive juvenile macular degeneration caused by mutations in the ABCA4 gene, impairing clearance of toxic retinoid byproducts in the retinal pigment epithelium (RPE). This leads to lipofuscin accumulation, oxidative stress, photoreceptor degeneration, and central vision loss. Over 1200 pathogenic/likely pathogenic ABCA4 variants highlight the genetic heterogeneity of STGD1, which manifests as progressive central vision loss, with phenotype influenced by deep intronic variants, modifier genes, and environmental factors like light exposure. ABCA4 variants also show variable penetrance and geographical prevalence. With no approved treatment, investigational therapies target different aspects of disease pathology. Small-molecule therapies target vitamin A dimerization (e.g., ALK-001), inhibit lipofuscin accumulation (e.g., soraprazan), or modulate the visual cycle (e.g., emixustat hydrochloride). Gene therapy trials explore ABCA4 supplementation including strategies like RNA exon editing (ACDN-01) and bioengineered ambient light-activated OPSIN. RORA gene therapy (Phase 2/3) addresses oxidative stress, inflammation, lipid metabolism, and complement system dysregulation. Trials like DRAGON (Phase 3, tinlarebant), STARLIGHT (phase 2, bioengineered OPSIN) show promise, but optimizing efficacy remains challenging. With the key problem of establishing genotype–phenotype correlations, the future of STGD1 therapy may rely on approaches targeting oxidative stress, lipid metabolism, inflammation, complement regulation, and genetic repair. Full article
(This article belongs to the Special Issue Molecular Research in Retinal Degeneration)
Show Figures

Figure 1

16 pages, 10651 KiB  
Article
Impact of Amelogenesis Imperfecta on Junctional Epithelium Structure and Function
by Kevin Lin, Jake Ngu, Susu Uyen Le and Yan Zhang
Biology 2025, 14(7), 853; https://doi.org/10.3390/biology14070853 - 14 Jul 2025
Viewed by 367
Abstract
The junctional epithelium, which lines the inner gingival surface, seals the gingival sulcus to block the infiltration of food debris and pathogens. The junctional epithelium is derived from the reduced enamel epithelium, consisting of late developmental stage ameloblasts and accessory cells. No prior [...] Read more.
The junctional epithelium, which lines the inner gingival surface, seals the gingival sulcus to block the infiltration of food debris and pathogens. The junctional epithelium is derived from the reduced enamel epithelium, consisting of late developmental stage ameloblasts and accessory cells. No prior studies have investigated whether defective ameloblast differentiation or enamel matrix formation affects junctional epithelium anatomy or function. Here, we examined the junctional epithelium in mice exhibiting amelogenesis imperfecta due to loss-of-function mutations in the major enamel matrix protein amelogenin (Amelx−/−) or the critical enamel matrix protease KLK4 (Klk4−/−). Histological analyses demonstrated altered morphology and cell layer thickness of the junctional epithelium in Amelx−/− and Klk4−/− mice as compared to wt. Immunohistochemistry revealed reduced ODAM, laminin 5, and integrin α6, all of which are critical for the adhesion of the junctional epithelium to the enamel in Amelx−/− and Klk4−/− mice. Furthermore, we observed altered cell–cell adhesion and increased permeability of Dextran-GFP through the mutants’ junctional epithelium, indicating defective barrier function. Reduced β-catenin and Ki67 at the base of the junctional epithelium in mutants suggest impaired mitotic activity and reduced capacity to replenish continuously desquamated epithelium. These findings highlight the essential role of normal amelogenesis in maintaining junctional epithelium homeostasis. Full article
(This article belongs to the Special Issue Understanding the Molecular Basis of Genetic Dental Diseases)
Show Figures

