Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (13,808)

Search Parameters:
Keywords = environmental friendliness

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 6388 KiB  
Article
Spatial–Temporal Hotspot Management of Photovoltaic Modules Based on Fiber Bragg Grating Sensor Arrays
by Haotian Ding, Rui Guo, Huan Xing, Yu Chen, Jiajun He, Junxian Luo, Maojie Chen, Ye Chen, Shaochun Tang and Fei Xu
Sensors 2025, 25(15), 4879; https://doi.org/10.3390/s25154879 (registering DOI) - 7 Aug 2025
Abstract
Against the backdrop of an urgent energy crisis, solar energy has attracted sufficient attention as one of the most inexhaustible and friendly types of environmental energy. Faced with long service and harsh environment, the poor performance ratios of photovoltaic arrays and safety hazards [...] Read more.
Against the backdrop of an urgent energy crisis, solar energy has attracted sufficient attention as one of the most inexhaustible and friendly types of environmental energy. Faced with long service and harsh environment, the poor performance ratios of photovoltaic arrays and safety hazards are frequently boosted worldwide. In particular, the hot spot effect plays a vital role in weakening the power generation performance and reduces the lifetime of photovoltaic (PV) modules. Here, our research reports a spatial–temporal hot spot management system integrated with fiber Bragg grating (FBG) temperature sensor arrays and cooling hydrogels. Through finite element simulations and indoor experiments in laboratory conditions, a superior cooling effect of hydrogels and photoelectric conversion efficiency improvement have been demonstrated. On this basis, field tests were carried out in which the FBG arrays detected the surface temperature of the PV module first, and then a classifier based on an optimized artificial neural network (ANN) recognized hot spots with an accuracy of 99.1%. The implementation of cooling hydrogels as a feedback mechanism achieved a 7.7 °C reduction in temperature, resulting in a 5.6% enhancement in power generation efficiency. The proposed strategy offers valuable insights for conducting predictive maintenance of PV power plants in the case of hot spots. Full article
Show Figures

