Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,791)

Search Parameters:
Keywords = environmental/occupational health

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
2 pages, 229 KiB  
Correction
Correction: Kaur et al. Synthesis of CaFe2O4-NGO Nanocomposite for Effective Removal of Heavy Metal Ion and Photocatalytic Degradation of Organic Pollutants. Nanomaterials 2021, 11, 1471
by Manmeet Kaur, Manpreet Kaur, Dhanwinder Singh, Aderbal C. Oliveira, Vijayendra Kumar Garg and Virender K. Sharma
Nanomaterials 2025, 15(15), 1204; https://doi.org/10.3390/nano15151204 - 6 Aug 2025
Abstract
In the original publication [...] Full article
Show Figures

Figure 1

18 pages, 1365 KiB  
Article
Marker- and Microbiome-Based Microbial Source Tracking and Evaluation of Bather Health Risk from Fecal Contamination in Galveston, Texas
by Karalee A. Corbeil, Anna Gitter, Valeria Ruvalcaba, Nicole C. Powers, Md Shakhawat Hossain, Gabriele Bonaiti, Lucy Flores, Jason Pinchback, Anish Jantrania and Terry Gentry
Water 2025, 17(15), 2310; https://doi.org/10.3390/w17152310 - 3 Aug 2025
Viewed by 428
Abstract
(1) The beach areas of Galveston, Texas, USA are heavily used for recreational activities and often experience elevated fecal indicator bacteria levels, representing a potential threat to ecosystem services, human health, and tourism-based economies that rely on suitable water quality. (2) During the [...] Read more.
(1) The beach areas of Galveston, Texas, USA are heavily used for recreational activities and often experience elevated fecal indicator bacteria levels, representing a potential threat to ecosystem services, human health, and tourism-based economies that rely on suitable water quality. (2) During the span of 15 months (March 2022–May 2023), water samples that exceeded the U.S. Environmental Protection Agency-accepted alternative Beach Action Value (BAV) for enterococci of 104 MPN/100 mL were analyzed via microbial source tracking (MST) through quantitative polymerase chain reaction (qPCR) assays. The Bacteroides HF183 and DogBact as well as the Catellicoccus LeeSeaGull markers were used to detect human, dog, and gull fecal sources, respectively. The qPCR MST data were then utilized in a quantitative microbial risk assessment (QMRA) to assess human health risks. Additionally, samples collected in July and August 2022 were sequenced for 16S rRNA and matched with fecal sources through the Bayesian SourceTracker2 program. (3) Overall, 26% of the 110 samples with enterococci exceedances were positive for at least one of the MST markers. Gull was revealed to be the primary source of identified fecal contamination through qPCR and SourceTracker2. Human contamination was detected at very low levels (<1%), whereas dog contamination was found to co-occur with human contamination through qPCR. QMRA identified Campylobacter from canine sources as being the primary driver for human health risks for contact recreation for both adults and children. (4) These MST results coupled with QMRA provide important insight into water quality in Galveston that can inform future water quality and beach management decisions that prioritize public health risks. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

