Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,475)

Search Parameters:
Keywords = epigenetics of disease

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 1054 KiB  
Review
Gut Feeling: Biomarkers and Biosensors’ Potential in Revolutionizing Inflammatory Bowel Disease (IBD) Diagnosis and Prognosis—A Comprehensive Review
by Beatriz Teixeira, Helena M. R. Gonçalves and Paula Martins-Lopes
Biosensors 2025, 15(8), 513; https://doi.org/10.3390/bios15080513 - 7 Aug 2025
Abstract
Inflammatory Bowel Diseases (IBDs) are complex, multifactorial disorders with no known cure, necessitating lifelong care and often leading to surgical interventions. This ongoing healthcare requirement, coupled with the increased use of biological drugs and rising disease prevalence, significantly increases the financial burden on [...] Read more.
Inflammatory Bowel Diseases (IBDs) are complex, multifactorial disorders with no known cure, necessitating lifelong care and often leading to surgical interventions. This ongoing healthcare requirement, coupled with the increased use of biological drugs and rising disease prevalence, significantly increases the financial burden on the healthcare systems. Thus, a number of novel technological approaches have emerged in order to face some of the pivotal questions still associated with IBD. In navigating the intricate landscape of IBD, biosensors act as indispensable allies, bridging the gap between traditional diagnostic methods and the evolving demands of precision medicine. Continuous progress in biosensor technology holds the key to transformative breakthroughs in IBD management, offering more effective and patient-centric healthcare solutions considering the One Health Approach. Here, we will delve into the landscape of biomarkers utilized in the diagnosis, monitoring, and management of IBD. From well-established serological and fecal markers to emerging genetic and epigenetic markers, we will explore the role of these biomarkers in aiding clinical decision-making and predicting treatment response. Additionally, we will discuss the potential of novel biomarkers currently under investigation to further refine disease stratification and personalized therapeutic approaches in IBD. By elucidating the utility of biosensors across the spectrum of IBD care, we aim to highlight their importance as valuable tools in optimizing patient outcomes and reducing healthcare costs. Full article
(This article belongs to the Special Issue Feature Papers of Biosensors)
Show Figures

Figure 1

18 pages, 435 KiB  
Review
Molecular and Glycosylation Pathways in Osteosarcoma: Tumor Microenvironment and Emerging Strategies Toward Personalized Oncology
by Georgian Longin Iacobescu, Antonio-Daniel Corlatescu, Horia Petre Costin, Razvan Spiridonica, Mihnea-Ioan-Gabriel Popa and Catalin Cirstoiu
Curr. Issues Mol. Biol. 2025, 47(8), 629; https://doi.org/10.3390/cimb47080629 - 7 Aug 2025
Abstract
Osteosarcoma (OS) is the most common primary bone malignancy in children and adolescents, which is also considered an aggressive disease due to its rapid growth rate, ability to metastasize early, and complex and heterogeneous tumor microenvironment (TME). Although we are developing improved surgical [...] Read more.
Osteosarcoma (OS) is the most common primary bone malignancy in children and adolescents, which is also considered an aggressive disease due to its rapid growth rate, ability to metastasize early, and complex and heterogeneous tumor microenvironment (TME). Although we are developing improved surgical and chemotherapeutic approaches, the presence of metastatic or recurrent disease is still detrimental to the patient’s outcome. Major advances in understanding the molecular mechanisms of OS are needed to substantially improve outcomes for patients being treated for OS. This review integrates new data on the molecular biology, pathophysiology, and immune landscape of OS, as well as introducing salient areas of tumorigenesis underpinning these findings, such as chromothripsis; kataegis; cancer stem cell dynamics; and updated genetic, epigenetic, and glycosylation modifiers. In addition, we review promising biomarkers, diagnostic platforms, and treatments, including immunotherapy, targeted small molecule inhibitors, and nanomedicine. Using genomic techniques, we have defined OS for its significant genomic instability due to TP53 and RB1 mutations, chromosomal rearrangements, and aberrant glycosylation. The TME is also characterized as immunosuppressive and populated by tumor-associated macrophages, myeloid-derived suppressor cells, and regulatory T cells, ultimately inhibiting immune checkpoint inhibitors. Emerging fields such as glycomics and epigenetics, as well as stem cell biology, have defined promising biomarkers and targets. Preclinical studies have identified that glycan-directed CAR therapies could be possible, as well as metabolic inhibitors and 3D tumor models, which presented some preclinical success and could allow for tumoral specificity and enhanced efficacy. OS is a biologically and clinically complex disease; however, advances in exploring the molecular and immunologic landscape of OS present new opportunities in biomarkers and the development of new treatment options with adjunctive care. Successful treatments in the future will require personalized, multi-targeted approaches to account for tumor heterogeneity and immune evasion. This will help us turn the corner in providing improved outcomes for patients with this resilient malignancy. Full article
Show Figures

