Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (33)

Search Parameters:
Keywords = epididymal fat pad

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 4101 KiB  
Article
Synergistic Effect of Lactobacillus Mixtures and Lagerstroemia speciosa Leaf Extract in Reducing Obesity in High-Fat Diet-Fed Mice
by Kippeum Lee, Hyeon-Ji Kim, Joo Yun Kim, Jae Jung Shim and Jae Hwan Lee
Biology 2024, 13(12), 1047; https://doi.org/10.3390/biology13121047 - 13 Dec 2024
Viewed by 1660
Abstract
In this study, we describe the anti-obesity effects of a novel combination of Lactobacillus mixture (Lactobacillus curvatus HY7601 and Lactobacillus plantarum KY1032) and leaf extract of Lagerstroemia speciosa (L. speciosa) in mice. The administration of the probiotic mixture of HY7601 and KY1032 [...] Read more.
In this study, we describe the anti-obesity effects of a novel combination of Lactobacillus mixture (Lactobacillus curvatus HY7601 and Lactobacillus plantarum KY1032) and leaf extract of Lagerstroemia speciosa (L. speciosa) in mice. The administration of the probiotic mixture of HY7601 and KY1032 in combination with the leaf extract of L. speciosa significantly attenuated fat tissue formation and body weight gain in mice fed a high-fat diet. The white adipose fat mass, comprising the inguinal and epididymal fat pads, was most effectively reduced when the probiotic mixture and L. speciosa leaf extract was orally administered to the mice in combination. This combination also reduced the mRNA expression of adipogenic genes (those encoding CCAAT/enhancer-binding protein alpha, peroxisome proliferator-activated receptor gamma, and fatty acid-binding protein 4) in inguinal and epididymal white adipose tissue depots and the liver. Finally, the combination of reduced blood glucose concentrations regulated the insulin resistance of high-fat diet-fed obese mice. These findings provide insight into the mechanisms underlying the effect of this combination and suggest that using Lactobacillus mixture (HY7601 and KY1032) is as safe as microbial monotherapy, but more effective at preventing obesity. Full article
(This article belongs to the Special Issue Physiology and Pathophysiology of Obesity)
Show Figures

Graphical abstract

18 pages, 5227 KiB  
Article
Lactobacillus plantarum and Bifidobacterium longum Alleviate High-Fat Diet-Induced Obesity and Depression/Cognitive Impairment-like Behavior in Mice by Upregulating AMPK Activation and Downregulating Adipogenesis and Gut Dysbiosis
by Soo-Won Yun, Yoon-Jung Shin, Xiaoyang Ma and Dong-Hyun Kim
Nutrients 2024, 16(22), 3810; https://doi.org/10.3390/nu16223810 - 7 Nov 2024
Cited by 4 | Viewed by 2511
Abstract
Background/Objective: Long-term intake of a high-fat diet (HFD) leads to obesity and gut dysbiosis. AMP-activated protein kinase (AMPK) is a key regulator of energy metabolism. Herein, we investigated the impacts of Lactobacillus (Lactiplantibacillus) plantarum P111 and Bifidobacterium longum P121, which suppressed dexamethasone-induced adipogenesis [...] Read more.
Background/Objective: Long-term intake of a high-fat diet (HFD) leads to obesity and gut dysbiosis. AMP-activated protein kinase (AMPK) is a key regulator of energy metabolism. Herein, we investigated the impacts of Lactobacillus (Lactiplantibacillus) plantarum P111 and Bifidobacterium longum P121, which suppressed dexamethasone-induced adipogenesis in 3T3 L1 cells and increased lipopolysaccharide-suppressed AMPK activation in HepG2 cells, on HFD-induced obesity, liver steatosis, gut inflammation and dysbiosis, and depression/cognitive impairment (DCi)-like behavior in mice. Methods: Obesity is induced in mice by feeding with HFD. Biomarker levels were measured using immunoblotting, enzyme-linked immunosorbent assay, and immunofluorescence staining. Results: Orally administered P111, P121, or their mix LpBl decreased HFD-induced body weight gain, epididymal fat pad weight, and triglyceride (TG), total cholesterol (TC), and lipopolysaccharide levels in the blood. Additionally, they downregulated HFD-increased NF-κB activation and TNF-α expression in the liver and colon, while HFD-decreased AMPK activation was upregulated. They also suppressed HFD-induced DCi-like behavior and hippocampal NF-κB activation, NF-κB-positive cell population, and IL-1β and TNF-α levels, while increasing the hippocampal BDNF-positive cell population and BDNF level. The combination of P111 and P122 (LpBl) also improved body weight gain, liver steatosis, and DCi-like behavior. LpBl also mitigated HFD-induced gut dysbiosis: it decreased Desulfovibrionaceae, Helicobacteriaceae, Coriobacteriaceae, and Streptococcaceae populations and lipopolysaccharide production, which were positively correlated with TNF-α expression; and increased Akkermansiaceae, Bifidobacteriaceae, and Prevotellaceae populations, which were positively correlated with the BDNF expression. Conclusions: P111 and/or P121 downregulated adipogenesis, gut dysbiosis, and NF-κB activation and upregulatde AMPK activation, leading to the alleviation of obesity, liver steatosis, and DCi. Full article
(This article belongs to the Special Issue Dietary Habit, Gut Microbiome and Human Health)
Show Figures