Figure 1

19 pages, 993 KiB  
Article
Amprenavir Mitigates Pepsin-Induced Transcriptomic Changes in Normal and Precancerous Esophageal Cells
by Pelin Ergun, Tina L. Samuels, Angela J. Mathison, Tianxiang Liu, Victor X. Jin and Nikki Johnston
Int. J. Mol. Sci. 2025, 26(13), 6182; https://doi.org/10.3390/ijms26136182 - 26 Jun 2025
Viewed by 712
Abstract
Gastroesophageal reflux disease (GERD) is associated with inflammatory and neoplastic changes in the esophageal epithelium. Despite widespread PPI use, esophageal adenocarcinoma (EAC) incidence continues to rise, implicating non-acidic reflux components such as pepsin in disease progression. We performed transcriptomic profiling to assess pepsin-induced [...] Read more.
Gastroesophageal reflux disease (GERD) is associated with inflammatory and neoplastic changes in the esophageal epithelium. Despite widespread PPI use, esophageal adenocarcinoma (EAC) incidence continues to rise, implicating non-acidic reflux components such as pepsin in disease progression. We performed transcriptomic profiling to assess pepsin-induced changes and the protective effect of amprenavir in vitro. Het-1A (normal) and BAR-T (Barrett’s) cells (n = 3) were treated at pH 7.0 with pepsin and/or 10 μM amprenavir for 1 h. RNA-seq identified DEGs (FDR ≤ 0.05, |log₂FC| ≥ 0.375), and Ingenuity Pathway Analysis revealed enriched pathways. Pepsin exposure altered mitochondrial function, oxidative phosphorylation, epithelial integrity, signaling, and inflammatory pathways in both cell lines. Amprenavir attenuated these transcriptomic perturbations, preserving mitochondrial and stress-response pathways. Notably, BAR-T cells exhibited heightened activation of wound-healing and epithelial repair pathways, whereas Het-1A cells showed greater mitochondrial and systemic stress pathway alterations. Pepsin drives transcriptomic dysregulation in esophageal epithelial cells under non-acidic conditions, and amprenavir shows potential to counteract peptic injury. Further studies are needed to validate these findings and explore amprenavir’s therapeutic utility in GERD management and EAC prevention. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Esophageal Inflammation, Injury, and Repair)
Show Figures

Figure 1

11 pages, 647 KiB  
Review
Understanding the Role of Epithelial Cells in the Pathogenesis of Systemic Sclerosis
by Lydia Nagib, Anshul Sheel Kumar and Richard Stratton
Cells 2025, 14(13), 962; https://doi.org/10.3390/cells14130962 - 24 Jun 2025
Viewed by 668
Abstract
Systemic sclerosis (SSc) is an autoimmune fibrotic disorder affecting the skin and internal organs, categorized as either limited cutaneous SSc, where distal areas of skin are involved, or diffuse cutaneous SSc, where more extensive proximal skin involvement is seen. Vascular remodelling and internal [...] Read more.
Systemic sclerosis (SSc) is an autoimmune fibrotic disorder affecting the skin and internal organs, categorized as either limited cutaneous SSc, where distal areas of skin are involved, or diffuse cutaneous SSc, where more extensive proximal skin involvement is seen. Vascular remodelling and internal organ involvement are frequent complications in both subsets. Multiple pathogenic mechanisms have been demonstrated, including production of disease-specific autoantibodies, endothelial cell damage at an early stage, infiltration of involved tissues by immune cells, as well as environmental factors triggering the onset such as solvents and viruses. Although not strongly familial, susceptibility to SSc is associated with multiple single nucleotide polymorphisms in immunoregulatory genes relevant to antigen presentation, T cell signalling and adaptive immunity, as well as innate immunity. In addition, several lines of evidence demonstrate abnormalities within the epithelial cell layer in SSc. Macroscopically, the SSc epidermis is pigmented, thickened and stiff and strongly promotes myofibroblasts in co-culture. Moreover, multiple activating factors and pathways have been implicated in the disease epidermis, including wound healing responses, induction of damage associated molecular patterns (DAMPS) and the release of pro-fibrotic growth factors and cytokines. Similar to SSc, data from studies of cutaneous wound healing indicate a major role for epidermal keratinocytes in regulating local fibroblast responses during repair of the wound defect. Since the epithelium is strongly exposed to environmental factors and richly populated with protective immune cells, it is possible that disease-initiating mechanisms in SSc involve dysregulated immunity and tissue repair within this cell layer. Treatments designed to restore epithelial homeostasis or else disrupt epithelial–fibroblast cross-talk could be of benefit in this severe and resistant disease. Accordingly, single cell analysis has confirmed an active signature in SSc keratinocytes, which was partially reversed following a period of JAK inhibitor therapy. Full article
(This article belongs to the Special Issue The Role of Epithelial Cells in Scleroderma—Second Edition)
Show Figures

