Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,514)

Search Parameters:
Keywords = environmental threats

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 6513 KB  
Article
Hydrochemical Evolution of Groundwater Under Landfill Leachate Influence: Case of the Tangier Municipal Site
by Mohamed-Amine Lahkim-Bennani, Abdelghani Afailal Tribak, Brunella Bonaccorso, Haitam Afilal and Abdelhamid Rossi
Sustainability 2026, 18(2), 965; https://doi.org/10.3390/su18020965 (registering DOI) - 17 Jan 2026
Abstract
Sustainable groundwater management is critical in semi-arid coastal regions, where municipal landfills pose a severe threat to aquifer integrity and long-term water security. However, there is still a lack of seasonally resolved hydrogeochemical monitoring around newly established landfills, particularly in rapidly urbanizing Mediterranean [...] Read more.
Sustainable groundwater management is critical in semi-arid coastal regions, where municipal landfills pose a severe threat to aquifer integrity and long-term water security. However, there is still a lack of seasonally resolved hydrogeochemical monitoring around newly established landfills, particularly in rapidly urbanizing Mediterranean settings. This study assesses the hydrogeochemical impact of the newly operational Tangier Landfill and Recovery Center on local groundwater resources to inform sustainable remediation strategies. A combined approach was applied to samples collected in dry and wet seasons, using Piper and Stiff diagrams to trace facies evolution together with a dual-index assessment based on the Canadian (CCME-WQI) and Weighted Arithmetic (WAWQI) Water Quality Indices. Results show that upgradient waters remain of Good–Excellent quality and are dominated by Ca–HCO3 facies, whereas downgradient wells display extreme mineralization, with EC up to 15,480 µS/cm and Cl and SO42− exceeding 1834 and 2114 mg/L, respectively. At hotspot sites P4 and P8, As reaches 0.065 mg/L and Cd 0.006 mg/L, far above the WHO drinking-water guidelines. While the CCME-WQI captures the general salinity-driven degradation pattern, the WAWQI pinpoints these acute toxicity zones as Very poor–Unsuitable. The study demonstrates that rainfall intensifies toxicity through a seasonal “Piston Effect” that mobilizes stored contaminants rather than diluting them, underscoring the need for seasonally adaptive monitoring to ensure the environmental sustainability of landfill-adjacent aquifers. Full article
(This article belongs to the Section Sustainable Water Management)
15 pages, 5047 KB  
Article
Bismuth Oxychloride@Graphene Oxide/Polyimide Composite Nanofiltration Membranes with Excellent Self-Cleaning Performance
by Runlin Han, Faxiang Feng, Zanming Zhu, Jiale Li, Yiting Kou, Chaowei Yan and Hongbo Gu
Separations 2026, 13(1), 37; https://doi.org/10.3390/separations13010037 (registering DOI) - 16 Jan 2026
Abstract
Organic pollution poses a serious threat to global water safety, while traditional treatment technologies suffer from low efficiency, high costs, and secondary pollution issues. This study successfully develops a highly efficient separation and photocatalytic degradation composite bismuth oxychloride@graphene oxide/polyimide (BiOCl@GO/PI) membrane by loading [...] Read more.
