Comparative Analysis of Microbial–Short-Chain Fatty Acids–Epithelial Transport Axis in the Rumen Ecosystem Between Tarim Wapiti (Cervus elaphus yarkandensis) and Karakul Sheep (Ovis aries)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animal and Feeding Management
2.2. Collection of Samples
2.3. Analysis of Rumen Fermentation Parameters
2.4. Metagenomic Sequencing
2.4.1. DNA Extraction for Metagenomic Sequencing
2.4.2. Macrogenomic Library Preparation and Sequencing
2.4.3. Bioinformatics Analysis
2.5. Ruminal Epithelial RNA Extraction and qRT-PCR
2.6. Statistical Analysis
3. Results
3.1. Analysis of Rumen pH and Short-Chain Fatty Acids Content
3.2. Macrogenomic Analysis of Rumen Microbial Communities
3.2.1. Analysis of the Rumen Structure of Microbial Communities
3.2.2. Annotated Analysis of Rumen Microbial Functions
3.3. Differential mRNA Expression of Transporters and pH-Regulation-Related Proteins Involved in SCFA Absorption in the Rumen Epithelium
4. Discussion
4.1. Analysis of Rumen pH and Short-Chain Fatty Acids Content
4.2. Analysis of the Rumen Structure of Microbial Communities
4.3. Annotated Analysis of Rumen Microbial Functions
4.4. Differential mRNA Expression of Transporters and pH-Regulation-Related Proteins Involved in SCFA Absorption in the Rumen Epithelium
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ababaikeri, B.; Abduriyim, S.; Tohetahong, Y.; Mamat, T.; Halik, M. Whole-genome sequencing of Tarim red deer (Cervus elaphus yarkandensis) reveals demographic history and adaptations to an arid-desert environment. Front. Zool. 2020, 17, 15–31. [Google Scholar] [CrossRef] [PubMed]
- Qian, W. Study on Adaptation Mechanism of High Fiber Roughage by Tarim Wapiti (Cervus Elaphus Yarkandensis). Ph.D. Thesis, Gansu Agricultural University, Lanzhou, China, 2017. [Google Scholar]
- Qian, W.; Li, Z.; Ao, W.; Zhao, G.; Li, G.; Wu, J. Bacterial community composition and fermentation in the rumen of Xinjiang brown cattle (Bos taurus), Tarim red deer (Cervus elaphus yarkandensis), and Karakul sheep (Ovis aries). Can. J. Microbiol. 2017, 36, 375–383. [Google Scholar] [CrossRef] [PubMed]
- Asano, S.; Ikeda, S.; Kurokawa, Y.; Kanda, S.; Itabashi, H. Comparison of digestibility, passage rate and rumen fermentation between sika deer (Cervus nippon) and cattle fed alfalfa hay cubes. Anim. Sci. J. 2005, 76, 447–451. [Google Scholar] [CrossRef]
- Katoh, K.; Kajita, Y.; Odashima, M.; Ohta, M.; Sasaki, Y. Passage and digestibility of lucerne (Medicago sativa) hay in Japanese sika deer (Cervus nippon) and sheep under restricted feeding. Br. J. Nutr. 1991, 66, 399–405. [Google Scholar] [CrossRef] [PubMed]
- Tomkins, N.W.; McMeniman, N.P.; Daniel, R.-W. Voluntary feed intake and digestibility by red deer (Cervus elaphus) and sheep (Ovis ovis) of pangola grass (Digitaria decumbens) with or without a supplement of leucaena (Leucaena leucocephala)—ScienceDirect. Small Ruminant. Res. 1991, 5, 337–345. [Google Scholar] [CrossRef]
- Huang, J.; Sheng, Y.; Xue, P.; Guan, P.; Ren, J.; Qian, W. Characteristics of bacterial community and volatile fatty acids in the gastrointestinal tract of Tarim wapiti. Ital. J. Anim. Sci. 2024, 23, 259–274. [Google Scholar] [CrossRef]