Graphical abstract

13 pages, 3808 KiB  
Article
Enhanced Metabolic Effects of Fish Oil When Combined with Vitamin D in Diet-Induced Obese Male Mice
by Latha Ramalingam, Brennan Mabry, Kalhara R. Menikdiwela, Hanna Moussa and Naima Moustaid-Moussa
Biomolecules 2024, 14(4), 474; https://doi.org/10.3390/biom14040474 - 12 Apr 2024
Cited by 1 | Viewed by 1944
Abstract
Vitamin D (vit D) and fish oil (FO) both offer unique health benefits, however, their combined effects have not been evaluated in obesity and nonalcoholic fatty liver disease (NAFLD). Hence, we hypothesized that vit D and FO supplementation would have additive effects in [...] Read more.
Vitamin D (vit D) and fish oil (FO) both offer unique health benefits, however, their combined effects have not been evaluated in obesity and nonalcoholic fatty liver disease (NAFLD). Hence, we hypothesized that vit D and FO supplementation would have additive effects in reducing obesity-associated inflammation and NAFLD. Male C57BL6 mice were split into four groups and fed a high fat (HF) diet supplemented with a low (HF; +200 IU vit D) or high dose of vitamin D (HF + D; +1000 IU vit D); combination of vit D and FO (HF-FO; +1000 IU vit D); or only FO (HF-FO; +200 IU vit D) for 12 weeks. We measured body weight, food intake, glucose tolerance, and harvested epididymal fat pad and liver for gene expression analyses. Adiposity was reduced in groups supplemented with both FO and vit D. Glucose clearance was higher in FO-supplemented groups compared to mice fed HF. In adipose tissue, markers of fatty acid synthesis and oxidation were comparable in groups that received vit D and FO individually in comparison to HF. However, the vit D and FO group had significantly lower fatty acid synthesis and higher oxidation compared to the other groups. Vit D and FO also significantly improved fatty acid oxidation, despite similar fatty acid synthesis among the four groups in liver. Even though we did not find additive effects of vit D and FO, our data provide evidence that FO reduces markers of obesity in the presence of adequate levels of vit D. Full article
(This article belongs to the Collection Feature Papers in Section 'Molecular Medicine')
Show Figures

Figure 1

12 pages, 1263 KiB  
Article
6-Gingerol Ameliorates Adiposity and Inflammation in Adipose Tissue in High Fat Diet-Induced Obese Mice: Association with Regulating of Adipokines
by Kyung Hee Hong, Min Young Um, Jiyun Ahn and Tae Youl Ha
Nutrients 2023, 15(15), 3457; https://doi.org/10.3390/nu15153457 - 4 Aug 2023
Cited by 12 | Viewed by 3025
Abstract
We investigated the effects of 6-gingerol on adiposity and obesity-induced inflammation by focusing on the regulation of adipogenesis and adipokines in white adipose tissue (WAT) of diet-induced obese mice. C57BL/6 mice were fed a high-fat diet (HFD) containing 0.05% 6-gingerol for 8 weeks. [...] Read more.
We investigated the effects of 6-gingerol on adiposity and obesity-induced inflammation by focusing on the regulation of adipogenesis and adipokines in white adipose tissue (WAT) of diet-induced obese mice. C57BL/6 mice were fed a high-fat diet (HFD) containing 0.05% 6-gingerol for 8 weeks. 6-Gingerol supplementation significantly reduced body weight, WAT mass, serum triglyceride, leptin and insulin levels, and HOMA-IR in HFD-fed mice. Additionally, the size of adipocytes in epididymal fat pads was reduced in HFD-fed mice by 6-gingerol supplementation. 6-Gingerol reduced the mRNA and protein levels of adipogenesis-related transcription factors, such as SREBP-1, PPARγ, and C/EBPα in WAT. Furthermore, 6-gingerol suppressed the expression of lipogenesis-related genes, such as fatty acid synthase and CD36 in WAT. Adiponectin expression was significantly increased, whereas inflammatory adipokines (leptin, resistin, TNF-α, MCP-1, and PAI-1) and the macrophage marker F4/80 were significantly reduced in the WAT of HFD-fed mice by 6-gingerol supplementation. In conclusion, 6-gingerol effectively contributed to the alleviation of adiposity and inflammation in WAT, which is associated with the regulation of adipokines in diet-induced obese mice. Full article
(This article belongs to the Section Phytochemicals and Human Health)
Show Figures