Organic pollution poses a serious threat to global water safety, while traditional treatment technologies suffer from low efficiency, high costs, and secondary pollution issues. This study successfully develops a highly efficient separation and photocatalytic degradation composite bismuth oxychloride@graphene oxide/polyimide (BiOCl@GO/PI) membrane by loading GO and BiOCl photocatalysts onto PI supporting membrane. The results show that this composite membrane achieves a rejection of 99.8% for methylene blue (MB) and 87.6% for tetracycline hydrochloride (TC). Under UV irradiation, the membrane exhibits a retention rate decline of only 6.8% after five cycles, with water flux stably maintaining at 605 L m−2 h−1 bar−1. Compared to dark conditions, it demonstrates remarkable flux recovery. This is attributed to the membrane’s excellent photocatalytic degradation activity under UV irradiation. After five degradation cycles, the degradation efficiency is decreased from 97.5 to 88.3%. Studies on radical scavengers indicate that UV irradiation generates free radicals, thereby conferring excellent catalytic activity to the membrane. Its unique synergistic effect between separation and photocatalysis endows it with outstanding self-cleaning performance. This research provides an innovative integrated solution for antibiotic pollution control, demonstrating significant potential for environmental applications. Full article
(This article belongs to the Section Materials in Separation Science)
32 pages, 1479 KB  
Review
Joining Forces Against Antibiotic Resistance in Aquaculture: The Synergism Between Natural Compounds and Antibiotics
by María Melissa Gutiérrez-Pacheco, Martina Hilda Gracia-Valenzuela, Luis Alberto Ortega-Ramirez, Francisco Javier Vázquez-Armenta, Juan Manuel Leyva, Jesús Fernando Ayala-Zavala and Andrés Francisco Chávez-Almanza
Antibiotics 2026, 15(1), 95; https://doi.org/10.3390/antibiotics15010095 - 16 Jan 2026
Abstract
The intensification of aquaculture practices has been accompanied by an increased incidence of bacterial diseases, leading to a greater reliance on antibiotics for disease control. Consequently, the widespread and often indiscriminate use of these compounds has contributed to the emergence and dissemination of [...] Read more.
The intensification of aquaculture practices has been accompanied by an increased incidence of bacterial diseases, leading to a greater reliance on antibiotics for disease control. Consequently, the widespread and often indiscriminate use of these compounds has contributed to the emergence and dissemination of antibiotic-resistant bacteria within aquaculture systems, posing a serious threat to animal health, environmental sustainability, and public health. In this regard, research efforts have focused on developing alternative strategies to reduce antibiotic use. Natural compounds have gained particular attention due to their well-documented antimicrobial and antibiofilm activities. In this context, the combined application of antibiotics and natural compounds has emerged as a promising approach to enhance antimicrobial efficacy while potentially mitigating the development of resistance. This review synthesizes the current knowledge on antibiotic resistance in aquaculture, highlights the role of biofilm formation as a key resistance mechanism, and critically examines the potential of antibiotic–natural compound combinations against major aquaculture pathogens, with particular emphasis on bacterial growth inhibition, biofilm disruption, and virulence attenuation. Collectively, the evidence discussed underscores the potential of synergistic strategies as a sustainable tool for improving disease management in aquaculture while supporting efforts to limit antibiotic resistance. Full article
(This article belongs to the Special Issue Challenges of Antibiotic Resistance: Biofilms and Anti-Biofilm Agents)
Show Figures