- Huang, J.; Sheng, Y.; Xue, P.; Yu, D.; Guan, P.; Ren, J.; Qian, W. Patterns of Spatial Variation in Rumen Microbiology, Histomorphology, and Fermentation Parameters in Tarim wapiti (Cervus elaphus yarkandensis). Microorganisms 2024, 12, 216. [Google Scholar] [CrossRef]
- Clauss, M.; Hume, I.D.; Hummel, J. Evolutionary adaptations of ruminants and their potential relevance for modern production systems. Animal 2010, 4, 979–992. [Google Scholar] [CrossRef]
- Bonder, M.J.; Kurilshikov, A.; Tigchelaar, E.F.; Mujagic, Z.; Imhann, F.; Vila, A.V.; Deelen, P.; Vatanen, T.; Schirmer, M.; Smeekens, S.P.; et al. The effect of host genetics on the gut microbiome. Nat. Genet. 2016, 48, 1407–1412. [Google Scholar] [CrossRef]
- Li, F.; Li, C.; Chen, Y.; Liu, J.; Zhang, C.; Irving, B.; Fitzsimmons, C.; Plastow, G.; Guan, L.L. Host genetics influence the rumen microbiota and heritable rumen microbial features associate with feed efficiency in cattle. Microbiome 2019, 7, 92. [Google Scholar] [CrossRef]
- Difford, G.F.; Plichta, D.R.; Løvendahl, P.; Lassen, J.; Noel, S.J.; Højberg, O.; Wright, A.G.; Zhu, Z.; Kristensen, L.; Nielsen, H.B. Host genetics and the rumen microbiome jointly associate with methane emissions in dairy cows. PLoS Genet. 2018, 14, e1007580. [Google Scholar] [CrossRef] [PubMed]
- Henderson, G.; Cox, F.; Ganesh, S.; Jonker, A.; Young, W.; Janssen, P.H.; Global, R.C.C. Erratum: Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Sci. Rep. 2016, 6, 19175. [Google Scholar] [CrossRef]
- Glendinning, L.; Genc, B.; Wallace, R.J.; Watson, M. Metagenomic analysis of the cow, sheep, reindeer and red deer rumen. Cold Spring Harb. Lab. 2020, 11, 1190. [Google Scholar] [CrossRef]
- Asano, S.; Ikeda, S.; Kasuya, N.; Kurokawa, Y.; Kanda, S.; Itabashi, H. Comparative digestion of cell wall components of alfalfa hay cubes between Sika deer (Cervus nippon) and cattle. Anim. Sci. J. 2008, 79, 35–40. [Google Scholar] [CrossRef]
- Baldwin, T.R.L.; Jesse, B.W. Technical note: Isolation and characterization of sheep ruminal epithelial cells. J. Anim. Sci. 1991, 69, 3603. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G. Ruminant Nutrition; China Agricultural Publishing House: Beijing, China, 2012. [Google Scholar]
- Qian, W.; Li, G. Deer Production Science; China Agricultural Publishing House: Beijing, China, 2018. [Google Scholar]
- Zhang, H. Animal Nutritional Parameters and Feeding Standards; Agricultural Publishing House: Beijing, China, 2010. [Google Scholar]
- Helrich, K.C. Official Methods of Analysis of the AOAC, 1st ed.; Association of Official Analytical Chemists: Washington, DC, USA, 1990. [Google Scholar]
- Cheng, Y. Anatomy of Livestock and Poultry; China Agricultural Publishing House: Beijing, China, 2005. [Google Scholar]
- Chaumeil, P.A.; Mussig, A.J.; Hugenholtz, P.; Parks, D.H. GTDB-Tk: A toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 2019, 36, 1925–1927. [Google Scholar] [CrossRef]