Figure 1

34 pages, 1345 KiB  
Review
Unmasking Pediatric Asthma: Epigenetic Fingerprints and Markers of Respiratory Infections
by Alessandra Pandolfo, Rosalia Paola Gagliardo, Valentina Lazzara, Andrea Perri, Velia Malizia, Giuliana Ferrante, Amelia Licari, Stefania La Grutta and Giusy Daniela Albano
Int. J. Mol. Sci. 2025, 26(15), 7629; https://doi.org/10.3390/ijms26157629 - 6 Aug 2025
Abstract
Pediatric asthma is a multifactorial and heterogeneous disease determined by the dynamic interplay of genetic susceptibility, environmental exposures, and immune dysregulation. Recent advances have highlighted the pivotal role of epigenetic mechanisms, in particular, DNA methylation, histone modifications, and non-coding RNAs, in the regulation [...] Read more.
Pediatric asthma is a multifactorial and heterogeneous disease determined by the dynamic interplay of genetic susceptibility, environmental exposures, and immune dysregulation. Recent advances have highlighted the pivotal role of epigenetic mechanisms, in particular, DNA methylation, histone modifications, and non-coding RNAs, in the regulation of inflammatory pathways contributing to asthma phenotypes and endotypes. This review examines the role of respiratory viruses such as respiratory syncytial virus (RSV), rhinovirus (RV), and other bacterial and fungal infections that are mediators of infection-induced epithelial inflammation that drive epithelial homeostatic imbalance and induce persistent epigenetic alterations. These alterations lead to immune dysregulation, remodeling of the airways, and resistance to corticosteroids. A focused analysis of T2-high and T2-low asthma endotypes highlights unique epigenetic landscapes directing cytokines and cellular recruitment and thereby supports phenotype-specific aspects of disease pathogenesis. Additionally, this review also considers the role of miRNAs in the control of post-transcriptional networks that are pivotal in asthma exacerbation and the severity of the disease. We discuss novel and emerging epigenetic therapies, such as DNA methyltransferase inhibitors, histone deacetylase inhibitors, miRNA-based treatments, and immunomodulatory probiotics, that are in preclinical or early clinical development and may support precision medicine in asthma. Collectively, the current findings highlight the translational relevance of including pathogen-related biomarkers and epigenomic data for stratifying pediatric asthma patients and for the personalization of therapeutic regimens. Epigenetic dysregulation has emerged as a novel and potentially transformative approach for mitigating chronic inflammation and long-term morbidity in children with asthma. Full article
(This article belongs to the Special Issue Molecular Research in Airway Diseases)
Show Figures

Figure 1

38 pages, 1758 KiB  
Review
Beyond Blood Pressure: Emerging Pathways and Precision Approaches in Hypertension-Induced Kidney Damage
by Charlotte Delrue and Marijn M. Speeckaert
Int. J. Mol. Sci. 2025, 26(15), 7606; https://doi.org/10.3390/ijms26157606 - 6 Aug 2025
Abstract
Recent studies have demonstrated that the development and progression of hypertensive kidney injury comprise not only elevated systemic blood pressure but also a complex interplay of cellular, molecular, and genetic mechanisms. In this report, we outline the key emerging pathways—ranging from dysregulated renin–angiotensin [...] Read more.
Recent studies have demonstrated that the development and progression of hypertensive kidney injury comprise not only elevated systemic blood pressure but also a complex interplay of cellular, molecular, and genetic mechanisms. In this report, we outline the key emerging pathways—ranging from dysregulated renin–angiotensin system signaling, oxidative stress, immune-mediated inflammation, and metabolic abnormalities to epigenetic alterations and genetic susceptibilities—that contribute to kidney damage in hypertensive conditions. In addition, we also discuss precision medicine approaches like biomarker-directed therapies, pharmacologically targeted therapies, and device-based innovations for modulating these pathways. This integrative review emphasizes the application of omics technologies and genetically guided interventions to better stratify patients and offer personalized care for hypertensive kidney disease. Full article
(This article belongs to the Special Issue Recent Research on Hypertension and Related Complications)
Show Figures