Graphical abstract

37 pages, 19894 KB  
Article
Sustainable Interpretation Center for Conservation and Environmental Education in Ecologically Sensitive Areas of the Tumbes Mangrove, Peru, 2025
by Doris Esenarro, Miller Garcia, Yerika Calampa, Patricia Vasquez, Duilio Aguilar Vizcarra, Carlos Vargas, Vicenta Irene Tafur Anzualdo, Jesica Vilchez Cairo and Pablo Cobeñas
Urban Sci. 2026, 10(1), 57; https://doi.org/10.3390/urbansci10010057 - 16 Jan 2026
Abstract
The continuous degradation of mangrove ecosystems, considered among the most vulnerable worldwide, reveals multiple threats driven by human activities and climate change. In the Peruvian context, particularly in the Tumbes Mangrove ecosystem, these pressures are intensified by the absence of integrated spatial and [...] Read more.
The continuous degradation of mangrove ecosystems, considered among the most vulnerable worldwide, reveals multiple threats driven by human activities and climate change. In the Peruvian context, particularly in the Tumbes Mangrove ecosystem, these pressures are intensified by the absence of integrated spatial and educational infrastructures capable of supporting conservation efforts while engaging local communities. In response, this research proposes a Sustainable Interpretation Center for Conservation and Environmental Education in Ecologically Sensitive Areas of the Tumbes Mangrove, Peru. The methodology includes climate data analysis, identification of local flora and fauna, and site topography characterization, supported by digital tools such as Google Earth, AutoCAD 2025, Revit 2025, and 3D Sun Path. The results are reflected in an architectural proposal that incorporates sustainable materials compatible with sensitive ecosystems, including eco-friendly structural solutions based on algarrobo timber, together with resilient strategies addressing climatic variability, such as lightweight structures, elevated platforms, and passive environmental solutions that minimize impact on the mangrove. Furthermore, the proposal integrates a photovoltaic energy system consisting of 12 solar panels with a unit capacity of 450 W, providing a total installed capacity of 5.4 kWp, complemented by a 48 V LiFePO4 battery storage system designed to ensure energy autonomy during periods of low solar availability. In conclusion, the proposal adheres to principles of sustainability and energy efficiency and aligns with the Sustainable Development Goals (SDGs) 7, 8, 12, 14, and 15, reinforcing the use of clean energy, responsible tourism, sustainable resource management, and the conservation of marine and terrestrial ecosystems. Full article
31 pages, 1076 KB  
Systematic Review
Alternative Tactics to Herbicides in Integrated Weed Management: A Europe-Centered Systematic Literature Review
by Lorenzo Gagliardi, Lorenzo Gabriele Tramacere, Daniele Antichi, Christian Frasconi, Massimo Sbrana, Gabriele Sileoni, Edoardo Monacci, Luciano Pagano, Nicoleta Darra, Olga Kriezi, Borja Espejo Garcia, Aikaterini Kasimati, Alexandros Tataridas, Nikolaos Antonopoulos, Ioannis Gazoulis, Erato Lazarou, Kevin Godfrey, Lynn Tatnell, Camille Guilbert, Fanny Prezman, Thomas Börjesson, Francisco Javier Rodríguez-Rigueiro, María Rosa Mosquera-Losada, Maksims Filipovics, Viktorija Zagorska and Spyros Fountasadd Show full author list remove Hide full author list
Agronomy 2026, 16(2), 220; https://doi.org/10.3390/agronomy16020220 - 16 Jan 2026
Abstract
Weeds pose a significant threat to crop yields, both in quantitative and qualitative terms. Modern agriculture relies heavily on herbicides; however, their excessive use can lead to negative environmental impacts. As a result, recent research has increasingly focused on Integrated Weed Management (IWM), [...] Read more.
Weeds pose a significant threat to crop yields, both in quantitative and qualitative terms. Modern agriculture relies heavily on herbicides; however, their excessive use can lead to negative environmental impacts. As a result, recent research has increasingly focused on Integrated Weed Management (IWM), which employs multiple complementary strategies to control weeds in a holistic manner. Nevertheless, large-scale adoption of this approach requires a solid understanding of the underlying tactics. This systematic review analyses recent studies (2013–2022) on herbicide alternatives for weed control across major cropping systems in the EU-27 and the UK, providing an overview of current knowledge, the extent to which IWM tactics have been investigated, and the main gaps that help define future research priorities. The review relied on the IWMPRAISE framework, which classifies weed control tactics into five pillars (direct control, field and soil management, cultivar choice and crop establishment, diverse cropping systems, and monitoring and evaluation) and used Scopus as a scientific database. The search yielded a total of 666 entries, and the most represented pillars were Direct Control (193), Diverse Cropping System (183), and Field and Soil Management (172). The type of crop most frequently studied was arable crops (450), and the macro-area where the studies were mostly conducted was Southern Europe (268). The tactics with the highest number of entries were Tillage Type and Cultivation Depth (110), Cover Crops (82), and Biological Control (72), while those with the lowest numbers were Seed Vigor (2) and Sowing Depth (2). Overall, this review identifies research gaps and sets priorities to boost IWM adoption, leading policy and funding to expand sustainable weed management across Europe. Full article
(This article belongs to the Section Weed Science and Weed Management)
Show Figures