- Parks, D.H.; Chuvochina, M.; Waite, D.W.; Rinke, C.; Skarshewski, A.; Chaumeil, P.-A.; Hugenholtz, P. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat. Biotechnol. 2018, 36, 996–1004. [Google Scholar] [CrossRef] [PubMed]
- Asnicar, F.; Weingart, G.; Tickle, T.L.; Huttenhower, C.; Segata, N. Compact graphical representation of phylogenetic data and metadata with GraPhlAn. PeerJ 2015, 3, e1029. [Google Scholar] [CrossRef]
- Wenger, A.M.; Peluso, P.; Rowell, W.J.; Chang, P.C.; Hunkapiller, M.W. Accurate circular consensus long-read sequencing improves variant detection and assembly of a human genome. Nat. Biotechnol. 2019, 37, 1155–1162. [Google Scholar] [CrossRef]
- Cheng, H.; Jarvis, E.D.; Fedrigo, O.; Koepfli, K.; Urban, L.; Gemmell, N.J.; Li, H. Haplotype-resolved assembly of diploid genomes without parental data. Nat. Biotechnol. 2022, 40, 1332–1335. [Google Scholar] [CrossRef]
- Cheng, H.; Concepcion, G.T.; Feng, X.; Zhang, H.; Li, H. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nat. Methods 2021, 18, 170–175. [Google Scholar] [CrossRef] [PubMed]
- Olm, M.R.; Brown, C.T.; Brooks, B.; Banfield, J.F. dRep: A tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J. 2017, 11, 2864–2868. [Google Scholar] [CrossRef]
- Parks, D.H.; Imelfort, M.; Skennerton, C.T.; Hugenholtz, P.; Tyson, G.W. CheckM: Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015, 25, 1043–1055. [Google Scholar] [CrossRef] [PubMed]
- Besemer, J.; Lomsadze, A.; Borodovsky, M. GeneMarkS: A self-training method for prediction of gene starts in microbial genomes. Nucleic Acids Res. 2001, 29, 2607–2618. [Google Scholar] [CrossRef]
- Saha, S.; Bridges, S.; Magbanua, Z.V.; Peterson, D.G. Empirical comparison of ab initio repeat finding programs. Nucleic Acids Res. 2008, 36, 2284–2294. [Google Scholar] [CrossRef]
- Gary, B. Tandem repeats finder: A program to analyze DNA sequences. Nucleic Acids Res. 1999, 27, 573–580. [Google Scholar] [CrossRef]
- Lowe, T.M.; Eddy, S.R. tRNAscan-SE: A program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 1997, 25, 955–964. [Google Scholar] [CrossRef]
- Nawrocki, E.P.; Burge, S.W.; Bateman, A.; Daub, J.; Eberhardt, R.Y.; Eddy, S.R.; Floden, E.W.; Gardner, P.P.; Jones, T.A.; Tate, J.; et al. Rfam 12.0: Updates to the RNA families database. Nucleic Acids Res. 2015, 43, 130–137. [Google Scholar] [CrossRef]
- Hsiao, W.; Wan, I.; Jones, S.J.; Brinkman, F.-L. IslandPath: Aiding detection of genomic islands in prokaryotes. Bioinformatics 2003, 19, 418–420. [Google Scholar] [CrossRef]
- Zhou, Y.; Liang, Y.; Lynch, K.H.; Dennis, J.J.; Wishart, D.S. PHAST: A Fast Phage Search Tool. Nucleic Acids Res. 2011, 39, 347–352. [Google Scholar] [CrossRef]
- Grissa, I.; Vergnaud, G.; Pourcel, C. CRISPRFinder: A web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Res. 2007, 35, 52–57. [Google Scholar] [CrossRef]
- Buchfink, B.; Xie, C.; Huson, D.H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 2015, 12, 59–60. [Google Scholar] [CrossRef] [PubMed]
- Huson, D.H.; Mitra, S.; Ruscheweyh, H.; Weber, N.; Schuster, S.C. Integrative analysis of environmental sequences using MEGAN4. Genome Res. 2011, 21, 1552–1560. [Google Scholar] [CrossRef] [PubMed]