Figure 1

12 pages, 1399 KiB  
Article
Twelve Weeks of Oral L-Serine Supplementation Improves Glucose Tolerance, Reduces Visceral Fat Pads, and Reverses the mRNA Overexpression of Renal Injury Markers KIM-1, IL-6, and TNF-α in a Mouse Model of Obesity
by Duyen Tran, Muhammad Ishaq, Cheng Yang, Tauseef Ahmad, Maurizio Ronci, Mariachiara Zuccarini, Stephen Myers, Courtney McGowan, Rajaraman Eri, Darren C. Henstridge, Sabrina Sonda and Vanni Caruso
Nutraceuticals 2023, 3(2), 262-273; https://doi.org/10.3390/nutraceuticals3020021 - 24 May 2023
Viewed by 4928
Abstract
Comorbidities associated with obesity, including diabetes and kidney diseases, greatly increase mortality rates and healthcare costs in obese patients. Studies in animal models and clinical trials have demonstrated that L-serine supplementation is a safe and effective therapeutic approach that ameliorates the consequences of [...] Read more.
Comorbidities associated with obesity, including diabetes and kidney diseases, greatly increase mortality rates and healthcare costs in obese patients. Studies in animal models and clinical trials have demonstrated that L-serine supplementation is a safe and effective therapeutic approach that ameliorates the consequences of obesity. However, little is known about the effects of L-Serine supplementation following high-fat diet (HFD) consumption and its role in the mRNA expression of markers of kidney injury. We provide a descriptive action by which L-serine administration ameliorated the consequences of HFD consumption in relation to weight loss, glucose homeostasis as well as renal mRNA expression of markers of kidney injury. Our results indicated that L-Serine supplementation in drinking water (1%, ad libitum for 12 weeks) in male C57BL/6J mice promoted a significant reduction in body weight, visceral adipose mass (epididymal and retroperitoneal fat pads) as well as blood glucose levels in mice consuming a HFD. In addition, the amino acid significantly reduced the mRNA expression of the Kidney Injury Marker 1 (KIM-1), P2Y purinoceptor 1 (P2RY1), as well as pro-inflammatory cytokines (IL-6 and TNFα). L-serine administration had no effect on mice consuming a standard chow diet. Collectively, our findings suggest that L-serine is an effective compound for long-term use in animal models and that it ameliorates the metabolic consequences of HFD consumption and reduces the elevated levels of renal pro-inflammatory cytokines occurring in obesity. Full article
Show Figures

Graphical abstract

11 pages, 8990 KiB  
Article
Alteration of Collagen Content and Macrophage Distribution in White Adipose Tissue under the Influence of Maternal and Postnatal Diet in Male Rat Offspring
by Robert Mujkić, Darija Šnajder Mujkić, Nenad Čekić, Ivana Ilić, Anđela Grgić, Željka Perić Kačarević and Valerija Blažićević
Medicina 2023, 59(5), 888; https://doi.org/10.3390/medicina59050888 - 5 May 2023
Cited by 1 | Viewed by 2153
Abstract
Background and Objectives: The extracellular matrix is important for adipose tissue growth, and numerous interactions between adipocytes and extracellular matrix components occur during adipose tissue development. The main objective of this study was to investigate the interaction and influence of maternal and postnatal [...] Read more.
Background and Objectives: The extracellular matrix is important for adipose tissue growth, and numerous interactions between adipocytes and extracellular matrix components occur during adipose tissue development. The main objective of this study was to investigate the interaction and influence of maternal and postnatal diet on adipose tissue remodeling in Sprague Dawley offspring. Materials and Methods: 10 Sprague Dawley females were randomly divided into two groups at nine weeks of age and fed a standard laboratory diet or high-fat diet for six weeks. Then, they were mated, and after birth, their male rat offspring were divided into four subgroups according to diet. After euthanizing the offspring at 22 weeks of age, samples of subcutaneous, perirenal and epididymal adipose tissue were collected. Sections were stained with Mallory’s trichrome and analyzed by immunohistochemistry for CD68+ and CD163+ cells. Results: Staining of extracellular components showed higher collagen deposition in the perirenal and epididymal depot of offspring fed a high-fat diet. The number of CD163/CD68+ cells in the perirenal adipose tissue was lower in the CD-HFD group compared with other groups, and in the subcutaneous fat pad when the groups with modified diet were compared with those on non-modified diet. Conclusion: Morphological changes in adipose tissue, increased collagen deposition, and changes in macrophage polarization may be related to intergenerational changes in diet. Full article
Show Figures