Figure 1

28 pages, 3613 KiB  
Review
Epigenetic Alterations in Age-Related Macular Degeneration: Mechanisms and Implications
by Dana Kisswani, Christina Carroll, Fatima Valdes-Mora and Matt Rutar
Int. J. Mol. Sci. 2025, 26(15), 7601; https://doi.org/10.3390/ijms26157601 - 6 Aug 2025
Abstract
Age-related macular degeneration (AMD) is one of the leading causes of irreversible vision loss among the elderly, and is influenced by a combination of genetic and environmental risk factors. While genetic associations in AMD are well-established, the molecular mechanisms underlying disease [...] Read more.
Age-related macular degeneration (AMD) is one of the leading causes of irreversible vision loss among the elderly, and is influenced by a combination of genetic and environmental risk factors. While genetic associations in AMD are well-established, the molecular mechanisms underlying disease onset and progression remain poorly understood. A growing body of evidence suggests that epigenetic modifications may serve as a potential missing link regulating gene–environment interactions. This review incorporates recent findings on DNA methylation, including both hypermethylation and hypomethylation patterns affecting genes such as silent mating type information regulation 2 homolog 1 (SIRT1), glutathione S-transferase isoform (GSTM), and SKI proto-oncogene (SKI), which may influence key pathophysiological drivers of AMD. We also examine histone modification patterns, chromatin accessibility, the status of long non-coding RNAs (lncRNAs) in AMD pathogenesis and in regulating pathways pertinent to the pathophysiology of the disease. While the field of ocular epigenetics remains in its infancy, accumulating evidence to date points to a burgeoning role for epigenetic regulation in AMD, pre-clinical studies have yielded promising findings for the prospect of epigenetics as a future therapeutic avenue. Full article
Show Figures

Figure 1

47 pages, 1032 KiB  
Review
mTOR Signaling in Macrophages: All Depends on the Context
by Angelika Fedor, Krzysztof Bryniarski and Katarzyna Nazimek
Int. J. Mol. Sci. 2025, 26(15), 7598; https://doi.org/10.3390/ijms26157598 - 6 Aug 2025
Abstract
Macrophages are undoubtedly one of the most widely studied cells of the immune system, among other reasons, because they are involved in a wide variety of biological processes. Deregulation of their activity is observed in a number of different disorders, including autoimmune diseases. [...] Read more.
Macrophages are undoubtedly one of the most widely studied cells of the immune system, among other reasons, because they are involved in a wide variety of biological processes. Deregulation of their activity is observed in a number of different disorders, including autoimmune diseases. At the same time, mammalian target of rapamycin (mTOR) is attracting increasing research attention because the pathways dependent on this kinase are activated by a variety of signals, including cytokines and proinflammatory mediators, mediate essential processes for cell survival and metabolism, and can be regulated epigenetically via microRNAs. Therefore, our narrative review aimed to summarize and discuss recent advances in the knowledge of the activation of mTOR signaling in macrophages, with a special focus on autoimmune disorders and the possibility of mTOR control by microRNAs. The summarized research observations allowed us to conclude that the effects of activity and/or inhibition of individual mTOR complexes in macrophages are largely context dependent, and therefore, these broad immunological contexts and other specific conditions should always be taken into account when attempting to modulate these pathways for therapeutic purposes. Full article
(This article belongs to the Special Issue From Macrophage Biology to Cell and EV-Based Immunotherapies)
Show Figures