Figure 1

14 pages, 6195 KB  
Article
Dual-Mode Detection of Perfluorooctanoic Acid Using Up-Conversion Fluorescent Silicon Quantum Dots–Molecularly Imprinted Polymers and Smartphone Sensing
by Hongli Ye, Xinran Wang, Xiangqian Xu, Hongyang Xu, Rui Yuan and Ping Cheng
Foods 2026, 15(2), 331; https://doi.org/10.3390/foods15020331 - 16 Jan 2026
Abstract
Perfluorooctanoic acid (PFOA) is a persistent and bioaccumulative hazardous pollutant, presenting substantial threats to the environment and human health. The dual-mode, portable, sensitive, low-background, and cost-effective detection methods for PFOA were developed by integrating up-conversion fluorescent silicon quantum dot–molecularly imprinted polymer (MIPs) with [...] Read more.
Perfluorooctanoic acid (PFOA) is a persistent and bioaccumulative hazardous pollutant, presenting substantial threats to the environment and human health. The dual-mode, portable, sensitive, low-background, and cost-effective detection methods for PFOA were developed by integrating up-conversion fluorescent silicon quantum dot–molecularly imprinted polymer (MIPs) with a smartphone-based sensing system. The interaction between PFOA and MIPs resulted in a fluorescence quenching with a range of 2–20 µmol/L and a limit of detection (LOD) of 37.5 nmol/L for the low-background up-conversion fluorescence detection of PFOA, whereas the portable smartphone sensing platform enabled the detection of PFOA with a linear range of 0–5 µmol/L and a LOD of 73.9 nmol/L. Furthermore, the established methods were successfully applied to the detection of PFOA in environmental waters and food samples. This study provides the dual-mode, portable, novel, practical and low-background approaches for the detection of PFOA in the environment and food products. Full article
(This article belongs to the Special Issue Advanced Analytical Methods for Food Safety and Composition Analysis)
Show Figures

Graphical abstract

16 pages, 773 KB  
Article
A Two-Year Study on Swifts (Apus spp.) as Bioindicators of Environmental Antimicrobial Resistance Within a One Health Framework
by Erika Esposito, Raffaele Scarpellini, Tiziano De Lorentis, Anna Zaghini, Giovanna Marliani, Elisabetta Mondo, Stefano Pesaro and Silvia Piva
Pathogens 2026, 15(1), 97; https://doi.org/10.3390/pathogens15010097 - 16 Jan 2026
Abstract
Antimicrobial resistance (AMR) is a global threat to human, animal and environmental health, underscoring the need for integrated surveillance to understand its dynamics and ecosystem interactions. This study investigated the potential of swifts (Apus spp.), long-distance migratory birds, as valuable bioindicators of [...] Read more.
Antimicrobial resistance (AMR) is a global threat to human, animal and environmental health, underscoring the need for integrated surveillance to understand its dynamics and ecosystem interactions. This study investigated the potential of swifts (Apus spp.), long-distance migratory birds, as valuable bioindicators of environmental AMR dissemination. Four sampling sessions were conducted over two years (2023–2024) at a wildlife rehabilitation center in Trieste, Italy. Buccal and cloacal swabs were collected from 47 swifts: 10 sampled at arrival and 37 before autumn migration. Swabs were streaked on selective media for targeted isolation of Enterobacterales, Bacillales and Lactobacillales, yielding 168 bacterial isolates. Bacteria were identified using MALDI-TOF and antimicrobial susceptibility was assessed through disk diffusion method, using ECOFFs values or “no inhibition zone” criterion. Of the 168 bacterial isolates, 51 (30.36%) were non-wild type (NWT), with highest percentages of NWT isolates for clarithromycin (33.33%), erythromycin (31.50%), clindamycin (21.88%) and tetracycline (14.29%). Methicillin-resistant staphylococci (45.83%) and carbapenem NWT isolates (9.38%) were also detected. Bacillales isolates showed significantly higher NWT proportion (58.33%; p < 0.0001) compared to Enterobacterales and Lactobacillales. These findings, in clinically healthy non-antimicrobial treated swifts, suggest environmental exposure to resistant bacteria, and support a possible role of swifts as bioindicators of environmental AMR contamination, highlighting the need to strengthen environmental AMR surveillance within a One Health perspective. Full article
(This article belongs to the Special Issue Bacterial Infections and Drug Resistance in Wildlife)
Show Figures