Figure 1

14 pages, 5854 KiB  
Article
Proteomic Analysis of Skeletal Muscle and White Adipose Tissue after Aerobic Exercise Training in High Fat Diet Induced Obese Mice
by Tzu-Jung Chou, Chia-Wen Lu, Li-Yu Lin, Yi-Ju Hsu, Chi-Chang Huang and Kuo-Chin Huang
Int. J. Mol. Sci. 2023, 24(6), 5743; https://doi.org/10.3390/ijms24065743 - 17 Mar 2023
Cited by 8 | Viewed by 3886
Abstract
Obesity is associated with excessive fat accumulation in adipose tissue and other organs, such as skeletal muscle, whereas aerobic exercise (AE) plays an important role in managing obesity through profound protein regulation. Our study aimed to investigate the impact of AE on proteomic [...] Read more.
Obesity is associated with excessive fat accumulation in adipose tissue and other organs, such as skeletal muscle, whereas aerobic exercise (AE) plays an important role in managing obesity through profound protein regulation. Our study aimed to investigate the impact of AE on proteomic changes in both the skeletal muscle and the epididymal fat pad (EFP) of high-fat-diet-induced obese mice. Bioinformatic analyses were performed on differentially regulated proteins using gene ontology enrichment analysis and ingenuity pathway analysis. Eight weeks of AE significantly reduced body weight, increased the serum FNDC5 level, and improved the homeostatic model assessment of insulin resistance. A high-fat diet caused alterations in a subset of proteins involved in the sirtuin signaling pathway and the production of reactive oxygen species in both skeletal muscle and EFP, leading to insulin resistance, mitochondrial dysfunction, and inflammation. On the other hand, AE upregulated skeletal muscle proteins (NDUFB5, NDUFS2, NDUFS7, ETFD, FRDA, and MKNK1) that enhance mitochondrial function and insulin sensitivity. Additionally, the upregulation of LDHC and PRKACA and the downregulation of CTBP1 in EFP can promote the browning of white adipose tissue with the involvement of FNDC5/irisin in the canonical pathway. Our study provides insights into AE-induced molecular responses and may help further develop exercise-mimicking therapeutic targets. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

13 pages, 4204 KiB  
Article
Doxycycline Prevents Preclinical Atherosclerosis, Pancreatic Islet Loss and Improves Insulin Secretion after Glycemic Stimulation: Preclinical Study in Individuals with a High-Fat Diet
by Alejandrina Rodriguez-Hernandez, Marina Delgado-Machuca, Rodolfo Guardado-Mendoza, Martha A. Mendoza-Hernandez, Valery Melnikov, Osiris G. Delgado-Enciso, Daniel Tiburcio-Jimenez, Gabriel Ceja-Espiritu, Gustavo A. Hernandez-Fuentes, Armando Gamboa-Dominguez, Jose Guzman-Esquivel, Margarita L. Martinez-Fierro, Iram P. Rodriguez-Sanchez and Ivan Delgado-Enciso
Biomedicines 2023, 11(3), 717; https://doi.org/10.3390/biomedicines11030717 - 27 Feb 2023
Cited by 1 | Viewed by 5701
Abstract
Doxycycline (Doxy) is an antibiotic, which has exhibited anti-inflammatory activity and glucose metabolism improvement. The present study was proposed to evaluate its effects on glucose metabolism and other associated processes, such as lipemia and adipogenesis, as well as, to evaluate its effects on [...] Read more.
Doxycycline (Doxy) is an antibiotic, which has exhibited anti-inflammatory activity and glucose metabolism improvement. The present study was proposed to evaluate its effects on glucose metabolism and other associated processes, such as lipemia and adipogenesis, as well as, to evaluate its effects on the liver, pancreas, and aorta in subjects fed with an occidental high-fat diet (HFD). The trial followed three groups of BALB/c mice for 6 months: (1) Standard diet (SD); (2) HFD-placebo (saline solution); and (3) HFD-Doxy (10 mg/kg/day). Intrahepatic fat accumulation (steatohepatosis) and the epididymal fat pad, as well as the hepatic inflammatory infiltrate and ALT serum levels were higher in both groups with the HFD (with/without doxycycline) in comparison with the SD group. The thickness of the aorta (preclinic atherosclerosis) was significantly elevated in the HFD group with respect to the HFD + Doxy and SD group, these two being similar groups to each other. The HFD-Doxy group had pancreatic morphological parameters very similar to those of the SD group; on the contrary, the HFD group reduced the number of pancreatic islets and the number of β cells per mm2, in addition to losing large islets. The index of β cell function (∆Insulin0–30/∆Glucose0–30 ratio) was significantly higher in the HFD + Doxy group, compared to the rest of the groups. Full article
Show Figures