Figure 1

13 pages, 1291 KiB  
Article
Retinal BMI1 Expression Preserves Photoreceptors in Sodium-Iodate-Induced Oxidative Stress Models
by Zhongyang Lu, Shufeng Liu, Maria G. Morales, Andy Whitlock, Ram Ramkumar and Hema L. Ramkumar
Int. J. Mol. Sci. 2025, 26(12), 5907; https://doi.org/10.3390/ijms26125907 - 19 Jun 2025
Viewed by 607
Abstract
Dry age-related macular degeneration (AMD) is a leading cause of vision loss in individuals over 50, yet no approved therapies exist for early or intermediate stages of the disease. Oxidative stress is a central driver of retinal degeneration in AMD, and sodium iodate [...] Read more.
Dry age-related macular degeneration (AMD) is a leading cause of vision loss in individuals over 50, yet no approved therapies exist for early or intermediate stages of the disease. Oxidative stress is a central driver of retinal degeneration in AMD, and sodium iodate (NaIO3)-induced injury serves as a well-characterized model of oxidative damage to the retinal pigment epithelium (RPE) and photoreceptors. BMI1, a poly-comb group protein involved in DNA repair, mitochondrial function, and cellular renewal, has emerged as a promising therapeutic target for retinal neuroprotection. We evaluated the efficacy of AAV-mediated BMI1 gene delivery in murine models using two administration routes: subretinal (SR) and suprachoroidal (SC). AAV5.BMI1 (1 × 109 vg/eye) was delivered SR in Balb/c mice and evaluated at 4 and 15 weeks post-injection. AAV8.BMI1 (5 × 109 or 1 × 1010 vg/eye) was administered SC in C57BL/6 mice and assessed at 4 weeks. Control groups received BSS or AAV8.stuffer. Following NaIO3 exposure, retinal structure and function were analyzed by optical coherence tomography (OCT), electroretinography (ERG), histology, and molecular assays. SC delivery of AAV8.BMI1 achieved the highest levels of retinal BMI1 expression with no evidence of local or systemic toxicity. Treated eyes showed dose-dependent preservation of outer nuclear layer (ONL) thickness and significantly improved ERG responses indicating structural and functional protection. These findings support SC AAV.BMI1 gene therapy as a promising, minimally invasive, and translatable approach for early intervention in intermediate AMD. Full article
(This article belongs to the Special Issue Molecular and Cellular Mechanisms of Retinal Diseases)
Show Figures