Figure 1

13 pages, 2699 KB  
Review
Regulatory Mechanisms of Zinc on Bacterial Antibiotic Resistance and Virulence in a One Health Context
by Yang Wang, Yue Li, Jingyi Wu, Mengge Shen, Aoqi Zhan, Yuxin Wang and Baobao Liu
Microbiol. Res. 2026, 17(1), 22; https://doi.org/10.3390/microbiolres17010022 - 15 Jan 2026
Viewed by 11
Abstract
Zinc (Zn), a ubiquitous environmental transition metal primarily existing as Zinc ions (Zn2+), plays a critical role in various biological processes. Its extensive application in agriculture, industry, and healthcare has led to significant environmental contamination. However, the mechanistic contribution of Zn [...] Read more.
Zinc (Zn), a ubiquitous environmental transition metal primarily existing as Zinc ions (Zn2+), plays a critical role in various biological processes. Its extensive application in agriculture, industry, and healthcare has led to significant environmental contamination. However, the mechanistic contribution of Zn2+ to bacterial antibiotic resistance and virulence remains insufficiently understood. This review explores the sources, cycling, and environmental accumulation of Zn2+ in a One Health context, emphasizing their impact on bacterial antibiotic resistance and virulence. Zn2+ promote bacterial antibiotic resistance by regulating efflux pumps, biofilm formation, expression and transfer of antibiotic resistance genes, as well as synergistic effects with other heavy metals and antibiotics. Meanwhile, Zn2+ promote bacterial virulence by regulating quorum sensing, secretion and metal homeostasis systems, as well as oxidative stress response and virulence factor expression. Additionally, it highlights the potential of targeting Zn homeostasis as a strategy to combat environmental antibiotic resistance. Collectively, these findings provide key insights into the mechanisms by which Zn2+ regulate bacterial antibiotic resistance and pathogenicity, offering valuable guidance for developing strategies to mitigate the global threat of antibiotic resistance. Full article
(This article belongs to the Special Issue Zoonotic Bacteria: Infection, Pathogenesis and Drugs—Second Edition)
Show Figures

Figure 1

14 pages, 32961 KB  
Article
Bioclimatic and Land Use/Land Cover Factors as Determinants of Crabronidae (Hymenoptera) Community Structure in Yunnan, China
by Nawaz Haider Bashir, Muhammad Naeem, Qiang Li and Huanhuan Chen
Insects 2026, 17(1), 100; https://doi.org/10.3390/insects17010100 - 15 Jan 2026
Viewed by 14
Abstract
Crabronid wasps (Hymenoptera: Crabronidae) are ecologically important predators that provide various ecological services by regulating the arthropod populations, enhancing soil processes through nesting, serving as sensitive indicators of habitat condition, and providing pollen transfer for plants. However, as other invertebrates face biodiversity threats, [...] Read more.
Crabronid wasps (Hymenoptera: Crabronidae) are ecologically important predators that provide various ecological services by regulating the arthropod populations, enhancing soil processes through nesting, serving as sensitive indicators of habitat condition, and providing pollen transfer for plants. However, as other invertebrates face biodiversity threats, these wasps might be under threat from environmental changes, and we need to assess the biodiversity patterns of these wasps in Yunnan Province. Unfortunately, no information is currently available about the pattern and factors responsible for the assemblages of these wasps within our study region. This study provides the first province-level assessment of habitat suitability, species richness, assemblage structure, and environmental determinants for Crabronidae in Yunnan by integrating species distribution modeling (SDM), multivariate clustering, and ordination analyses. More than 50 species were studied to assess habitat suitability in Yunnan using MaxEnt. Model performance was robust (AUC > 0.7). Suitability patterns varied distinctly among regions. Species richness peaked in southern Yunnan, particularly in the counties of Jinghong, Mengla, Menghai, and Jiangcheng Hani & Yi. Land use/land cover (LULC) variables were the dominant predictors for 90% of species, whereas precipitation-related variables contributed most strongly to the remaining 10%. Ward’s hierarchical clustering grouped the 125 counties into three community assemblage zones, with Zone III comprising the most significant area. A unique species composition was found within a particular zone, and clear separation among zones based on environmental variation was supported by Principal Component Analysis (PCA), which explained more than 70% variability among zones. Furthermore, Canonical Correspondence Analysis (CCA) indicated that both LULC and climatic factors shaped community structure assemblages, with axes 1 and 2 explaining 70% of variance (p = 0.001). The most relevant key factors in each zone were precipitation variables (bio12, bio14, bio17), which were dominant in Zone I; for Zone II, temperature and vegetation variables were most important; and urban, wetland, and water variables were most important in Zone III. Full article
Show Figures