Figure 1

27 pages, 1619 KiB  
Review
Epigenetic Mechanisms Governing Nrf2 Expression and Its Role in Ferroptosis
by Linbo Li, Xinjun Liu, Zizhen Si and Xidi Wang
Biomedicines 2025, 13(8), 1913; https://doi.org/10.3390/biomedicines13081913 - 5 Aug 2025
Abstract
Ferroptosis is a distinct form of regulated cell death driven by iron-dependent lipid peroxidation participating in various diseases. The nuclear factor erythroid 2-related factor 2 (Nrf2) is a central regulator of cellular redox homeostasis and a key determinant of ferroptosis resistance. Nrf2 activates [...] Read more.
Ferroptosis is a distinct form of regulated cell death driven by iron-dependent lipid peroxidation participating in various diseases. The nuclear factor erythroid 2-related factor 2 (Nrf2) is a central regulator of cellular redox homeostasis and a key determinant of ferroptosis resistance. Nrf2 activates the expression of downstream antioxidant genes to protect cells from oxidative stress and ferroptosis. Consequently, precise regulation of Nrf2 expression is crucial. Recent studies have revealed that complex epigenetic mechanisms involving DNA methylation, histone modifications, and non-coding RNA networks regulate Nrf2 expression. DNA methylation usually suppresses while histone acetylation promotes Nrf2 expression. The influences of histone methylation on NFE2L2 are site- and methylation degree-dependent. m6A modification stabilizes NFE2L2 mRNA to promote Nrf2 expression and thereby inhibit ferroptosis. This article summarizes current understanding of the epigenetic mechanisms controlling Nrf2 expression and Nrf2-mediated ferroptosis pathways and their implications in disease models. The challenges associated with the epigenetic regulation of Nrf2 and future research directions are also discussed. A comprehensive understanding of this regulatory interplay could open new avenues for intervention in ferroptosis-related diseases by fine-tuning cellular redox balance through the epigenetic modulation of Nrf2. Full article
(This article belongs to the Special Issue Oxidative Stress in Health and Disease)
Show Figures

Figure 1

17 pages, 3095 KiB  
Article
Haplotypes, Genotypes, and DNA Methylation Levels of Neuromedin U Gene Are Associated with Cardio-Metabolic Parameters: Results from the Moli-sani Study
by Fabrizia Noro, Annalisa Marotta, Simona Costanzo, Benedetta Izzi, Alessandro Gialluisi, Amalia De Curtis, Antonietta Pepe, Sarah Grossi, Augusto Di Castelnuovo, Chiara Cerletti, Maria Benedetta Donati, Giovanni de Gaetano, Francesco Gianfagna and Licia Iacoviello
Biomedicines 2025, 13(8), 1906; https://doi.org/10.3390/biomedicines13081906 - 5 Aug 2025
Abstract
Background/Objectives: Neuromedin U (NMU) is a highly conserved gene encoding a neuropeptide involved in the regulation of feeding behavior and energy homeostasis. We aimed to analyze the association between NMU genetic and epigenetic variations and cardio-metabolic parameters in an Italian population to identify [...] Read more.
Background/Objectives: Neuromedin U (NMU) is a highly conserved gene encoding a neuropeptide involved in the regulation of feeding behavior and energy homeostasis. We aimed to analyze the association between NMU genetic and epigenetic variations and cardio-metabolic parameters in an Italian population to identify the role of these variants in cardio-metabolic risk. Methods: A total of 4028 subjects were randomly selected from the Moli-sani study cohort. NMU haplotypes were estimated using seven SNPs located in the gene body and in the promoter region; DNA methylation levels in the promoter region, previously associated with lipid-related variables in the same population, were also used. Results: Among the haplotypes inferred, the haplotype carrying the highest number of minor variants (frequency 16.6%), when compared with the most frequent haplotype, was positively associated with insulin levels, HOMA-IR, and diastolic blood pressure, and negatively with HDL-cholesterol. The multivariable analysis that considered methylation levels along with their interactions with SNPs showed that increased methylation levels in two close CpG sites were associated with higher levels of lipid-related variables. Conclusions: This study supports a role for NMU as a regulator of human metabolism. This finding suggests that NMU could be a potential target for preventive interventions against coronary and cerebrovascular diseases, and that NMU genetic and epigenetic variability may serve as a biomarker for cardio-metabolic risk. Full article
(This article belongs to the Special Issue Epigenetics and Metabolic Disorders)
Show Figures