- Flint, H.J.; Bayer, E.A.; Rincon, M.T.; Lamed, R.; White, B.A. Polysaccharide utilization by gut bacteria: Potential for new insights from genomic analysis. Nat. Rev. Microbiol. 2008, 6, 121–131. [Google Scholar] [CrossRef] [PubMed]
- Duskaev, G.K.; Nurzhanov, B.S.; Rysaev, A.F.; Rahmatulin, S.G. Changing of the composition of the rumen microflora to improve the efficiency of feed use by ruminants. IOP Conf. Ser. Earth Environ. Sci. 2021, 624, 12022. [Google Scholar] [CrossRef]
- Humer, E.; Aschenbach, J.R.; Neubauer, V.; Kroger, I.; Khiaosa-Ard, R.; Baumgartner, W.; Zebeli, Q. Signals for identifying cows at risk of subacute ruminal acidosis in dairy veterinary practice. J. Anim. Physiol. Anim. Nutr. 2018, 102, 380–392. [Google Scholar] [CrossRef]
- Allen, M.S. Relationship Between Fermentation Acid Production in the Rumen and the Requirement for Physically Effective Fiber. J. Dairy Sci. 1997, 80, 1447–1462. [Google Scholar] [CrossRef]
- Goodrich, J.K.; Waters, J.L.; Poole, A.C.; Sutter, J.L.; Koren, O.; Blekhman, R.; Beaumont, M.; Van Treuren, W.; Knight, R.; Bell, J.T. Human genetics shape the gut microbiome. Cell 2014, 159, 789–799. [Google Scholar] [CrossRef]
- Ferreira, L.-M.; Hervás, G.; Belenguer, A.; Celaya, R.; Osoro, K. Comparison of feed intake, digestion and rumen function among domestic ruminant species grazing in upland vegetation communities. J. Anim. Physiol. Anim. Nutr. 2016, 101, 846–856. [Google Scholar] [CrossRef]
- Li, Z.; Wright, A.-G.; Liu, H.; Bao, K.; Zhang, T.; Wang, K.; Li, G. Bacterial Community Composition and Fermentation Patterns in the Rumen of Sika Deer (Cervus nippon) Fed Three Different Diets. Microb. Ecol. 2015, 69, 307–318. [Google Scholar] [CrossRef]
- Kim, J.-B. Characterisation of the bacterial community in the gastrointestinal tracts of elk (Cervus canadensis). Antonie Van Leeuwenhoek J. Microbiol. Serol. 2019, 112, 225–235. [Google Scholar] [CrossRef] [PubMed]
- Xie, F.; Jin, W.; Si, H.; Yuan, Y.; Mao, S. An integrated gene catalog and over 10,000 metagenome-assembled genomes from the gastrointestinal microbiome of ruminants. Microbiome 2021, 9, 137. [Google Scholar] [CrossRef] [PubMed]
- Cortes-Ortiz, L.; Amato, K.R. Host genetics influence the gut microbiome. Science 2021, 373, 159–160. [Google Scholar] [CrossRef]
- Flint, H.J.; Bayer, E.A. Plant Cell Wall Breakdown by Anaerobic Microorganisms from the Mammalian Digestive Tract. Ann. N. Y. Acad. Sci. 2008, 1125, 280–288. [Google Scholar] [CrossRef]
- McKee, L.S.; La Rosa, S.L.; Westereng, B.; Eijsink, V.G.; Pope, P.B.; Larsbrink, J. Polysaccharide degradation by the Bacteroidetes: Mechanisms and nomenclature. Environ. Microbiol. Rep. 2021, 13, 559–581. [Google Scholar] [CrossRef]
- Schwalm, N.D.; Groisman, E.A. Navigating the Gut Buffet: Control of Polysaccharide Utilization in Bacteroides spp. Trends Microbiol. 2017, 25, 1005–1015. [Google Scholar] [CrossRef]
- Bekele, A.Z.; Koike, S.; Kobayashi, Y. Genetic diversity and diet specificity of ruminal Prevotella revealed by 16S rRNA gene-based analysis. FEMS Microbiol. Lett. 2010, 305, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Stevenson, D.M.; Weimer, P.J. Dominance of Prevotella and low abundance of classical ruminal bacterial species in the bovine rumen revealed by relative quantification real-time PCR. Appl. Microbiol. Biotechnol. 2009, 83, 987–988. [Google Scholar] [CrossRef]