Figure 1

24 pages, 3156 KiB  
Article
Study on Gel–Resin Composite for Losting Circulation Control to Improve Plugging Effect in Fracture Formation
by Jinzhi Zhu, Tao Wang, Shaojun Zhang, Yingrui Bai, Guochuan Qin and Jingbin Yang
Gels 2025, 11(8), 617; https://doi.org/10.3390/gels11080617 (registering DOI) - 7 Aug 2025
Abstract
Lost circulation, a prevalent challenge in drilling engineering, poses significant risks including drilling fluid loss, wellbore instability, and environmental contamination. Conventional plugging materials often exhibit an inadequate performance under high-temperature, high-pressure (HTHP), and complex formation conditions. To address that, this study developed a [...] Read more.
Lost circulation, a prevalent challenge in drilling engineering, poses significant risks including drilling fluid loss, wellbore instability, and environmental contamination. Conventional plugging materials often exhibit an inadequate performance under high-temperature, high-pressure (HTHP), and complex formation conditions. To address that, this study developed a high-performance gel–resin composite plugging material resistant to HTHP environments. By optimizing the formulation of bisphenol-A epoxy resin (20%), hexamethylenetetramine (3%), and hydroxyethyl cellulose (1%), and incorporating fillers such as nano-silica and walnut shell particles, a controllable high-strength plugging system was constructed. Fourier-transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA) confirmed the structural stability of the resin, with an initial decomposition temperature of 220 °C and a compressive strength retention of 14.4 MPa after 45 days of aging at 140 °C. Rheological tests revealed shear-thinning behavior (initial viscosity: 300–350 mPa·s), with viscosity increasing marginally to 51 mPa·s after 10 h of stirring at ambient temperature, demonstrating superior pumpability. Experimental results indicated excellent adaptability of the system to drilling fluid contamination (compressive strength: 5.04 MPa at 20% dosage), high salinity (formation water salinity: 166.5 g/L), and elevated temperatures (140 °C). In pressure-bearing plugging tests, the resin achieved a breakthrough pressure of 15.19 MPa in wedge-shaped fractures (inlet: 7 mm/outlet: 5 mm) and a sand-packed tube sealing pressure of 11.25 MPa. Acid solubility tests further demonstrated outstanding degradability, with a 97.69% degradation rate after 24 h in 15% hydrochloric acid at 140 °C. This study provides an efficient, stable, and environmentally friendly solution for mitigating drilling fluid loss in complex formations, exhibiting significant potential for engineering applications. Full article
(This article belongs to the Special Issue Gels for Oil and Gas Industry Applications (3rd Edition))
22 pages, 4006 KiB  
Article
Biochar and Melatonin Partnership Mitigates Arsenic Toxicity in Rice by Modulating Antioxidant Defense, Phytochelatin Synthesis, and Down-Regulating the Transporters Involved in Arsenic Uptake
by Mehmood Ali Noor, Muhammad Umair Hassan, Tahir Abbas Khan, Baoyuan Zhou and Guoqin Huang
Plants 2025, 14(15), 2453; https://doi.org/10.3390/plants14152453 (registering DOI) - 7 Aug 2025
Abstract
Arsenic (As) contamination has significantly increased in recent decades due to anthropogenic activities. This is a serious challenge for human health, environmental quality, and crop productivity. Biochar (BC) is an important practice used globally to remediate polluted soils. Likewise, melatonin (MT) has also [...] Read more.
Arsenic (As) contamination has significantly increased in recent decades due to anthropogenic activities. This is a serious challenge for human health, environmental quality, and crop productivity. Biochar (BC) is an important practice used globally to remediate polluted soils. Likewise, melatonin (MT) has also shown tremendous results in mitigating metal toxicity and improving crop productivity. Nevertheless, the mechanism of combined BC and MT in alleviating As toxicity in rice (Oryza sativa L.) remains unexplored. In this study, we investigated how As affected rice and how the combined BC and MT facilitated As tolerance. The study comprised a control, As stress (100 mg kg−1), As stress (100 mg kg−1) + BC (2%), As stress (100 mg kg−1) + MT (100 µM) and As stress (100 mg kg−1) + BC (2%) + MT (100 µM). Arsenic significantly decreased rice growth and yield by increasing electrolyte leakage (EL), malondialdehyde (MDA), and hydrogen peroxide (H2O2). Co-applying BC and MT substantially enhanced rice growth and yield by increasing chlorophyll synthesis (48.12–92.42%) leaf water contents (40%), antioxidant activities (ascorbate peroxide: 56.43%, catalase: 55.14%, peroxidase: 57.77% and superoxide dismutase: 57.52%), proline synthesis (41.35%), MT synthesis (91.53%), and phytochelatins synthesis (125%) nutrient accumulation in rice seedlings and soil nutrient availability. The increased rice yield with BC + MT was also linked with reduced H2O2 production, As accumulation, soil As availability, and an increase in OsAPx6, OsCAT, OsPOD, OsSOD OsASMT1, and OsASMT2 and a decrease in expression of OsABCC1. Biochar + MT enhanced residual OM- and Fe, ((Fe2As) and Mn (Mn3(AsO4)2) bound forms of As leading to a substantial increase in rice growth and yield. Thus, the combination of BC and MT is an eco-friendly approach to mitigate As toxicity and improve rice productivity. Full article
Show Figures