Graphical abstract

15 pages, 6241 KiB  
Article
Dietary Supplementation of Cedryl Acetate Ameliorates Adiposity and Improves Glucose Homeostasis in High-Fat Diet-Fed Mice
by Jingya Guo, Mengjie Li, Yuhan Zhao, Seong-Gook Kang, Kunlun Huang and Tao Tong
Nutrients 2023, 15(4), 980; https://doi.org/10.3390/nu15040980 - 16 Feb 2023
Cited by 5 | Viewed by 2693
Abstract
Cedryl acetate (CA), also called acetyl cedrene, is approved by the FDA as a flavoring or adjuvant to be added to foods. In this study, we aimed to investigate the preventive benefits of CA on obesity and obesity-related metabolic syndrome caused by a [...] Read more.
Cedryl acetate (CA), also called acetyl cedrene, is approved by the FDA as a flavoring or adjuvant to be added to foods. In this study, we aimed to investigate the preventive benefits of CA on obesity and obesity-related metabolic syndrome caused by a high-fat diet (HFD). Three groups of C57BL/6J mice (ten-week-old) were fed Chow, an HFD, or an HFD with CA supplementation (100 mg/kg) for 19 weeks. We observed that CA supplementation significantly reduced weight gain induced by an HFD, decreased the weight of the visceral fat pads, and prevented adipocyte hypertrophy in mice. Moreover, mice in the CA group showed significant improvements in hepatic lipid accumulation, glucose intolerance, insulin resistance, and gluconeogenesis compared with the mice in the HFD group. Since 16S rRNA analysis revealed that the gut microbiota in the CA and HFD groups were of similar compositions at the phylum and family levels, CA may have limited effects on gut microbiota in HFD-fed mice. The beneficial effects on the metabolic parameters of CA were reflected by CA’s regulation of metabolism-related gene expression in the liver (including Pepck, G6Pase, and Fbp1) and the epididymal white adipose tissues (including PPARγ, C/EBPα, FABP4, FAS, Cytc, PGC-1α, PRDM16, Cidea, and COX4) of the mice. In summary, a potent preventive effect of CA on HFD-induced obesity and related metabolic syndrome was highlighted by our results, and CA could be a promising dietary component for obesity intervention. Full article
(This article belongs to the Section Lipids)
Show Figures