- Gruninger, R.J.; Sensen, C.W.; McAllister, T.A.; Forster, R.J. Diversity of Rumen Bacteria in Canadian Cervids. PLoS ONE 2014, 9, e89682. [Google Scholar] [CrossRef]
- Ellison, M.; Conant, G.; Cockrum, R.; Austin, K.; Truong, H.; Becchi, M.; Lamberson, W.; Cammack, K. Diet Alters Both the Structure and Taxonomy of the Ovine Gut Microbial Ecosystem. DNA Res. Int. J. Rapid Publ. Rep. Genes Genomes 2013, 21, 115–125. [Google Scholar] [CrossRef]
- Guo, J.; Jin, Y.; Tian, X.; Bao, H.; Sun, Y.; Gray, T.; Song, Y.; Zhang, M. Diet-induced microbial adaptation process of red deer (Cervus elaphus) under different introduced periods. Front. Microbiol. 2022, 13, 1033050. [Google Scholar] [CrossRef]
- Martin, S.A. Manipulation of ruminal fermentation with organic acids: A review. J. Anim. Sci. 1998, 76, 3123–3132. [Google Scholar] [CrossRef]
- Shin, N.; Whon, T.W.; Bae, J. Proteobacteria: Microbial signature of dysbiosis in gut microbiota. Trends Biotechnol. 2015, 33, 496–503. [Google Scholar] [CrossRef] [PubMed]
- Alshaibani, M.M.; Mohamed, R.M.S.R.; Sidik, N.M.; Enshasy, H.A.E.; Zin, N.M. Biodiversity of Secondary Metabolites Compounds Isolated from Phylum Actinobacteria and Its Therapeutic Applications. Molecules 2021, 26, 4504. [Google Scholar] [CrossRef]
- Matsui, T.; Tanaka, J.; Namihira, T.; Shinzato, N. Antibiotics production by an actinomycete isolated from the termite gut. J. Basic Microb. 2012, 52, 731–735. [Google Scholar] [CrossRef] [PubMed]
- Binda, C.; Lopetuso, L.R.; Rizzatti, G.; Gibiino, G.; Cennamo, V.; Gasbarrini, A. Actinobacteria: A relevant minority for the maintenance of gut homeostasis. Dig. Liver Dis. 2018, 50, 421–428. [Google Scholar] [CrossRef]
- Markowiak-Kope, P.; Liewska, K. The Effect of Probiotics on the Production of Short- Chain Fatty Acids by Human Intestinal Microbiome. Nutrients 2020, 12, 1107. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Zhang, H.; Hu, L.; Zhang, G.; Lu, H.; Luo, H.; Zhao, S.; Zhu, H.; Wang, Y. Characterization of the Microbial Communities along the Gastrointestinal Tract in Crossbred Cattle. Animals 2022, 12, 825. [Google Scholar] [CrossRef]
- Han, X.; Li, B.; Wang, X.; Chen, Y.; Yang, Y. Effect of dietary concentrate to forage ratios on ruminal bacterial and anaerobic fungal populations of cashmere goats. Anaerobe 2019, 59, 118–125. [Google Scholar] [CrossRef]
- Liu, H.; Xu, T.; Xu, S.; Ma, L.; Han, X.; Wang, X.; Zhang, X.; Hu, L.; Zhao, N.; Chen, Y.; et al. Effect of dietary concentrate to forage ratio on growth performance, rumen fermentation and bacterial diversity of Tibetan sheep under barn feeding on the Qinghai-Tibetan plateau. PeerJ 2019, 7, e7462. [Google Scholar] [CrossRef]
- Lavrentyeva, E.; Banzaraktsaeva, T.; Kozyreva, L.; Danilova, E.; Tsyrenova, D.; Dambaev, V.; Buryukhaev, S.; Abidueva, E.; Begmatov, S.; Mardanov, A.; et al. Fecal Microbiota and Feeding Habitats of Nomadic Indigenous Animals (Deer, Yak, Sheep and Camel) in Baikal Siberia (Russia). Diversity 2024, 16, 52. [Google Scholar] [CrossRef]