Figure 1

23 pages, 714 KiB  
Article
Thermodynamic Analysis of Biomass Pyrolysis in an Auger Reactor Coupled with a Fluidized-Bed Reactor for Catalytic Deoxygenation
by Balkydia Campusano, Michael Jabbour, Lokmane Abdelouahed and Bechara Taouk
Processes 2025, 13(8), 2496; https://doi.org/10.3390/pr13082496 (registering DOI) - 7 Aug 2025
Abstract
This research contributes to advance the sustainable production of biofuels and provides insights into the energy and exergy assessment of bio-oil, which is essential for developing environmentally friendly energy production solutions. Energy and exergy analyses were performed to evaluate the pyrolysis of beech [...] Read more.
This research contributes to advance the sustainable production of biofuels and provides insights into the energy and exergy assessment of bio-oil, which is essential for developing environmentally friendly energy production solutions. Energy and exergy analyses were performed to evaluate the pyrolysis of beech wood biomass at 500 °C in an Auger reactor. To improve the quality of the obtained bio-oil, its catalytic deoxygenation was performed within an in-line fluidized catalytic bed reactor using a catalyst based on HZSM5 zeolite modified with 5 wt.% Iron (5%FeHZSM-5). A thermodynamic analysis of the catalytic and non-catalytic pyrolysis system was carried out, as well as a comparative study of the calculation methods for the energy and exergy evaluation for bio-oil. The required heat for pyrolysis was found to be 1.2 MJ/kgbiomass in the case of non-catalytic treatment and 3.46 MJ/kgbiomass in the presence of the zeolite-based catalyst. The exergy efficiency in the Auger reactor was 90.3%. Using the catalytic system coupled to the Auger reactor, this efficiency increased to 91.6%, leading to less energy degradation. Calculating the total energy and total exergy of the bio-oil using two different methods showed a difference of 6%. In the first method, only the energy contributions of the model compounds, corresponding to the major compounds of each chemical family of bio-oil, were considered. In contrast, in the second method, all molecules identified in the bio-oil were considered for the calculation. The second method proved to be more suitable for thermodynamic analysis. The novelties of this work concern the thermodynamic analysis of a coupled system of an Auger biomass pyrolysis reactor and a fluidized bed catalytic deoxygenation reactor on the one hand, and the use of all the molecules identified in the oily phase for the evaluation of energy and exergy on the other hand. Full article
(This article belongs to the Section Chemical Processes and Systems)
24 pages, 3629 KiB  
Article
Chlorography or Chlorotyping from the Decomposition of Chlorophyll and Natural Pigments in Leaves and Flowers as a Natural Alternative for Photographic Development
by Andrea D. Larrea Solórzano, Iván P. Álvarez Lizano, Pablo R. Morales Fiallos, Carolina E. Maldonado Cherrez and Carlos S. Suárez Naranjo
J. Zool. Bot. Gard. 2025, 6(3), 41; https://doi.org/10.3390/jzbg6030041 - 7 Aug 2025
Abstract
This study explores the use of chlorography as a natural photographic developing technique that utilizes the decomposition of chlorophyll and other plant pigments through the action of sunlight. The developed images corresponded to previous research on changes in the iconography of the indigenous [...] Read more.
This study explores the use of chlorography as a natural photographic developing technique that utilizes the decomposition of chlorophyll and other plant pigments through the action of sunlight. The developed images corresponded to previous research on changes in the iconography of the indigenous Salasaka people. In this context, this experimental project on natural photography is oriented toward the conservation of the ancestral knowledge of this community and the understanding of the native flora of Ecuador. We investigated the application of the contact image transfer technique with positive transparencies on leaves and flowers of 30 different species that grow in the Ecuadorian highlands, including leaves of vascular plants, as well as rose petals. The results showed that the clarity and contrast of chlorography depended on the plant species and exposure time. It was observed that fruit-bearing species produced more visible images than the leaves of other plants and rose petals, with species from the Passifloraceae family proving particularly effective. We interpreted these findings within the framework of plant photophysical mechanisms, proposing an inverse relationship between development efficiency and species’ non-photochemical quenching (NPQ) capacity. Furthermore, we interpreted the findings in relation to the photobleaching of pigments and compared chlorography with other natural photographic processes such as anthotypes. Key factors influencing the process were identified, such as the type of leaf, the intensity and duration of light, and the hydration of the plant material. It is concluded that chlorography is a viable, non-toxic, and environmentally friendly photographic alternative with potential applications in art, education, and research, although it presents challenges in terms of image permanence and reproducibility. Full article
Show Figures