Figure 1

20 pages, 2817 KiB  
Article
A Versatile Reporter Platform for Evaluating HDR- and NHEJ-Based Genome Editing in Airway Epithelial Cell Cultures Using an rAAV Vector
by Soo Yeun Park, Zehua Feng, Xiujuan Zhang, Yinghua Tang, Donovan Richart, Kai E. Vorhies, Jianming Qiu, John F. Engelhardt and Ziying Yan
Viruses 2025, 17(6), 821; https://doi.org/10.3390/v17060821 - 6 Jun 2025
Viewed by 746
Abstract
Therapeutic gene editing strategies utilize endogenous DNA repair pathways—nonhomologous end joining (NHEJ) or homology-directed repair (HDR)—to introduce targeted genomic modifications. Because HDR is restricted to dividing cells, whereas NHEJ functions in both dividing and non-dividing cells, NHEJ-based approaches are better suited for in [...] Read more.
Therapeutic gene editing strategies utilize endogenous DNA repair pathways—nonhomologous end joining (NHEJ) or homology-directed repair (HDR)—to introduce targeted genomic modifications. Because HDR is restricted to dividing cells, whereas NHEJ functions in both dividing and non-dividing cells, NHEJ-based approaches are better suited for in vivo gene editing in the largely post-mitotic airway epithelium. Homology-independent targeted insertion (HITI), an NHEJ-based method, offers a promising strategy for cystic fibrosis (CF) gene therapy. Here, we applied HITI to drive the expression of a promoterless reporter through an exon trap strategy in both proliferating airway basal cells and well-differentiated primary airway epithelial cultures derived from transgenic ROSAmTmG ferrets. We also established a versatile human gene editing reporter (GER) airway basal cell line capable of multipotent differentiation, enabling real-time visualization of editing outcomes and the quantitative assessment of HDR- and NHEJ-based editing efficiencies. Together, these platforms provide easily accessible tools for optimizing genome editing strategies in the respiratory epithelium and advancing clinically relevant delivery strategies for CF gene therapy. Full article
(This article belongs to the Special Issue Virology and Immunology of Gene Therapy 2025)
Show Figures

Figure 1

27 pages, 3222 KiB  
Review
Mechanisms on How Matricellular Microenvironments Sustain Idiopathic Pulmonary Fibrosis
by Nicole Jones, Babita Rahar, Ksenija Bernau, Jefree J. Schulte, Paul J. Campagnola and Allan R. Brasier
Int. J. Mol. Sci. 2025, 26(11), 5393; https://doi.org/10.3390/ijms26115393 - 4 Jun 2025
Cited by 1 | Viewed by 1184
Abstract
In a susceptible individual, persistent, low-level injury to the airway epithelium initiates an exaggerated wound repair response, ultimately leading to idiopathic pulmonary fibrosis (IPF). The mechanisms driving this fibroproliferative response are not fully understood. Here, we review recent spatially resolved transcriptomics and proteomics [...] Read more.
In a susceptible individual, persistent, low-level injury to the airway epithelium initiates an exaggerated wound repair response, ultimately leading to idiopathic pulmonary fibrosis (IPF). The mechanisms driving this fibroproliferative response are not fully understood. Here, we review recent spatially resolved transcriptomics and proteomics studies that provide insight into two distinct matricellular microenvironments important in this pathological fibroproliferation. First, in response to alveolar epithelial injury, alveolar differentiation intermediate (ADI) basal cells arising from Secretoglobin (Scgb1a1) progenitors re-populate the injured alveolus remodeling the extracellular matrix (ECM). ADI cells exhibit an interconnected cellular stress response involving the unfolded protein response (UPR), epithelial–mesenchymal transition (EMT) and senescence pathways. These pathways reprogram cellular metabolism to support fibrillogenic ECM remodeling. In turn, the remodeled ECM tonically stimulates EMT in the ADI population, perpetuating the transitional cell state. Second, fibroblastic foci (FF) are a distinct microenvironment composed of activated aberrant “basaloid” cells supporting transition of adjacent mesenchyme into hyaluronan synthase (HAShi)-expressing fibroblasts and myofibroblasts. Once formed, FF are the major matrix-producing factories that invade and disrupt the alveolar airspace, forming a mature scar. In both microenvironments, the composition and characteristics of the ECM drive persistence of atypical epithelium sustaining matrix production. New approaches to monitor cellular trans-differentiation and matrix characteristics using positron emission tomography (PET)–magnetic resonance imaging (MRI) and optical imaging are described, which hold the potential to monitor the effects of therapeutic interventions to modify the ECM. Greater understanding of the bidirectional interrelationships between matrix and cellular phenotypes will identify new therapeutics and diagnostics to affect the outcomes of this lethal disease. Full article
Show Figures