Figure 1

35 pages, 3988 KiB  
Review
Oxidative–Inflammatory Crosstalk and Multi-Target Natural Agents: Decoding Diabetic Vascular Complications
by Jingwen Liu, Kexin Li, Zixin Yi, Saqirile, Changshan Wang and Rui Yang
Curr. Issues Mol. Biol. 2025, 47(8), 614; https://doi.org/10.3390/cimb47080614 - 4 Aug 2025
Viewed by 90
Abstract
Diabetes mellitus (DM) is one of the leading causes of death and disability worldwide and its prevalence continues to rise. Chronic hyperglycemia exposes patients to severe complications. Among these, diabetic vascular lesions are the most destructive. Their primary driver is the synergistic interaction [...] Read more.
Diabetes mellitus (DM) is one of the leading causes of death and disability worldwide and its prevalence continues to rise. Chronic hyperglycemia exposes patients to severe complications. Among these, diabetic vascular lesions are the most destructive. Their primary driver is the synergistic interaction between hyperglycemia-induced oxidative stress and chronic inflammation. This review systematically elucidates how multiple pathological pathways—namely, metabolic dysregulation, mitochondrial dysfunction, endoplasmic reticulum stress, and epigenetic reprogramming—cooperate to drive oxidative stress and inflammatory cascades. Confronting this complex pathological network, natural products, unlike conventional single-target synthetic drugs, exert multi-target synergistic effects, simultaneously modulating several key pathogenic networks. This enables the restoration of redox homeostasis and the suppression of inflammatory responses, thereby improving vascular function and delaying both microvascular and macrovascular disease progression. However, the clinical translation of natural products still faces multiple challenges and requires comprehensive mechanistic studies and rigorous validation to fully realize their therapeutic potential. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
Show Figures

Figure 1

19 pages, 2870 KiB  
Review
Etiopathogenesis and Treatment of Colorectal Cancer
by Mayara Bocchi, Eduardo Vignoto Fernandes, Nathália de Sousa Pereira and Marla Karine Amarante
Immuno 2025, 5(3), 31; https://doi.org/10.3390/immuno5030031 - 4 Aug 2025
Viewed by 200
Abstract
Human colorectal cancer (CRC) encompasses tumors affecting a segment of the large intestine (colon) and rectum. It is the third most commonly diagnosed malignancy and the second leading cause of cancer deaths worldwide. It is a multifactorial disease, whose carcinogenesis process involves genetic [...] Read more.
Human colorectal cancer (CRC) encompasses tumors affecting a segment of the large intestine (colon) and rectum. It is the third most commonly diagnosed malignancy and the second leading cause of cancer deaths worldwide. It is a multifactorial disease, whose carcinogenesis process involves genetic and epigenetic alterations in oncogenes and tumor suppressor genes, including genes related to DNA repair. The pathogenic mechanisms are described based on the pathways of chromosomal instability, microsatellite instability, and CpG island methylator phenotype. When detected early, CRC is potentially curable, and its treatment is based on the pathological characteristics of the tumor and factors related to the patient, as well as on drug efficacy and toxicity studies. Therefore, the aim of this study was to review the pathogenesis and molecular subtypes of CRC and to describe the main targets of disease-directed therapy used in patients refractory to current treatments. Full article
(This article belongs to the Section Cancer Immunology and Immunotherapy)
Show Figures