- Lagkouvardos, I.; Lesker, T.R.; Hitch, T.C.A.; Gálvez, E.J.C.; Smit, N.; Neuhaus, K.; Wang, J.; Baines, J.F.; Abt, B.; Stecher, B. Sequence and cultivation study of Muribaculaceae reveals novel species, host preference, and functional potential of this yet undescribed family. Microbiome 2019, 7, 28. [Google Scholar] [CrossRef] [PubMed]
- Gharechahi, J.; Sarikhan, S.; Han, J.L.; Ding, X.Z.; Salekdeh, G.H. Functional and phylogenetic analyses of camel rumen microbiota associated with different lignocellulosic substrates. NPJ Biofilms Microbiomes 2022, 8, 46. [Google Scholar] [CrossRef]
- Stewart, R.D.; Auffret, M.D.; Warr, A.; Wiser, A.H.; Press, M.O.; Langford, K.W.; Liachko, I.; Snelling, T.J.; Dewhurst, R.J.; Walker, A.W.; et al. Assembly of 913 microbial genomes from metagenomic sequencing of the cow rumen. Nat. Commun. 2018, 9, 870. [Google Scholar] [CrossRef]
- Flint, H.J.; Scott, K.P.; Duncan, S.H.; Louis, P.; Forano, E. Microbial degradation of complex carbohydrates in the gut. Gut Microbes 2012, 3, 289–306. [Google Scholar] [CrossRef] [PubMed]
- Youssef, N.H.; Couger, M.B.; Struchtemeyer, C.G.; Liggenstoffer, A.S.; Prade, R.A.; Najar, F.Z.; Atiyeh, H.K.; Wilkins, M.R.; Elshahed, M.S. The Genome of the Anaerobic Fungus Orpinomyces sp. Strain C1A Reveals the Unique Evolutionary History of a Remarkable Plant Biomass Degrader. Appl. Environ. Microbiol. 2013, 79, 4620–4634. [Google Scholar] [CrossRef]
- Tapio, M.; Fischer, D.; Mäntysaari, P.; Tapio, I. Rumen Microbiota Predicts Feed Efficiency of Primiparous Nordic Red Dairy Cows. Microorganisms 2023, 11, 1116. [Google Scholar] [CrossRef] [PubMed]
- Kern, R.J.; Lindholm-Perry, A.K.; Freetly, H.C.; Snelling, W.M.; Kern, J.W.; Keele, J.W.; Ludden, P.A. Transcriptome differences in the rumen of beef steers with variation in feed intake and gain. Gene 2016, 586, 12–26. [Google Scholar] [CrossRef]
- Jose, V.L.; More, R.P.; Appoothy, T.; Arun, A.S. In depth analysis of rumen microbial and carbohydrate-active enzymes profile in Indian crossbred cattle. Syst. Appl. Microbiol. 2017, 40, 160–170. [Google Scholar] [CrossRef]
- Jose, V.L.; Appoothy, T.; More, R.P.; Arun, A.S. Metagenomic insights into the rumen microbial fibrolytic enzymes in Indian crossbred cattle fed finger millet straw. Amb Express 2017, 7, 13. [Google Scholar] [CrossRef]
- Müller, F.; Huber, K.; Pfannkuche, H.; Aschenbach, J.R.R.; Breves, G.; Gäbel, G. Transport of ketone bodies and lactate in the sheep ruminal epithelium by monocarboxylate transporter 1. Am. J. Physiol. Gastrointest. Liver Physiol. 2002, 283, G1139–G1146. [Google Scholar] [CrossRef] [PubMed]
- Gäbel, G.; Vogler, S.; Martens, H. Short-chain fatty acids and CO2 as regulators of Na+ and Cl− absorption in isolated sheep rumen mucosa. J. Comp. Physiol. B-Biochem. Syst. Environ. Physiol. 1991, 161, 419–426. [Google Scholar] [CrossRef] [PubMed]
- Penner, G.B.; Aschenbach, J.R.; Gabel, G.; Rackwitz, R.; Oba, M. Epithelial capacity for apical uptake of short chain fatty acids is a key determinant for intraruminal pH and the susceptibility to subacute ruminal acidosis in sheep. J. Nutr. 2009, 139, 1714–1720. [Google Scholar] [CrossRef]