Figure 1

13 pages, 2468 KiB  
Article
Adzuki Bean MY59 Extract Reduces Insulin Resistance and Hepatic Steatosis in High-Fat-Fed Mice via the Downregulation of Lipocalin-2
by Jaewoong Lee, Byong Won Lee, Kyung Eun Kim, Hyeong Seok An, Eun Ae Jeong, Hyun Joo Shin, Seok Bo Song and Gu Seob Roh
Nutrients 2022, 14(23), 5049; https://doi.org/10.3390/nu14235049 - 27 Nov 2022
Cited by 4 | Viewed by 2513
Abstract
Adzuki bean is well known as a potential functional food that improves metabolic complications from obesity and diabetes. Lipocalin-2 (LCN2) has been implicated to have an important role in obesity and diabetes. However, the protective roles of adzuki bean MY59 extract (ABE) on [...] Read more.
Adzuki bean is well known as a potential functional food that improves metabolic complications from obesity and diabetes. Lipocalin-2 (LCN2) has been implicated to have an important role in obesity and diabetes. However, the protective roles of adzuki bean MY59 extract (ABE) on insulin resistance and hepatic steatosis are not fully understood. In the present study, we investigated the effects of ABE on LCN2 expression in high-fat diet (HFD)-fed mice. ABE reduced HFD-induced fat mass and improved insulin resistance. In addition to hepatic steatosis, HFD-fed mice showed many apoptotic cells and neutrophils in the epididymal fat pads. However, these findings were significantly reduced by ABE supplementation. In particular, we found that increased LCN2 proteins from serum, epididymal fat pads, and liver in HFD-fed mice are significantly reduced by ABE. Furthermore, ABE reduced increased heme oxygenase-1 and superoxide dismutase-1 expressions in adipose tissue and liver in HFD-fed mice. We found that hepatic nuclear factor-kappa B (NF-κB) p65 expression in HFD-fed mice was also reduced by ABE. Thus, these findings indicate that ABE feeding could improve insulin resistance and hepatic steatosis by decreasing LCN2-mediated inflammation and oxidative stress in HFD-fed mice. Full article
(This article belongs to the Section Nutrition and Metabolism)
Show Figures

Figure 1

16 pages, 1307 KiB  
Article
CB1 Ligand AM251 Induces Weight Loss and Fat Reduction in Addition to Increased Systemic Inflammation in Diet-Induced Obesity
by Lannie O'Keefe, Teresa Vu, Anna C. Simcocks, Kayte A. Jenkin, Michael L. Mathai, Deanne H. Hryciw, Dana S. Hutchinson and Andrew J. McAinch
Int. J. Mol. Sci. 2022, 23(19), 11447; https://doi.org/10.3390/ijms231911447 - 28 Sep 2022
Cited by 4 | Viewed by 2926
Abstract
Diet-induced obesity (DIO) reduces fatty acid oxidation in skeletal muscle and decreases circulating levels of adiponectin. Endocannabinoid signaling is overactive in obesity, with some effects abated by antagonism of cannabinoid receptor 1 (CB1). This research aimed to determine if treatment with [...] Read more.
Diet-induced obesity (DIO) reduces fatty acid oxidation in skeletal muscle and decreases circulating levels of adiponectin. Endocannabinoid signaling is overactive in obesity, with some effects abated by antagonism of cannabinoid receptor 1 (CB1). This research aimed to determine if treatment with the global CB1 antagonist/inverse agonist, AM251, in high-fat diet (HFD) fed rats influenced adiponectin signaling in skeletal muscle and a “browning” of white adipose tissue (WAT) defined by UCP1 expression levels. Male Sprague Dawley rats consumed an HFD (21% fat) for 9 weeks before receiving daily intraperitoneal injections with vehicle or AM251 (3 mg/kg) for 6 weeks. mRNA expression of genes involved in metabolic functions were measured in skeletal muscle and adipose tissue, and blood was harvested for the measurement of hormones and cytokines. Muscle citrate synthase activity was also measured. AM251 treatment decreased fat pad weight (epididymal, peri-renal, brown), and plasma levels of leptin, glucagon, ghrelin, and GLP-1, and increased PAI-1 along with a range of pro-inflammatory and anti-inflammatory cytokines; however, AM251 did not alter plasma adiponectin levels, skeletal muscle citrate synthase activity or mRNA expression of the genes measured in muscle. AM251 treatment had no effect on white fat UCP1 expression levels. AM251 decreased fat pad mass, altered plasma hormone levels, but did not induce browning of WAT defined by UCP1 mRNA levels or alter gene expression in muscle treated acutely with adiponectin, demonstrating the complexity of the endocannabinoid system and metabolism. The CB1 ligand AM251 increased systemic inflammation suggesting limitations on its use in metabolic disorders. Full article
(This article belongs to the Special Issue Molecular Biology of the Endocannabinoid System)
Show Figures