Figure 1

19 pages, 1016 KiB  
Article
Genetic Associations of ITGB3, FGG, GP1BA, PECAM1, and PEAR1 Polymorphisms and the Platelet Activation Pathway with Recurrent Pregnancy Loss in the Korean Population
by Eun Ju Ko, Eun Hee Ahn, Hyeon Woo Park, Jae Hyun Lee, Da Hwan Kim, Young Ran Kim, Ji Hyang Kim and Nam Keun Kim
Int. J. Mol. Sci. 2025, 26(15), 7505; https://doi.org/10.3390/ijms26157505 - 3 Aug 2025
Viewed by 239
Abstract
Recurrent pregnancy loss (RPL) is defined as the occurrence of two or more pregnancy losses before 20 weeks of gestation. RPL is a common medical condition among reproductive-age women, with approximately 23 million cases reported annually worldwide. Up to 5% of pregnant women [...] Read more.
Recurrent pregnancy loss (RPL) is defined as the occurrence of two or more pregnancy losses before 20 weeks of gestation. RPL is a common medical condition among reproductive-age women, with approximately 23 million cases reported annually worldwide. Up to 5% of pregnant women may experience two or more consecutive pregnancy losses. Previous studies have investigated risk factors for RPL, including maternal age, uterine pathology, genetic anomalies, infectious agents, endocrine disorders, thrombophilia, and immune dysfunction. However, RPL is a disease caused by a complex interaction of genetic factors, environmental factors (e.g., diet, lifestyle, and stress), epigenetic factors, and the immune system. In addition, due to the lack of research on genetics research related to RPL, the etiology remains unclear in up to 50% of cases. Platelets play a critical role in pregnancy maintenance. This study examined the associations of platelet receptor and ligand gene variants, including integrin subunit beta 3 (ITGB3) rs2317676 A > G, rs3809865 A > T; fibrinogen gamma chain (FGG) rs1049636 T > C, rs2066865 T > C; glycoprotein 1b subunit alpha (GP1BA) rs2243093 T > C, rs6065 C > T; platelet endothelial cell adhesion molecule 1 (PECAM1) rs2812 C > T; and platelet endothelial aggregation receptor 1 (PEAR1) rs822442 C > A, rs12137505 G > A, with RPL prevalence. In total, 389 RPL patients and 375 healthy controls (all Korean women) were enrolled. Genotyping of each single nucleotide polymorphism was performed using polymerase chain reaction–restriction fragment length polymorphism and the TaqMan genotyping assay. All samples were collected with approval from the Institutional Review Board at Bundang CHA Medical Center. The ITGB3 rs3809865 A > T genotype was strongly associated with RPL prevalence (pregnancy loss [PL] ≥ 2: adjusted odds ratio [AOR] = 2.505, 95% confidence interval [CI] = 1.262–4.969, p = 0.009; PL ≥ 3: AOR = 3.255, 95% CI = 1.551–6.830, p = 0.002; PL ≥ 4: AOR = 3.613, 95% CI = 1.403–9.307, p = 0.008). The FGG rs1049636 T > C polymorphism was associated with a decreased risk in women who had three or more pregnancy losses (PL ≥ 3: AOR = 0.673, 95% CI = 0.460–0.987, p = 0.043; PL ≥ 4: AOR = 0.556, 95% CI = 0.310–0.997, p = 0.049). These findings indicate significant associations of the ITGB3 rs3809865 A > T and FGG rs1049636 T > C polymorphisms with RPL, suggesting that platelet function influences RPL in Korean women. Full article
(This article belongs to the Special Issue Molecular Research in Gynecological Diseases—2nd Edition)
Show Figures