Figure 1

13 pages, 2770 KiB  
Article
Tribocatalytic Degradation of Organic Dyes by Disk-Shaped PTFE and Titanium: A Powder-Free Catalytic Technology for Wastewater Treatment
by Hanze Zhu, Zeren Zhou, Senhua Ke, Chenyue Mao, Jiannan Song and Wanping Chen
Catalysts 2025, 15(8), 754; https://doi.org/10.3390/catal15080754 - 7 Aug 2025
Abstract
Tribocatalysis is receiving more and more attention for its great potential in environmental remediation. In this study, a special tribocatalysis was explored as a powder-free catalytic technology for the degradation of organic dyes. Polytetrafluoroethylene (PTFE) and titanium (Ti) disks were first assembled as [...] Read more.
Tribocatalysis is receiving more and more attention for its great potential in environmental remediation. In this study, a special tribocatalysis was explored as a powder-free catalytic technology for the degradation of organic dyes. Polytetrafluoroethylene (PTFE) and titanium (Ti) disks were first assembled as magnetic rotary disks and then driven to rotate through magnetic stirring in dye solutions in beakers with PTFE, Ti, and Al2O3 disks coated on bottoms separately. PTFE and Ti generated dynamic friction with the disks on the beaker bottoms in the course of magnetic stirring, from which some interesting dye degradations resulted. Among those dynamic frictions generated, 40 mg/L rhodamine b (RhB), 30 mg/L methyl orange (MO), and 20 mg/L methylene blue (MB) were effectively degraded by the one between PTFE and PTFE, the one between Ti and Ti, and the one between PTFE and Ti, respectively. Hydroxyl radicals and superoxide radicals were detected for two frictions, one between PTFE and PTFE and the other between Ti and Ti. It is proposed that Ti in friction increases the pressure in blocked areas through deformation and then catalyzes reactions under high pressure. Mechano-radicals are formed by PTFE through deformation, and are responsible for dye degradation. This work demonstrates a powder-free tribocatalysis for organic pollutant degradation and suggests an especially eco-friendly catalytic technology to wastewater treatment. Full article
(This article belongs to the Special Issue Environmentally Friendly Catalysis for Green Future)
Show Figures

Figure 1

24 pages, 23907 KiB  
Article
Optimizing Data Pipelines for Green AI: A Comparative Analysis of Pandas, Polars, and PySpark for CO2 Emission Prediction
by Youssef Mekouar, Mohammed Lahmer and Mohammed Karim
Computers 2025, 14(8), 319; https://doi.org/10.3390/computers14080319 - 7 Aug 2025
Abstract
This study evaluates the performance and energy trade-offs of three popular data processing libraries—Pandas, PySpark, and Polars—applied to GreenNav, a CO2 emission prediction pipeline for urban traffic. GreenNav is an eco-friendly navigation app designed to predict CO2 emissions and determine low-carbon [...] Read more.
This study evaluates the performance and energy trade-offs of three popular data processing libraries—Pandas, PySpark, and Polars—applied to GreenNav, a CO2 emission prediction pipeline for urban traffic. GreenNav is an eco-friendly navigation app designed to predict CO2 emissions and determine low-carbon routes using a hybrid CNN-LSTM model integrated into a complete pipeline for the ingestion and processing of large, heterogeneous geospatial and road data. Our study quantifies the end-to-end execution time, cumulative CPU load, and maximum RAM consumption for each library when applied to the GreenNav pipeline; it then converts these metrics into energy consumption and CO2 equivalents. Experiments conducted on datasets ranging from 100 MB to 8 GB demonstrate that Polars in lazy mode offers substantial gains, reducing the processing time by a factor of more than twenty, memory consumption by about two-thirds, and energy consumption by about 60%, while maintaining the predictive accuracy of the model (R2 ≈ 0.91). These results clearly show that the careful selection of data processing libraries can reconcile high computing performance and environmental sustainability in large-scale machine learning applications. Full article
(This article belongs to the Section Internet of Things (IoT) and Industrial IoT)
Show Figures