Figure 1

17 pages, 3431 KB  
Review
Conservation and Sustainable Development of Rice Landraces for Enhancing Resilience to Climate Change, with a Case Study of ‘Pantiange Heigu’ in China
by Shuyan Kou, Zhulamu Ci, Weihua Liu, Zhigang Wu, Huipin Peng, Pingrong Yuan, Cheng Jiang, Huahui Li, Elsayed Mansour and Ping Huang
Life 2026, 16(1), 143; https://doi.org/10.3390/life16010143 - 15 Jan 2026
Viewed by 33
Abstract
Climate change poses a threat to global rice production by increasing the frequency and intensity of extreme weather events. The widespread cultivation of genetically uniform modern varieties has narrowed the genetic base of rice, increasing its vulnerability to these increased pressures. Rice landraces [...] Read more.
Climate change poses a threat to global rice production by increasing the frequency and intensity of extreme weather events. The widespread cultivation of genetically uniform modern varieties has narrowed the genetic base of rice, increasing its vulnerability to these increased pressures. Rice landraces are traditional rice varieties that have been cultivated by farming communities for centuries and are considered crucial resources of genetic diversity. These landraces are adapted to a wide range of agro-ecological environments and exhibit valuable traits that provide tolerance to various biotic stresses, including drought, salinity, nutrient-deficient soils, and the increasing severity of climate-related temperature extremes. In addition, many landraces possess diverse alleles associated with resistance to biotic stresses, including pests and diseases. In addition, rice landraces exhibit great grain quality characters including high levels of essential amino acids, antioxidants, flavonoids, vitamins, and micronutrients. Hence, their preservation is vital for maintaining agricultural biodiversity and enhancing nutritional security, especially in vulnerable and resource-limited regions. However, rice landraces are increasingly threatened by genetic erosion due to widespread adoption of modern high-yielding varieties, habitat loss, and changing farming practices. This review discusses the roles of rice landraces in developing resilient and climate-smart rice cultivars. Moreover, the Pantiange Heigu landrace, cultivated at one of the highest altitudes globally in Yunnan Province, China, has been used as a case study for integrated conservation by demonstrating the successful combination of in situ and ex situ strategies, community engagement, policy support, and value-added development to sustainably preserve genetic diversity under challenging environmental and socio-economic challenges. Finally, this study explores the importance of employing advanced genomic technologies with supportive policies and economic encouragements to enhance conservation and sustainable development of rice landraces as a strategic imperative for global food security. By preserving and enhancing the utilization of rice landraces, the agricultural community can strengthen the genetic base of rice, improve crop resilience, and contribute substantially to global food security and sustainable agricultural development in the face of environmental and socio-economic challenges. Full article
(This article belongs to the Section Plant Science)
Show Figures

Figure 1

15 pages, 22627 KB  
Article
Long-Read Metagenomics Profiling for Identification of Key Microorganisms Affected by Heavy Metals at Technogenic Zones
by Iskander Isgandarov, Zhanar Abilda, Rakhim Kanat, Dias Daurov, Zagipa Sapakhova, Ainash Daurova, Kabyl Zhambakin, Dmitriy Volkov, Abylay Begaly and Malika Shamekova
Microorganisms 2026, 14(1), 196; https://doi.org/10.3390/microorganisms14010196 - 15 Jan 2026
Viewed by 70
Abstract
Heavy metal pollution poses a serious threat to soil ecosystems worldwide, as long-term exposure can alter microbial community functioning and reduce overall ecosystem resilience. This study investigated the impact of heavy metal contamination in technogenic industrial areas of the East Kazakhstan Region on [...] Read more.
Heavy metal pollution poses a serious threat to soil ecosystems worldwide, as long-term exposure can alter microbial community functioning and reduce overall ecosystem resilience. This study investigated the impact of heavy metal contamination in technogenic industrial areas of the East Kazakhstan Region on soil microbial communities. Soil samples were collected for chemical and metagenomic analyses. Concentrations of Zn, Pb, Cu, and Cd were quantified by flame atomic absorption spectrometry (FAAS). Using long-read whole-metagenome nanopore sequencing, we conducted strain-level profiling of soils with different levels of metal contamination. This approach provided high-resolution taxonomic data, enabling detailed characterization of microbial community structure. Heavy metal exposure did not significantly reduce microbial diversity or richness but influences the quality of community composition. Metal-resistant taxa dominated contaminated soils. Overall, the results highlight the value of long-read sequencing for resolving strain-level responses to environmental contamination. Full article
Show Figures