Figure 1

21 pages, 7405 KiB  
Review
Advances in 3D Bioprinting for Corneal Regeneration
by Juan Hernández, Nicolás Santos and Manuel Ahumada
Gels 2025, 11(6), 422; https://doi.org/10.3390/gels11060422 - 31 May 2025
Viewed by 1283
Abstract
Worldwide, millions of people suffer from visual impairments, ranging from partial to total blindness, with far-reaching consequences on personal, societal, and governmental levels. Corneal-related issues are among the leading causes of blindness, with corneal transplantation (keratoplasty) being the primary treatment. However, the demand [...] Read more.
Worldwide, millions of people suffer from visual impairments, ranging from partial to total blindness, with far-reaching consequences on personal, societal, and governmental levels. Corneal-related issues are among the leading causes of blindness, with corneal transplantation (keratoplasty) being the primary treatment. However, the demand for donor tissues far exceeds supply. The rise of printing technologies marks a revolution in tissue engineering, with 3D bioprinting at the forefront of developing innovative tissue repair and replacement solutions. The cornea emerges as an ideal candidate for this technology due to its distinct layers (epithelium, stroma, and endothelium). From a materials engineering standpoint, these layers resemble a hydrogel structure that facilitates fabrication. This review explores advancements in 3D bioprinting, focusing on the methodologies developed for corneal tissue engineering. It highlights design and construction aspects, including biomechanical and biocompatibility properties essential for creating synthetic implants and corneal scaffolds through bioprinting. Additionally, the review discusses the challenges and opportunities that could further drive innovation in tissue engineering. Full article
(This article belongs to the Special Issue Innovative Biopolymer-Based Hydrogels (2nd Edition))
Show Figures

Graphical abstract

8 pages, 951 KiB  
Case Report
A Case Report to Reflect on the Origins of MMRd Mesonephric-like Ovarian Adenocarcinoma: Can It Be Defined as a Mϋllerian Neoplasm?
by Nicoletta D’Alessandris, Angela Santoro, Michele Valente, Giulia Scaglione, Giuseppe Angelico, Belen Padial Urtueta, Nadine Narducci, Simona Duranti, Francesca Addante, Angelo Minucci and Gian Franco Zannoni
Int. J. Mol. Sci. 2025, 26(11), 5245; https://doi.org/10.3390/ijms26115245 - 29 May 2025
Viewed by 540
Abstract
Mesonephric-like adenocarcinoma (MLA) of ovaries is a new and rare neoplastic entity, recently classified by the World Health Organization. Its morphological and immunohistochemical profile is similar to primitive cervical mesonephric adenocarcinoma, but its origin has not been determined yet. Some authors believe that [...] Read more.
Mesonephric-like adenocarcinoma (MLA) of ovaries is a new and rare neoplastic entity, recently classified by the World Health Organization. Its morphological and immunohistochemical profile is similar to primitive cervical mesonephric adenocarcinoma, but its origin has not been determined yet. Some authors believe that this neoplasm originates from Wolffian remnants in the ovarian hilum, while others suggest an origin from the Mϋllerian epithelium, followed by a mesonephric trans-differentiation. Starting from a recently diagnosed mismatch repair-deficient ovarian MLA, we try to further develop this line of research. A detailed molecular analysis of the studied tumor helps clarify our ideas. In fact, the typical KRAS mutation was not present. We found mutations in numerous other genes, which are rarely described in the literature or are already described in the endometrioid histotype. We reached some interesting conclusions, which, if supported by future studies, will clarify the true nature of these tumors, allowing for better stratification and a better therapeutic framework. Full article
Show Figures