Figure 1

35 pages, 1831 KiB  
Review
Pesticide Degradation: Impacts on Soil Fertility and Nutrient Cycling
by Muhammad Yasir, Abul Hossain and Anubhav Pratap-Singh
Environments 2025, 12(8), 272; https://doi.org/10.3390/environments12080272 - 7 Aug 2025
Abstract
The widespread use of pesticides in modern agriculture has significantly enhanced food production by managing pests and diseases; however, their degradation in soil can lead to unintended consequences for soil fertility and nutrient cycling. This review explores the mechanisms of pesticide degradation, both [...] Read more.
The widespread use of pesticides in modern agriculture has significantly enhanced food production by managing pests and diseases; however, their degradation in soil can lead to unintended consequences for soil fertility and nutrient cycling. This review explores the mechanisms of pesticide degradation, both abiotic and biotic, and the soil factors influencing these processes. It critically examines how degradation products impact soil microbial communities, organic matter decomposition, and key nutrient cycles, including nitrogen, phosphorus, potassium, and micronutrients. This review highlights emerging evidence linking pesticide residues with altered enzymatic activity, disrupted microbial populations, and reduced nutrient bioavailability, potentially compromising soil structure, water retention, and long-term productivity. Additionally, it discusses the broader environmental and agricultural implications, including decreased crop yields, biodiversity loss, and groundwater contamination. Sustainable management strategies such as bioremediation, the use of biochar, eco-friendly pesticides, and integrated pest management (IPM) are evaluated for mitigating these adverse effects. Finally, this review outlines future research directions emphasizing long-term studies, biotechnology innovations, and predictive modeling to support resilient agroecosystems. Understanding the intricate relationship between pesticide degradation and soil health is crucial to ensuring sustainable agriculture and food security. Full article
(This article belongs to the Special Issue Coping with Climate Change: Fate of Nutrients and Pollutants in Soil)
Show Figures

Figure 1

15 pages, 5141 KiB  
Article
Efficient Copper Biosorption by Rossellomorea sp. ZC255: Strain Characterization, Kinetic–Equilibrium Analysis, and Genomic Perspectives
by Hao-Tong Han, Han-Sheng Zhu, Jin-Tao Zhang, Xin-Yun Tan, Yan-Xin Wu, Chang Liu, Xin-Yu Liu and Meng-Qi Ye
Microorganisms 2025, 13(8), 1839; https://doi.org/10.3390/microorganisms13081839 - 7 Aug 2025
Abstract
Heavy metal pollution, particularly copper contamination, threatens the ecological environment and human survival. In response to this pressing environmental issue, the development of innovative remediation strategies has become imperative. Bioremediation technology is characterized by remarkable advantages, including its ecological friendliness, cost-effectiveness, and operational [...] Read more.
Heavy metal pollution, particularly copper contamination, threatens the ecological environment and human survival. In response to this pressing environmental issue, the development of innovative remediation strategies has become imperative. Bioremediation technology is characterized by remarkable advantages, including its ecological friendliness, cost-effectiveness, and operational efficiency. In our previous research, Rossellomorea sp. ZC255 demonstrated substantial potential for environmental bioremediation applications. This study investigated the removal characteristics and underlying mechanism of strain ZC255 and revealed that the maximum removal capacity was 253.4 mg/g biomass under the optimal conditions (pH 7.0, 28 °C, and 2% inoculum). The assessment of the biosorption process followed pseudo-second-order kinetics, while the adsorption isotherm may fit well with both the Langmuir and Freundlich models. Cell surface alterations on the Cu(II)-treated biomass were observed through scanning electron microscopy (SEM). Cu(II) binding functional groups were determined via Fourier transform infrared spectroscopy (FTIR) analysis. Simultaneously, the genomic analysis of strain ZC255 identified multiple genes potentially involved in heavy metal resistance, transport, and metabolic processes. These studies highlight the significance of strain ZC255 in the context of environmental heavy metal bioremediation research and provide a basis for using strain ZC255 as a copper removal biosorbent. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