Figure 1

59 pages, 1351 KiB  
Review
The Redox Revolution in Brain Medicine: Targeting Oxidative Stress with AI, Multi-Omics and Mitochondrial Therapies for the Precision Eradication of Neurodegeneration
by Matei Șerban, Corneliu Toader and Răzvan-Adrian Covache-Busuioc
Int. J. Mol. Sci. 2025, 26(15), 7498; https://doi.org/10.3390/ijms26157498 - 3 Aug 2025
Viewed by 173
Abstract
Oxidative stress is a defining and pervasive driver of neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis (ALS). As a molecular accelerant, reactive oxygen species (ROS) and reactive nitrogen species (RNS) compromise mitochondrial function, amplify lipid peroxidation, induce [...] Read more.
Oxidative stress is a defining and pervasive driver of neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis (ALS). As a molecular accelerant, reactive oxygen species (ROS) and reactive nitrogen species (RNS) compromise mitochondrial function, amplify lipid peroxidation, induce protein misfolding, and promote chronic neuroinflammation, creating a positive feedback loop of neuronal damage and cognitive decline. Despite its centrality in promoting disease progression, attempts to neutralize oxidative stress with monotherapeutic antioxidants have largely failed owing to the multifactorial redox imbalance affecting each patient and their corresponding variation. We are now at the threshold of precision redox medicine, driven by advances in syndromic multi-omics integration, Artificial Intelligence biomarker identification, and the precision of patient-specific therapeutic interventions. This paper will aim to reveal a mechanistically deep assessment of oxidative stress and its contribution to diseases of neurodegeneration, with an emphasis on oxidatively modified proteins (e.g., carbonylated tau, nitrated α-synuclein), lipid peroxidation biomarkers (F2-isoprostanes, 4-HNE), and DNA damage (8-OHdG) as significant biomarkers of disease progression. We will critically examine the majority of clinical trial studies investigating mitochondria-targeted antioxidants (e.g., MitoQ, SS-31), Nrf2 activators (e.g., dimethyl fumarate, sulforaphane), and epigenetic reprogramming schemes aiming to re-establish antioxidant defenses and repair redox damage at the molecular level of biology. Emerging solutions that involve nanoparticles (e.g., antioxidant delivery systems) and CRISPR (e.g., correction of mutations in SOD1 and GPx1) have the potential to transform therapeutic approaches to treatment for these diseases by cutting the time required to realize meaningful impacts and meaningful treatment. This paper will argue that with the connection between molecular biology and progress in clinical hyperbole, dynamic multi-targeted interventions will define the treatment of neurodegenerative diseases in the transition from disease amelioration to disease modification or perhaps reversal. With these innovations at our doorstep, the future offers remarkable possibilities in translating network-based biomarker discovery, AI-powered patient stratification, and adaptive combination therapies into individualized/long-lasting neuroprotection. The question is no longer if we will neutralize oxidative stress; it is how likely we will achieve success in the new frontier of neurodegenerative disease therapies. Full article
Show Figures

Figure 1

25 pages, 906 KiB  
Review
Evolution and Prognostic Variables of Cystic Fibrosis in Children and Young Adults: A Narrative Review
by Mădălina Andreea Donos, Elena Țarcă, Elena Cojocaru, Viorel Țarcă, Lăcrămioara Ionela Butnariu, Valentin Bernic, Paula Popovici, Solange Tamara Roșu, Mihaela Camelia Tîrnovanu, Nicolae Sebastian Ionescu and Laura Mihaela Trandafir
Diagnostics 2025, 15(15), 1940; https://doi.org/10.3390/diagnostics15151940 - 2 Aug 2025
Viewed by 265
Abstract
Introduction: Cystic fibrosis (CF) is a genetic condition affecting several organs and systems, including the pancreas, colon, respiratory system, and reproductive system. The detection of a growing number of CFTR variants and genotypes has contributed to an increase in the CF population which, [...] Read more.
Introduction: Cystic fibrosis (CF) is a genetic condition affecting several organs and systems, including the pancreas, colon, respiratory system, and reproductive system. The detection of a growing number of CFTR variants and genotypes has contributed to an increase in the CF population which, in turn, has had an impact on the overall statistics regarding the prognosis and outcome of the condition. Given the increase in life expectancy, it is critical to better predict outcomes and prognosticate in CF. Thus, each person’s choice to aggressively treat specific disease components can be more appropriate and tailored, further increasing survival. The objective of our narrative review is to summarize the most recent information concerning the value and significance of clinical parameters in predicting outcomes, such as gender, diabetes, liver and pancreatic status, lung function, radiography, bacteriology, and blood and sputum biomarkers of inflammation and disease, and how variations in these parameters affect prognosis from the prenatal stage to maturity. Materials and methods: A methodological search of the available data was performed with regard to prognostic factors in the evolution of CF in children and young adults. We evaluated articles from the PubMed academic search engine using the following search terms: prognostic factors AND children AND cystic fibrosis OR mucoviscidosis. Results: We found that it is crucial to customize CF patients’ care based on their unique clinical and biological parameters, genetics, and related comorbidities. Conclusions: The predictive significance of more dynamic clinical condition markers provides more realistic future objectives to center treatment and targets for each patient. Over the past ten years, improvements in care, diagnostics, and treatment have impacted the prognosis for CF. Although genotyping offers a way to categorize CF to direct research and treatment, it is crucial to understand that a variety of other factors, such as epigenetics, genetic modifiers, environmental factors, and socioeconomic status, can affect CF outcomes. The long-term management of this complicated multisystem condition has been made easier for patients, their families, and physicians by earlier and more accurate identification techniques, evidence-based research, and centralized expert multidisciplinary care. Full article
(This article belongs to the Special Issue Advances in the Diagnosis of Inherited/Genetic Diseases)
Show Figures