Figure 1

19 pages, 6754 KiB  
Article
Metformin Inhibits Lipid Droplets Fusion and Growth via Reduction in Cidec and Its Regulatory Factors in Rat Adipose-Derived Stem Cells
by Lijing Yang, Xiaowei Jia, Dongliang Fang, Yuan Cheng, Zhaoyi Zhai, Wenyang Deng, Baopu Du, Tao Lu, Lulu Wang, Chun Yang and Yan Gao
Int. J. Mol. Sci. 2022, 23(11), 5986; https://doi.org/10.3390/ijms23115986 - 26 May 2022
Cited by 9 | Viewed by 3304
Abstract
Metformin is still being investigated due to its potential use as a therapeutic agent for managing overweight or obesity. However, the underlying mechanisms are not fully understood. Inhibiting the adipogenesis of adipocyte precursors may be a new therapeutic opportunity for obesity treatments. It [...] Read more.
Metformin is still being investigated due to its potential use as a therapeutic agent for managing overweight or obesity. However, the underlying mechanisms are not fully understood. Inhibiting the adipogenesis of adipocyte precursors may be a new therapeutic opportunity for obesity treatments. It is still not fully elucidated whether adipogenesis is also involved in the weight loss mechanisms by metformin. We therefore used adipose-derived stem cells (ADSCs) from inguinal and epididymal fat pads to investigate the effects and mechanisms of metformin on adipogenesis in vitro. Our results demonstrate the similar effect of metformin inhibition on lipid accumulation, lipid droplets fusion, and growth in adipose-derived stem cells from epididymal fat pads (Epi-ADSCs) and adipose-derived stem cells from inguinal fat pads (Ing-ADSCs) cultures. We identified that cell death-inducing DFFA-like effector c (Cidec), Perilipin1, and ras-related protein 8a (Rab8a) expression increased ADSCs differentiation. In addition, we found that metformin inhibits lipid droplets fusion and growth by decreasing the expression of Cidec, Perilipin1, and Rab8a. Activation of AMPK pathway signaling in part involves metformin inhibition on Cidec, Perilipin1, and Rab8a expression. Collectively, our study reveals that metformin inhibits lipid storage, fusion, and growth of lipid droplets via reduction in Cidec and its regulatory factors in ADSCs cultures. Our study supports the development of clinical trials on metformin-based therapy for patients with overweight and obesity. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

21 pages, 3225 KiB  
Article
Anti-Hyperlipidemia, Hypoglycemic, and Hepatoprotective Impacts of Pearl Millet (Pennisetum glaucum L.) Grains and Their Ethanol Extract on Rats Fed a High-Fat Diet
by Nadiah S. Alzahrani, Ghedeir M. Alshammari, Afaf El-Ansary, Abu ElGasim A. Yagoub, Musarat Amina, Ali Saleh and Mohammed Abdo Yahya
Nutrients 2022, 14(9), 1791; https://doi.org/10.3390/nu14091791 - 25 Apr 2022
Cited by 23 | Viewed by 4527
Abstract
This study tested the anti-hyperlipidemic, hypoglycemic, hepatoprotective, and anti-inflammatory effects of whole pearl millet grain powder (MPG) and its ethanol extract (MPGethaolE) in obese rats fed a high-fat diet. The rats were divided into eight groups based on the treatments they received: control, [...] Read more.
This study tested the anti-hyperlipidemic, hypoglycemic, hepatoprotective, and anti-inflammatory effects of whole pearl millet grain powder (MPG) and its ethanol extract (MPGethaolE) in obese rats fed a high-fat diet. The rats were divided into eight groups based on the treatments they received: control, high fat diet (HFD), HFD + MGE (25 mg/Kg), HFD + MPGethaolE (50 mg/Kg), HFD + MPGethaolE (100 mg/Kg), HFD + MPG (10%), HFD + MPG (20%), and HFD + MPG (30%). The final body weight, visceral, epididymal fat pads, and the liver weight were significantly decreased, in a dose-dependent manner, in HFD fed rats that were co-administered either the MPG powder or MPGethaolE. In the same line, serum levels of triglycerides (TGs), cholesterol (CHOL), and low-density lipoprotein-cholesterol (LDL-c), as well as fasting glucose, insulin, HOMA-IR, and serum levels of lipopolysaccharides (LPS), interleukine-6 (IL-6), interleukine-10 (IL-10), C-reactive protein (CRP), tumor necrosis factor (TNF-α), and adiponectin were progressively decreased while serum levels of high-density lipoproteins (HDL-c) were significantly increased when increasing the doses of both treatments. In conclusion, both the raw powder and ethanolic extract of MP have a comparative dose-dependent anti-obesity, hypoglycemic, hypolipidemic, anti-inflammatory, and anti-steatotic in HFD-fed rats. Full article
(This article belongs to the Section Lipids)
Show Figures