Figure 1

23 pages, 1523 KiB  
Review
Mechanisms of Acute Kidney Injury–Chronic Kidney Disease Transition: Unraveling Maladaptive Repair and Therapeutic Opportunities
by Dongxue Xu, Xiaoyu Zhang, Jingjing Pang, Yiming Li and Zhiyong Peng
Biomolecules 2025, 15(6), 794; https://doi.org/10.3390/biom15060794 - 29 May 2025
Cited by 1 | Viewed by 1599
Abstract
Acute kidney injury (AKI) causes damage to the renal epithelium, initiating a reparative process intended to restore renal function. Although effective repair can result in the complete recovery of kidney function, this process is frequently incomplete. In instances where repair is unsuccessful, the [...] Read more.
Acute kidney injury (AKI) causes damage to the renal epithelium, initiating a reparative process intended to restore renal function. Although effective repair can result in the complete recovery of kidney function, this process is frequently incomplete. In instances where repair is unsuccessful, the kidney experiences maladaptive alterations that may progressively result in chronic kidney disease (CKD), a phenomenon referred to as failed repair. This condition is precipitated by hypotensive, septic, or toxic insults, which initiate a series of pathophysiological processes, including microcirculatory dysfunction, the activation of inflammatory responses, and the death of tubular epithelial cells. These events collectively compromise renal function and trigger a complex repair response. This review provides a comprehensive examination of the multifactorial mechanisms underlying the initiation and progression of AKI, the regenerative pathways facilitating structural recovery in severely damaged kidneys, and the critical transition from adaptive repair to maladaptive remodeling. Central to this transition are mechanisms such as epigenetic reprogramming, G2/M cell-cycle arrest, cellular senescence, mitochondrial dysfunction, metabolism reprogramming, and cell death, which collectively drive the progression of CKD. These mechanistic insights offer a robust foundation for the development of targeted therapeutic strategies aimed at enhancing adaptive renal repair. Full article
(This article belongs to the Special Issue Mechanisms of Kidney Injury and Treatment Modalities)
Show Figures

Figure 1

21 pages, 5881 KiB  
Article
Comparative Analysis of Microbial–Short-Chain Fatty Acids–Epithelial Transport Axis in the Rumen Ecosystem Between Tarim Wapiti (Cervus elaphus yarkandensis) and Karakul Sheep (Ovis aries)
by Jianzhi Huang, Yueyun Sheng, Xiaowei Jia, Wenxi Qian and Zhipeng Li
Microorganisms 2025, 13(5), 1111; https://doi.org/10.3390/microorganisms13051111 - 12 May 2025
Cited by 1 | Viewed by 585
Abstract
Under long-term ecological stress, the Tarim wapiti (Cervus elaphus yarkandensis) has evolved unique adaptations in digestive physiology and energy metabolism. A multi-omics comparison of three Tarim wapiti and five Karakul sheep was used to examine the synergistic mechanism between rumen bacteria, [...] Read more.
Under long-term ecological stress, the Tarim wapiti (Cervus elaphus yarkandensis) has evolved unique adaptations in digestive physiology and energy metabolism. A multi-omics comparison of three Tarim wapiti and five Karakul sheep was used to examine the synergistic mechanism between rumen bacteria, short-chain fatty acids, and host epithelial regulation in order to clarify the mechanism of high roughage digestion efficiency in Tarim wapiti. Metagenomic sequencing (Illumina NovaSeq 6000) and gas chromatography revealed that Tarim wapiti exhibited significantly higher acetate and total VFA (TVFA) concentrations compared to Karakul sheep (p < 0.01), accompanied by lower ruminal pH and propionate levels. Core microbiota analysis identified Bacteroidetes (relative abundance: 52.3% vs. 48.1%), Prevotellaceae (22.7% vs. 19.4%), and Prevotella (18.9% vs. 15.6%) as dominant taxa in both species, with significant enrichment of Bacteroidetes in wapiti (p < 0.01). Functional annotation (PICRUSt2) demonstrated enhanced glycan biosynthesis (KEGG ko00511), DNA replication/repair (ko03430), and glycoside hydrolases (GH20, GH33, GH92, GH97) in wapiti (FDR < 0.05). Transcriptomic profiling (RNA-Seq) of rumen epithelium showed upregulated expression of SCFA transporters (PAT1: 2.1-fold, DRA: 1.8-fold, AE2: 2.3-fold; p < 0.01) and pH regulators (Na+/K+ ATPase: 1.7-fold; p < 0.05) in wapiti. Integrated analysis revealed coordinated microbial–host interactions through three key modules: (1) Bacteroidetes-driven polysaccharide degradation, (2) GHs-mediated fiber fermentation, and (3) epithelial transporters facilitating short-chain fatty acids absorption. These evolutionary adaptations, particularly the Bacteroidetes–short-chain fatty acids–transporter axis, likely underpin the wapiti’s superior roughage utilization efficiency, providing molecular insights for improving ruminant feeding strategies in an arid environment. Full article
(This article belongs to the Section Gut Microbiota)
Show Figures