21 pages, 885 KiB  
Article
Synergistic Effect of Community Environment on Cognitive Function in Elderly People
by Tao Shen, Ying Li and Man Zhang
Buildings 2025, 15(15), 2792; https://doi.org/10.3390/buildings15152792 - 7 Aug 2025
Abstract
With rapid global aging, the community environment has become a critical factor influencing cognitive health in older adults. However, most existing studies focus on single environmental attributes and rely on linear analytical methods, which fail to capture the complex and synergistic effects of [...] Read more.
With rapid global aging, the community environment has become a critical factor influencing cognitive health in older adults. However, most existing studies focus on single environmental attributes and rely on linear analytical methods, which fail to capture the complex and synergistic effects of community features. Guided by an integrated theoretical perspective on environmental psychology, aging, and cognitive health, this study examines how multiple community environmental factors jointly affect cognitive function in elderly people. A case study was conducted among 215 older residents in Shanghai, China. An exploratory factor analysis (EFA) identified the following five key dimensions of community environment: pedestrian friendliness, blue–green spaces, infrastructure, space attractiveness, and safety. We then applied both Partial Least Squares Structural Equation Modeling (PLS-SEM) and Fuzzy Set Qualitative Comparative Analysis (fsQCA) to reveal linear and configurational relationships. The findings showed that pedestrian friendliness, blue–green spaces, and space attractiveness significantly enhance cognitive health, while fsQCA highlighted multiple pathways that underscore the non-linear and synergistic interactions among environmental features. These results provide theoretical insights into the mechanisms linking community environments and cognitive function and offer practical guidance for designing age-friendly communities. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

29 pages, 980 KiB  
Review
Recent Advances in Magnetron Sputtering: From Fundamentals to Industrial Applications
by Przemyslaw Borowski and Jaroslaw Myśliwiec
Coatings 2025, 15(8), 922; https://doi.org/10.3390/coatings15080922 - 7 Aug 2025
Abstract
Magnetron Sputter Vacuum Deposition (MSVD) has undergone significant advancements since its inception. This review explores the evolution of MSVD, encompassing its fundamental principles, various techniques (including reactive sputtering, pulsed magnetron sputtering, and high-power impulse magnetron sputtering), and its wide-ranging industrial applications. While detailing [...] Read more.
Magnetron Sputter Vacuum Deposition (MSVD) has undergone significant advancements since its inception. This review explores the evolution of MSVD, encompassing its fundamental principles, various techniques (including reactive sputtering, pulsed magnetron sputtering, and high-power impulse magnetron sputtering), and its wide-ranging industrial applications. While detailing the advantages of high deposition rates, versatility in material selection, and precise control over film properties, the review also addresses inherent challenges such as low target utilization and plasma instability. A significant portion focuses on the crucial role of MSVD in the automotive industry, highlighting its use in creating durable, high-quality coatings for both aesthetic and functional purposes. The transition from traditional electroplating methods to more environmentally friendly MSVD techniques is also discussed, emphasizing the growing demand for sustainable manufacturing processes. This review concludes by summarizing the key advancements, remaining challenges, and potential future trends in magnetron sputtering technologies. Full article
(This article belongs to the Special Issue Magnetron Sputtering Coatings: From Materials to Applications)
Show Figures