Figure 1

12 pages, 1798 KiB  
Article
Diabetogenic and Obesogenic Effects of Cadmium in Db/Db Mice and Rats at a Clinically Relevant Level of Exposure
by Jessica Nguyen, Arjun Patel, Andrew Gensburg, Rehman Bokhari, Peter Lamar and Joshua Edwards
Toxics 2022, 10(3), 107; https://doi.org/10.3390/toxics10030107 - 23 Feb 2022
Cited by 9 | Viewed by 3203
Abstract
Studies show an association between cadmium (Cd) exposure and prediabetes or type II diabetes mellitus. We have previously reported that Cd causes decreased levels of serum leptin in rats following 12 weeks of daily Cd dosing (0.6 mg/kg/b.w./day). Since leptin plays an important [...] Read more.
Studies show an association between cadmium (Cd) exposure and prediabetes or type II diabetes mellitus. We have previously reported that Cd causes decreased levels of serum leptin in rats following 12 weeks of daily Cd dosing (0.6 mg/kg/b.w./day). Since leptin plays an important role in metabolism, we examined the effects of Cd on rats and db/db mice, which are deficient in leptin receptor activity. We gave rats and mice daily subcutaneous injections of saline (control) or CdCl2 at a dose of 0.6 mg/kg of Cd for 2 weeks, followed by 2 weeks of no dosing. At the end of the 4-week study, exposure to Cd resulted in a more rapid increase in blood glucose levels following an oral glucose tolerance test in db/db vs. lean mice. During the two weeks of no Cd dosing, individual rat bodyweight gain was greater (p ≤ 0.05) in Cd-treated animals. At this time point, the combined epididymal and retroperitoneal fat pad weight was significantly greater (p ≤ 0.05) in the Cd-treated lean mice compared to saline-treated controls. Although this pilot study had relatively low N values (4 per treatment group for mice and 6 for rats) the results show that clinically relevant levels of Cd exposure resulted in diabetogenic as well as obesogenic effects. Full article
(This article belongs to the Special Issue Adverse Health Effects of Persistent Environmental Toxicants)
Show Figures

Figure 1

24 pages, 4368 KiB  
Article
Imipramine Accelerates Nonalcoholic Fatty Liver Disease, Renal Impairment, Diabetic Retinopathy, Insulin Resistance, and Urinary Chromium Loss in Obese Mice
by Geng-Ruei Chang, Po-Hsun Hou, Chao-Min Wang, Jen-Wei Lin, Wei-Li Lin, Tzu-Chun Lin, Huei-Jyuan Liao, Chee-Hong Chan and Yu-Chen Wang
Vet. Sci. 2021, 8(9), 189; https://doi.org/10.3390/vetsci8090189 - 9 Sep 2021
Cited by 7 | Viewed by 5152
Abstract
Imipramine is a tricyclic antidepressant that has been approved for treating depression and anxiety in patients and animals and that has relatively mild side effects. However, the mechanisms of imipramine-associated disruption to metabolism and negative hepatic, renal, and retinal effects are not well [...] Read more.
Imipramine is a tricyclic antidepressant that has been approved for treating depression and anxiety in patients and animals and that has relatively mild side effects. However, the mechanisms of imipramine-associated disruption to metabolism and negative hepatic, renal, and retinal effects are not well defined. In this study, we evaluated C57BL6/J mice subjected to a high-fat diet (HFD) to study imipramine’s influences on obesity, fatty liver scores, glucose homeostasis, hepatic damage, distribution of chromium, and retinal/renal impairments. Obese mice receiving imipramine treatment had higher body, epididymal fat pad, and liver weights; higher serum triglyceride, aspartate and alanine aminotransferase, creatinine, blood urea nitrogen, renal antioxidant enzyme, and hepatic triglyceride levels; higher daily food efficiency; and higher expression levels of a marker of fatty acid regulation in the liver compared with the controls also fed an HFD. Furthermore, the obese mice that received imipramine treatment exhibited insulin resistance, worse glucose intolerance, decreased glucose transporter 4 expression and Akt phosphorylation levels, and increased chromium loss through urine. In addition, the treatment group exhibited considerably greater liver damage and higher fatty liver scores, paralleling the increases in patatin-like phospholipid domain containing protein 3 and the mRNA levels of sterol regulatory element-binding protein 1 and fatty acid-binding protein 4. Retinal injury worsened in imipramine-treated mice; decreases in retinal cell layer organization and retinal thickness and increases in nuclear factor κB and inducible nitric oxide synthase levels were observed. We conclude that administration of imipramine may result in the exacerbation of nonalcoholic fatty liver disease, diabetes, diabetic retinopathy, and kidney injury. Full article
(This article belongs to the Special Issue Addressing New Therapeutic Strategies Using Models)
Show Figures

Figure 1

Back to TopTop