- Penner, G.B.; Oba, M.; Gbel, G.; Aschenbach, J.R. A single mild episode of subacute ruminal acidosis does not affect ruminal barrier function in the short term. J. Dairy Sci. 2010, 93, 4838–4845. [Google Scholar] [CrossRef] [PubMed]
- Melo, L.Q.; Costa, S.F.; Lopes, F.; Guerreiro, M.C.; Pereira, M.N. Rumen morphometrics and the effect of digesta pH and volume on volatile fatty acid absorption. J. Anim. Sci. 2013, 91, 1775–1783. [Google Scholar] [CrossRef]
- Koho, N.; Maijala, V.; Norberg, H.; Nieminen, M.; Pösö, A.R. Expression of MCT1, MCT2 and MCT4 in the rumen, small intestine and liver of reindeer (Rangifer tarandus tarandus L.). Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2005, 141, 29–34. [Google Scholar] [CrossRef]
Items | Value |
---|---|
Composition | Content (%) |
forage | |
Corn stalks | 19.5 |
Wheat stalks | 13 |
Alfalfa | 22.5 |
Cottonseed hull | 15 |
concentrate | |
Corn | 23.5 |
Soybean meal | 2.5 |
Cotton meal | 2.5 |
Salt | 0.5 |
Premix ¶ | 1 |
Total | 100 |
Nutrient Levels | |
Digestible energy (DE) §, MJ/kg | 11.1 |
Crude protein (CP)% | 11.51 |
Neutral detergent fiber (NDF), % | 53.7 |
Acid detergent fiber (ADF), % | 33.8 |
Calcium (Ca)% | 0.53 |
Phosphorus (P)% | 0.24 |
Genes | Sequences (5′–3′) | Amplicon Size/bp | Annealing Temperature/°C |
---|---|---|---|
HMGCS1 | F:CGAGCACTACAGCCGAGCATA R:CCTGAAGTCCTCCACCTCACAG | 136 | 60 |
HMGCS2 | F:CAGGCTGCTGTGTCCAATGC R:GTACCTGGAGCGAGTGGATGAG | 172 | |
SLC27A6 | F:TCACGCTCTAATTGCTCATCCG R:CGGTTCTGCCATTGCTCTCC | 207 | |
SLC26A9 | F:CCTCGCTCATCTTCGCTCTCAT R:GCTGTTGCCACCACTACCACAA | 127 | |
NHE3 | F:AGAAGGTCAGCTCAGAAGTCTCG R:GCTGGGAGAACGGATGAAAG | 121 | |
NHE4 | F:CGACATTTTGGCTGGATGTG R:CTGGGTGAAACGGGTGATAAA | 106 | |
Na+/K+-ATPase | F:ATCACGGGTGTGGCTGTGT R:TGATGCCGATGAGGAAGATG | 122 | |
MCT1 | F:CATACCAGGGGTTTATTGATGGA R:GTAACGGAACACTGAAAATGGATG | 257 | |
MCT2 | F:TGTTATGCTGTTTGGGTATGGTCT R:TGTTAAGGCAGGTTGCAGGTT | 119 | |
PAT1 | F:CTGGTGAAGCTCCTGAATGAAA R:CACGATGTCCACCCCAAA | 135 | |
AE2 | F:TCAACGCCTTCCTGGACTG R:CCTGCTCCTCCCCTCTTTCT | 120 | |
GAPDH | F:ACCACTGTCCACGCCATCAC R:ACGCCTGCTTCACCACCTTC | 271 |
Items | Groups | SEM | p-Value | |
---|---|---|---|---|
Tarim Wapiti | Karakul Sheep | |||
pH | 5.86 | 6.25 ** | 0.09 | 0.006 |
Acetate, mmol/L | 61.77 ** | 49.93 | 1.92 | 0.001 |
Propionate, mmol/L | 11.26 | 13.85 ** | 0.5 | 0.002 |
Butyrate, mmol/L | 2.81 | 3.24 | 0.36 | 0.29 |
Valerate, mmol/L | 1.49 | 1.2 | 0.35 | 0.456 |
TVFA, mmol/L | 77.32 ** | 68.23 | 1.77 | 0.002 |
Phyla | Groups | SEM | p-Value | |
---|---|---|---|---|
Tarim Wapiti | Karakul Sheep | |||
Bacteroidetes | 46.13 ** | 34.77 | 0.98 | <0.01 |
Firmicutes | 12.73 | 21.36 | 5.42 | 0.25 |
Proteobacteria | 1.40 | 8.23 * | 0.54 | 0.048 |
Fibrobacteres | 1.16 | 1.87 | 0.95 | 0.53 |
Lentisphaerae | 1.29 | 0.66 | 0.22 | 0.10 |
Euryarchaeota | 1.11 | 0.46 | 0.16 | 0.06 |
Spirochaetes | 0.61 | 0.45 | 0.22 | 0.54 |
Chytridiomycota | 0.18 | 0.47 | 0.24 | 0.35 |
Verrucomicrobia | 0.51 | 0.29 | 0.01 | 0.15 |