Figure 1

34 pages, 558 KiB  
Review
Emerging Trends and Management for Sjögren Syndrome-Related Dry Eye Corneal Alterations
by Maria Letizia Salvetat, Francesco Pellegrini, Fabiana D’Esposito, Mutali Musa, Daniele Tognetto, Rosa Giglio, Roberta Foti, Caterina Gagliano and Marco Zeppieri
Appl. Sci. 2025, 15(9), 5076; https://doi.org/10.3390/app15095076 - 2 May 2025
Viewed by 1392
Abstract
Background: Sjögren’s syndrome (SS) is a systemic autoimmune condition marked by significant dry eye disease (DED), leading to considerable corneal changes. These modifications, encompassing punctate epithelial erosions, chronic epithelial abnormalities, and corneal ulcers, significantly impact eyesight and quality of life. Progress in comprehending [...] Read more.
Background: Sjögren’s syndrome (SS) is a systemic autoimmune condition marked by significant dry eye disease (DED), leading to considerable corneal changes. These modifications, encompassing punctate epithelial erosions, chronic epithelial abnormalities, and corneal ulcers, significantly impact eyesight and quality of life. Progress in comprehending the corneal pathophysiology associated with SS has prompted innovative diagnostic and treatment approaches. Aim: This narrative review aims to examine developing trends in the pathogenesis, diagnostic methods, and treatment strategies for Sjögren’s syndrome-associated corneal changes. Methods: The study was based on a narrative review of the current literature available on PubMed and Cochrane from Jan 2000 to December 2024. Results: Corneal changes associated with Sjögren’s syndrome result from a multifactorial interaction of ocular surface inflammation, tear film instability, and epithelium degradation. Recent research underscores the significance of immune-mediated pathways, such as T-cell-induced inflammation and cytokine dysregulation, as crucial factors in corneal disease. Innovations in diagnostic instruments, including in vivo confocal microscopy and tear proteomics, provide earlier and more accurate identification of subclinical alterations in the corneal epithelium and stroma. Therapeutic developments concentrate on meeting the specific requirements of SS-related DED. Biological treatments, especially tailored inhibitors of interleukin-6 and tumor necrosis factor-alpha, show potential in mitigating inflammation and facilitating epithelial repair. Moreover, regenerative approaches, such as autologous serum tears and mesenchymal stem cell therapies, provide innovative methods to repair ocular surface integrity. Advanced drug delivery technologies, including nanoparticle-loaded eye drops, enhance bioavailability and therapeutic efficacy. Conclusion: Recent developments in comprehending SS-related corneal changes have transformed the management approach to precision medicine. The combination of improved diagnostics and innovative therapy approaches offers potential for reducing disease progression, maintaining corneal health, and enhancing patient outcomes. Subsequent investigations ought to concentrate on enhancing these tactics and examining their long-term safety and effectiveness. Clinicians and researchers must adopt these developments to successfully tackle the difficulties of SS-related corneal illness, providing hope for improved care and higher quality of life for those affected. Full article
(This article belongs to the Special Issue Trends and Prospects in Retinal and Corneal Diseases)
Back to TopTop