Figure 1

20 pages, 5425 KB  
Review
From Emissions to Assets: Sustainable Technologies for CO2 Capture, Conversion, and Integrated Strategies
by Shokouh Masoumilari, Zohreh Masoumi, Alireza Mahvelati Shamsabadi, Daeseung Kyung and Meysam Tayebi
Int. J. Mol. Sci. 2026, 27(2), 847; https://doi.org/10.3390/ijms27020847 - 14 Jan 2026
Viewed by 171
Abstract
Addressing the growing threat of climate change requires urgent and sustainable solutions for managing carbon dioxide (CO2) emissions. This review investigates the latest advancements in technologies for capturing and converting CO2, with a focus on approaches that prioritize energy [...] Read more.
Addressing the growing threat of climate change requires urgent and sustainable solutions for managing carbon dioxide (CO2) emissions. This review investigates the latest advancements in technologies for capturing and converting CO2, with a focus on approaches that prioritize energy efficiency, environmental compatibility, and economic viability. Emerging strategies in CO2 capture are discussed, with attention to low-carbon-intensity materials and scalable designs. In parallel, innovative CO2 conversion pathways, such as thermocatalytic, electrocatalytic, and photochemical processes, are evaluated for their potential to transform CO2 into valuable chemicals and fuels. A growing body of research now focuses on integrating capture and conversion into unified systems, eliminating energy-intensive intermediate steps like compression and transportation. These integrated carbon capture and conversion/utilization (ICCC/ICCU) technologies have gained significant attention as promising strategies for sustainable carbon management. By bridging the gap between CO2 separation and reuse, these sustainable technologies are poised to play a transformative role in the transition to a low-carbon future. Full article
(This article belongs to the Special Issue Recent Research on Optoelectronic Materials)
Show Figures

Graphical abstract

27 pages, 4033 KB  
Article
Lightweight Fine-Tuning for Pig Cough Detection
by Xu Zhang, Baoming Li and Xiaoliu Xue
Animals 2026, 16(2), 253; https://doi.org/10.3390/ani16020253 - 14 Jan 2026
Viewed by 69
Abstract
Respiratory diseases pose a significant threat to intensive pig farming, and cough recognition serves as a key indicator for early intervention. However, its practical application is constrained by the scarcity of labeled samples and the complex acoustic conditions of farm environments. To address [...] Read more.
Respiratory diseases pose a significant threat to intensive pig farming, and cough recognition serves as a key indicator for early intervention. However, its practical application is constrained by the scarcity of labeled samples and the complex acoustic conditions of farm environments. To address these challenges, this study proposes a lightweight pig cough recognition method based on a pre-trained model. By freezing the backbone of a pre-trained audio neural network and fine-tuning only the classifier, our approach achieves effective knowledge transfer and domain adaptation with very limited data. We further enhance the model’s ability to capture temporal–spectral features of coughs through a time–frequency dual-stream module. On a dataset consisting of 107 cough events and 590 environmental noise clips, the proposed method achieved an accuracy of 94.59% and an F1-score of 92.86%, significantly outperforming several traditional machine learning and deep learning baseline models. Ablation studies validated the effectiveness of each component, with the model attaining a mean accuracy of 96.99% in cross-validation and demonstrating good calibration. The results indicate that our framework can achieve high-accuracy and well-generalized pig cough recognition under small-sample conditions. The main contribution of this work lies in proposing a lightweight fine-tuning paradigm for small-sample audio recognition in agricultural settings, offering a reliable technical solution for early warning of respiratory diseases on farms. It also highlights the potential of transfer learning in resource-limited scenarios. Full article
(This article belongs to the Section Pigs)
Show Figures