Graphical abstract

16 pages, 469 KiB  
Article
An Adaptation of the Quality–Loyalty Model to Study Green Consumer Loyalty
by Thi Hoang Ha Tran and Tuan Le-Anh
Sustainability 2025, 17(15), 7144; https://doi.org/10.3390/su17157144 - 6 Aug 2025
Abstract
This research proposes an adaptation of the quality–loyalty model in which affective commitment is integrated as a key factor in the proposed framework. The study presented a comprehensive framework encompassing 11 hypotheses formulated from an extensive literature review. Empirical data collected from 679 [...] Read more.
This research proposes an adaptation of the quality–loyalty model in which affective commitment is integrated as a key factor in the proposed framework. The study presented a comprehensive framework encompassing 11 hypotheses formulated from an extensive literature review. Empirical data collected from 679 environmentally conscious consumers predominantly residing in Vietnam’s three principal urban centers were employed to evaluate these hypotheses. The assessment was executed utilizing the partial least squares structural equation modeling technique. The results of this research authenticate the appropriateness of the integrated model in studying green consumption, verify the critical role of affective commitment in the newly introduced model, and identify the high impact of affective commitment on green loyalty intention and green purchase behavior. This research also shows that other factors of the quality–loyalty model have significant influences on affective commitment and green loyalty intention. Moreover, this study signifies the crucial role of green perceived quality in fostering affective commitment and green loyalty intention. Green perceived quality was identified as a key factor influencing green loyalty intention and played a crucial role in encouraging customers to purchase environmentally friendly products. Full article
(This article belongs to the Section Psychology of Sustainability and Sustainable Development)
Show Figures

Figure 1

18 pages, 865 KiB  
Review
Proteomics-Based Approaches to Decipher the Molecular Strategies of Botrytis cinerea: A Review
by Olivier B. N. Coste, Almudena Escobar-Niño and Francisco Javier Fernández-Acero
J. Fungi 2025, 11(8), 584; https://doi.org/10.3390/jof11080584 - 6 Aug 2025
Abstract
Botrytis cinerea is a highly versatile pathogenic fungus, causing significant damage across a wide range of plant species. A central focus of this review is the recent advances made through proteomics, an advanced molecular tool, in understanding the mechanisms of B. cinerea infection. [...] Read more.
Botrytis cinerea is a highly versatile pathogenic fungus, causing significant damage across a wide range of plant species. A central focus of this review is the recent advances made through proteomics, an advanced molecular tool, in understanding the mechanisms of B. cinerea infection. Recent advances in mass spectrometry-based proteomics—including LC-MS/MS, iTRAQ, MALDI-TOF, and surface shaving—have enabled the in-depth characterization of B. cinerea subproteomes such as the secretome, surfactome, phosphoproteome, and extracellular vesicles, revealing condition-specific pathogenic mechanisms. Notably, in under a decade, the proportion of predicted proteins experimentally identified has increased from 10% to 52%, reflecting the rapid progress in proteomic capabilities. We explore how proteomic studies have significantly enhanced our knowledge of the fungus secretome and the role of extracellular vesicles (EVs), which play key roles in pathogenesis, by identifying secreted proteins—such as pH-responsive elements—that may serve as biomarkers and therapeutic targets. These technologies have also uncovered fine regulatory mechanisms across multiple levels of the fungal proteome, including post-translational modifications (PTMs), the phosphomembranome, and the surfactome, providing a more integrated view of its infection strategy. Moreover, proteomic approaches have contributed to a better understanding of host–pathogen interactions, including aspects of the plant’s defensive responses. Furthermore, this review discusses how proteomic data have helped to identify metabolic pathways affected by novel, more environmentally friendly antifungal compounds. A further update on the advances achieved in the field of proteomics discovery for the organism under consideration is provided in this paper, along with a perspective on emerging tools and future developments expected to accelerate research and improve targeted intervention strategies. Full article
(This article belongs to the Special Issue Plant Pathogenic Sclerotiniaceae)
Show Figures