Actinobacteria | 0.26 | 0.51 * | 0.04 | 0.039 |
Families | Groups | SEM | p-Value | |
---|---|---|---|---|
Tarim Wapiti | Karakul Sheep | |||
Prevotellaceae | 21.45 | 20.06 | 1.58 | 0.50 |
Succinivibrionaceae | 0.10 | 4.41 * | 0.30 | 0.04 |
Bacteroidaceae | 4.51 | 3.45 | 0.24 | 0.13 |
Lachnospiraceae | 1.84 | 3.60 | 0.92 | 0.30 |
Selenomonadaceae | 2.75 | 1.60 | 0.98 | 0.41 |
Oscillospiraceae | 0.08 | 1.88 | 1.35 | 0.41 |
Fibrobacteraceae | 1.15 | 1.86 | 0.94 | 0.56 |
Ruminococcaceae | 1.54 | 2.12 | 0.47 | 0.35 |
Rikenellaceae | 2.02 | 1.08 | 0.23 | 0.15 |
Clostridiaceae | 0.85 | 1.71 | 0.30 | 0.15 |
Genera | Groups | SEM | p-Value | |
---|---|---|---|---|
Tarim Wapiti | Karakul Sheep | |||
Prevotella | 17.62 | 16.74 | 0.56 | 0.40 |
Bacteroides | 4.38 | 3.33 | 0.51 | 0.37 |
Oscillibacter | 0.07 | 1.74 | 1.59 | 0.42 |
Fibrobacter | 1.15 | 1.86 | 0.98 | 0.18 |
Selenomonas | 1.68 | 0.91 | 0.88 | 0.73 |
Alistipes | 1.96 | 1.06 | 1.11 | 0.89 |
Succinivibrio | 0.06 | 1.57 | 0.39 | 0.18 |
Clostridium | 0.71 | 1.46 | 0.61 | 0.29 |
Succiniclasticum | 0.43 | 0.85 * | 0.09 | 0.02 |
Paludibacter | 0.93 | 0.81 | 0.72 | 0.67 |
Species | Groups | SEM | p-Value | |
---|---|---|---|---|
Tarim Wapiti | Karakul Sheep | |||
Prevotella sp. tc2-28 | 1.26 | 1.95 | 1.11 | 0.56 |
Prevotella sp. ne3005 | 2.62 | 2.65 | 0.85 | 0.97 |
Prevotella ruminicola | 2.41 | 2.82 | 0.43 | 0.38 |
Selenomonas ruminantium | 1.10 | 1.53 | 0.80 | 0.60 |
Succiniclasticum ruminis | 0.56 | 1.02 | 0.50 | 0.39 |
Succinivibrio dextrinosolvens | 0.10 | 1.47 ** | 0.25 | <0.01 |
Bacteroidales bacterium WCE2004 | 1.65 | 0.85 | 0.47 | 0.14 |
Bacteroidales bacterium WCE2008 | 1.50 | 0.99 | 0.40 | 0.26 |
Bacterium F083 | 1.25 ** | 0.34 | 0.20 | <0.01 |
Prevotella sp. tf2-5 | 1.19 | 0.93 | 0.29 | 0.40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, J.; Sheng, Y.; Jia, X.; Qian, W.; Li, Z. Comparative Analysis of Microbial–Short-Chain Fatty Acids–Epithelial Transport Axis in the Rumen Ecosystem Between Tarim Wapiti (Cervus elaphus yarkandensis) and Karakul Sheep (Ovis aries). Microorganisms 2025, 13, 1111. https://doi.org/10.3390/microorganisms13051111
Huang J, Sheng Y, Jia X, Qian W, Li Z. Comparative Analysis of Microbial–Short-Chain Fatty Acids–Epithelial Transport Axis in the Rumen Ecosystem Between Tarim Wapiti (Cervus elaphus yarkandensis) and Karakul Sheep (Ovis aries). Microorganisms. 2025; 13(5):1111. https://doi.org/10.3390/microorganisms13051111
Chicago/Turabian StyleHuang, Jianzhi, Yueyun Sheng, Xiaowei Jia, Wenxi Qian, and Zhipeng Li. 2025. "Comparative Analysis of Microbial–Short-Chain Fatty Acids–Epithelial Transport Axis in the Rumen Ecosystem Between Tarim Wapiti (Cervus elaphus yarkandensis) and Karakul Sheep (Ovis aries)" Microorganisms 13, no. 5: 1111. https://doi.org/10.3390/microorganisms13051111
APA StyleHuang, J., Sheng, Y., Jia, X., Qian, W., & Li, Z. (2025). Comparative Analysis of Microbial–Short-Chain Fatty Acids–Epithelial Transport Axis in the Rumen Ecosystem Between Tarim Wapiti (Cervus elaphus yarkandensis) and Karakul Sheep (Ovis aries). Microorganisms, 13(5), 1111. https://doi.org/10.3390/microorganisms13051111