Figure 1

30 pages, 6190 KB  
Article
A Multi-Temporal Sentinel-2 and Machine Learning Approach for Precision Burned Area Mapping: The Sardinia Case Study
by Claudia Collu, Dario Simonetti, Francesco Dessì, Marco Casu, Costantino Pala and Maria Teresa Melis
Remote Sens. 2026, 18(2), 267; https://doi.org/10.3390/rs18020267 - 14 Jan 2026
Viewed by 79
Abstract
The escalating threat of wildfires under global climate change necessitates rigorous monitoring to mitigate environmental and socio-economic risks. Burned area (BA) mapping is crucial for understanding fire dynamics, assessing ecosystem impacts, and supporting sustainable land management under increasing fire frequency. This study aims [...] Read more.
The escalating threat of wildfires under global climate change necessitates rigorous monitoring to mitigate environmental and socio-economic risks. Burned area (BA) mapping is crucial for understanding fire dynamics, assessing ecosystem impacts, and supporting sustainable land management under increasing fire frequency. This study aims to develop a high-resolution detection framework specifically calibrated for Mediterranean environmental conditions, ensuring the production of consistent and accurate annual BA maps. Using Sentinel-2 MSI time series over Sardinia (Italy), the research objectives were to: (i) integrate field surveys with high-resolution photointerpretation to build a robust, locally tuned training dataset; (ii) evaluate the discriminative power of multi-temporal spectral indices; and (iii) implement a Random Forest classifier capable of providing higher spatial precision than current operational products. Validation results show a Dice Coefficient (DC) of 91.8%, significantly outperforming the EFFIS Burnt Area product (DC = 79.9%). The approach proved particularly effective in detecting small and rapidly recovering fires, often underrepresented in existing datasets. While inaccuracies persist due to cloud cover and landscape heterogeneity, this study demonstrates the effectiveness of a machine learning approach for long-term monitoring, for generating multi-year wildfire inventories, offering a vital tool for data-driven forest policy, vegetation recovery assessment and land-use change analysis in fire-prone regions. Full article
Show Figures

Graphical abstract

26 pages, 6265 KB  
Article
Impacts of Heatwaves on the Indoor Microclimate of Heritage Buildings Under Climate Change: A Case Study of the Malatestiana Library
by Kristian Fabbri, Antonella Mazzone and Paolo Zanfini
Sustainability 2026, 18(2), 842; https://doi.org/10.3390/su18020842 - 14 Jan 2026
Viewed by 118
Abstract
The IPCC has emphasised the increasing impacts of climate change across multiple sectors, including cultural heritage. In response, UNESCO launched the Policy Document on Climate Action for World Heritage in 2023, offering guidance on mitigation strategies for historic sites. Cultural heritage faces risks [...] Read more.
The IPCC has emphasised the increasing impacts of climate change across multiple sectors, including cultural heritage. In response, UNESCO launched the Policy Document on Climate Action for World Heritage in 2023, offering guidance on mitigation strategies for historic sites. Cultural heritage faces risks not only from sudden catastrophic events—such as floods, droughts, and wildfires—but also from the gradual deterioration of buildings and artefacts due to shifting environmental conditions. Climate change further affects the indoor microclimate of heritage sites, including museums, archives, and libraries, which are critical to the long-term preservation of cultural assets. Heritage, including heritage buildings and both tangible and intangible heritages, are subject to changes; therefore, their conservation should be assessed to identify sustainable approaches. This study investigates how climate change and microclimate alterations impact the conservation of historic buildings without modern climate control, using the Malatestiana Library—a UNESCO Memory of the World site—as a case study. The library has preserved a remarkably stable indoor environment for centuries, without the introduction of heating, cooling, or major restorations. A monitoring campaign during the summer of 2024 assessed the effects of extreme heat events on the library’s microclimate, comparing two internal spaces to examine the attic’s role in mitigating thermal stress. Data from the 2024 heatwave are also compared with similar data collected in 2013. Results show a marked shift toward a more tropical indoor climate over the past decade, signalling new threats to the preservation of historic materials. These findings highlight the urgent need for adaptive conservation strategies to address the evolving challenges posed by climate change. Full article
(This article belongs to the Section Air, Climate Change and Sustainability)
Show Figures

Figure 1

Back to TopTop