Graphical abstract

14 pages, 2209 KiB  
Article
Effect of Different Deodorants on SBS-Modified Asphalt Fume Emissions, Asphalt Road Performance, and Mixture Performance
by Zhaoyan Sheng, Ning Yan and Xianpeng Zhao
Processes 2025, 13(8), 2485; https://doi.org/10.3390/pr13082485 - 6 Aug 2025
Abstract
During large-scale pavement construction, the preparation of SBS-modified asphalt typically produces large amounts of harmful fumes. The emergence of deodorants can effectively alleviate the problem of smoke emissions during the asphalt manufacturing process. On the basis of ensuring the original road performance, exploring [...] Read more.
During large-scale pavement construction, the preparation of SBS-modified asphalt typically produces large amounts of harmful fumes. The emergence of deodorants can effectively alleviate the problem of smoke emissions during the asphalt manufacturing process. On the basis of ensuring the original road performance, exploring more suitable dosages and types of deodorant is urgently needed. Five commercial deodorants were evaluated using an asphalt smoke collection system, and UV-visible spectrophotometry (UV) was employed to screen the deodorants based on smoke concentration. Gas chromatography–mass spectrometry (GC-MS) was used to quantitatively analyze changes in harmful smoke components before and after adding two deodorants. Subsequently, the mechanisms of action of the two different types of deodorants were analyzed microscopically using fluorescence microscopy. Finally, the performance of bitumen and asphalt mixtures after adding deodorants was evaluated. The results showed that deodorant A (reactive type) and D (adsorption type) exhibited the best smoke suppression effects, with optimal addition rates of 0.6% and 0.5%, respectively. Deodorant A reduced benzene homologues by nearly 50% and esters by approximately 40%, while deodorant D reduced benzene homologues by approximately 70% and esters by approximately 60%, without producing new toxic gases. Both deodorants had a minimal impact on the basic properties of bitumen and the road performance of asphalt mixtures, with all indicators meeting technical specifications. This research provides a theoretical basis for the effective application of deodorants in the future, truly enabling a transition from laboratory research to large-scale engineering applications in the construction of environmentally friendly roads. Full article
(This article belongs to the Section Materials Processes)
Show Figures

Figure 1

23 pages, 3580 KiB  
Review
Computational Chemistry Insights into Pollutant Behavior During Coal Gangue Utilization
by Xinyue Wang, Xuan Niu, Xinge Zhang, Xuelu Ma and Kai Zhang
Sustainability 2025, 17(15), 7135; https://doi.org/10.3390/su17157135 - 6 Aug 2025
Abstract
Coal serves as the primary energy source for China, with production anticipated to reach 4.76 billion tons in 2024. However, the mining process generates a significant amount of gangue, with approximately 800 million tons produced in 2023 alone. Currently, China faces substantial gangue [...] Read more.
Coal serves as the primary energy source for China, with production anticipated to reach 4.76 billion tons in 2024. However, the mining process generates a significant amount of gangue, with approximately 800 million tons produced in 2023 alone. Currently, China faces substantial gangue stockpiles, characterized by a low comprehensive utilization rate that fails to meet the country’s ecological and environmental protection requirements. The environmental challenges posed by the treatment and disposal of gangue are becoming increasingly severe. This review employs bibliometric analysis and theoretical perspectives to examine the latest advancements in gangue utilization, specifically focusing on the application of computational chemistry to elucidate the structural features and interaction mechanisms of coal gangue, and to collate how these insights have been leveraged in the literature to inform its potential utilization routes. The aim is to promote the effective resource utilization of this material, and key topics discussed include evaluating the risks of spontaneous combustion associated with gangue, understanding the mechanisms governing heavy metal migration, and modifying coal byproducts to enhance both economic viability and environmental sustainability. The case studies presented in this article offer valuable insights into the gangue conversion process, contributing to the development of more efficient and eco-friendly methods. By proposing a theoretical framework, this review will support ongoing initiatives aimed at the sustainable management and utilization of coal gangue, emphasizing the critical need for continued research and development in this vital area. This review uniquely combines bibliometric analysis with computational chemistry to identify new trends and gaps in coal waste utilization, providing a roadmap for future research. Full article
Show Figures

Figure 1

Back to TopTop