Figure 1

20 pages, 1940 KiB  
Review
The Role of DNA in Neural Development and Cognitive Function
by Tharsius Raja William Raja, Janakiraman Pillai Udaiyappan and Michael Pillay
DNA 2025, 5(3), 37; https://doi.org/10.3390/dna5030037 - 1 Aug 2025
Viewed by 124
Abstract
DNA connects the domains of genetic regulation and environmental interactions and plays a crucial role in neural development and cognitive function. The complex roles of genetic and epigenetic processes in brain development, synaptic plasticity, and higher-order cognitive abilities were reviewed in this study. [...] Read more.
DNA connects the domains of genetic regulation and environmental interactions and plays a crucial role in neural development and cognitive function. The complex roles of genetic and epigenetic processes in brain development, synaptic plasticity, and higher-order cognitive abilities were reviewed in this study. Neural progenitors are formed and differentiated according to genetic instructions, whereas epigenetic changes, such as DNA methylation, dynamically control gene expression in response to external stimuli. These processes shape behavior and cognitive resilience by influencing neural identity, synaptic efficiency, and adaptation. This review also examines how DNA damage and repair mechanisms affect the integrity of neurons, which are essential for memory and learning. It also emphasizes how genetic predispositions and environmental factors interact to determine a person’s susceptibility to neurodegenerative disorders, such as Parkinson’s and Alzheimer’s diseases. Developments in gene-editing technologies, such as CRISPR, and non-viral delivery techniques provide encouraging treatment avenues for neurodegenerative disorders. This review highlights the fundamental role of DNA in coordinating the intricate interactions between molecular and environmental factors that underlie brain function and diseases. Full article
Show Figures

Graphical abstract

17 pages, 902 KiB  
Review
Cancer Stem Cells in Melanoma: Drivers of Tumor Plasticity and Emerging Therapeutic Strategies
by Adrian-Horațiu Sabău, Andreea-Cătălina Tinca, Raluca Niculescu, Iuliu Gabriel Cocuz, Andreea Raluca Cozac-Szöke, Bianca Andreea Lazar, Diana Maria Chiorean, Corina Eugenia Budin and Ovidiu Simion Cotoi
Int. J. Mol. Sci. 2025, 26(15), 7419; https://doi.org/10.3390/ijms26157419 - 1 Aug 2025
Viewed by 176
Abstract
Cutaneous malignant melanoma is an extraordinarily aggressive and heterogeneous cancer that contains a small subpopulation of tumor stem cells (CSCs) responsible for tumor initiation, metastasis, and recurrence. Identification and characterization of CSCs in melanoma is challenging due to tumor heterogeneity and the lack [...] Read more.
Cutaneous malignant melanoma is an extraordinarily aggressive and heterogeneous cancer that contains a small subpopulation of tumor stem cells (CSCs) responsible for tumor initiation, metastasis, and recurrence. Identification and characterization of CSCs in melanoma is challenging due to tumor heterogeneity and the lack of specific markers (CD271, ABCB5, ALDH, Nanog) and the ability of cells to dynamically change their phenotype. Phenotype-maintaining signaling pathways (Wnt/β-catenin, Notch, Hedgehog, HIF-1) promote self-renewal, treatment resistance, and epithelial–mesenchymal transitions. Tumor plasticity reflects the ability of differentiated cells to acquire stem-like traits and phenotypic flexibility under stress conditions. The interaction of CSCs with the tumor microenvironment accelerates disease progression: they induce the formation of cancer-associated fibroblasts (CAFs) and neo-angiogenesis, extracellular matrix remodeling, and recruitment of immunosuppressive cells, facilitating immune evasion. Emerging therapeutic strategies include immunotherapy (immune checkpoint inhibitors), epigenetic inhibitors, and nanotechnologies (targeted nanoparticles) for delivery of chemotherapeutic agents. Understanding the role of CSCs and tumor plasticity paves the way for more effective innovative therapies against melanoma. Full article
(This article belongs to the Special Issue Mechanisms of Resistance to Melanoma Immunotherapy)
Show Figures

Figure 1

Back to TopTop