18 pages, 5815 KiB  
Article
Novel Lipid Biomarkers of Chronic Kidney Disease of Unknown Etiology Based on Urinary Small Extracellular Vesicles: A Pilot Study of Sugar Cane Workers
by Jie Zhou, Kevin J. Kroll, Jaime Butler-Dawson, Lyndsay Krisher, Abdel A. Alli, Chris Vulpe and Nancy D. Denslow
Metabolites 2025, 15(8), 523; https://doi.org/10.3390/metabo15080523 - 2 Aug 2025
Viewed by 234
Abstract
Background/Objectives: Chronic kidney disease of unknown etiology (CKDu) disproportionately affects young male agricultural workers who are otherwise healthy. There is a scarcity of biomarkers for early detection of this type of kidney disease. We hypothesized that small extracellular vesicles (sEVs) released into urine [...] Read more.
Background/Objectives: Chronic kidney disease of unknown etiology (CKDu) disproportionately affects young male agricultural workers who are otherwise healthy. There is a scarcity of biomarkers for early detection of this type of kidney disease. We hypothesized that small extracellular vesicles (sEVs) released into urine may provide novel biomarkers. Methods: We obtained two urine samples at the start and the end of a workday in the fields from a limited set of workers with and without kidney impairment. Isolated sEVs were characterized for size, surface marker expression, and purity and, subsequently, their lipid composition was determined by mass spectrometry. Results: The number of particles per ml of urine normalized to osmolality and the size variance were larger in workers with possible CKDu than in control workers. Surface markers CD9, CD63, and CD81 are characteristic of sEVs and a second set of surface markers suggested the kidney as the origin. Differential expression of CD25 and CD45 suggested early inflammation in CKDu workers. Of the twenty-one lipids differentially expressed, several were bioactive, suggesting that they may have essential functions. Remarkably, fourteen of the lipids showed intermediate expression values in sEVs from healthy individuals with acute creatinine increases after a day of work. Conclusions: We identified twenty-one possible lipid biomarkers in sEVs isolated from urine that may be able to distinguish agricultural workers with early onset of CKDu. Differentially expressed surface proteins in these sEVs suggested early-stage inflammation. This pilot study was limited in the number of workers evaluated, but the approach should be further evaluated in a larger population. Full article
Show Figures

Graphical abstract

34 pages, 6899 KiB  
Review
The Exposome Perspective: Environmental and Infectious Agents as Drivers of Cancer Disparities in Low- and Middle-Income Countries
by Zodwa Dlamini, Mohammed Alaouna, Tebogo Marutha, Zilungile Mkhize-Kwitshana, Langanani Mbodi, Nkhensani Chauke-Malinga, Thifhelimbil E. Luvhengo, Rahaba Marima, Rodney Hull, Amanda Skepu, Monde Ntwasa, Raquel Duarte, Botle Precious Damane, Benny Mosoane, Sikhumbuzo Mbatha, Boitumelo Phakathi, Moshawa Khaba, Ramakwana Christinah Chokwe, Jenny Edge, Zukile Mbita, Richard Khanyile and Thulo Molefiadd Show full author list remove Hide full author list
Cancers 2025, 17(15), 2537; https://doi.org/10.3390/cancers17152537 - 31 Jul 2025
Viewed by 329
Abstract
Cancer disparities in low- and middle-income countries (LMICs) arise from multifaceted interactions between environmental exposures, infectious agents, and systemic inequities, such as limited access to care. The exposome, a framework encompassing the totality of non-genetic exposures throughout life, offers a powerful lens for [...] Read more.
Cancer disparities in low- and middle-income countries (LMICs) arise from multifaceted interactions between environmental exposures, infectious agents, and systemic inequities, such as limited access to care. The exposome, a framework encompassing the totality of non-genetic exposures throughout life, offers a powerful lens for understanding these disparities. In LMICs, populations are disproportionately affected by air and water pollution, occupational hazards, and oncogenic infections, including human papillomavirus (HPV), hepatitis B virus (HBV), Helicobacter pylori (H. pylori), human immunodeficiency virus (HIV), and neglected tropical diseases, such as schistosomiasis. These infectious agents contribute to increased cancer susceptibility and poor outcomes, particularly in immunocompromised individuals. Moreover, climate change, food insecurity, and barriers to healthcare access exacerbate these risks. This review adopts a population-level exposome approach to explore how environmental and infectious exposures intersect with genetic, epigenetic, and immune mechanisms to influence cancer incidence and progression in LMICs. We highlight the critical pathways linking chronic exposure and inflammation to tumor development and evaluate strategies such as HPV and HBV vaccination, antiretroviral therapy, and environmental regulation. Special attention is given to tools such as exposome-wide association studies (ExWASs), which offer promise for exposure surveillance, early detection, and public health policy. By integrating exposomic insights into national health systems, especially in regions such as sub-Saharan Africa (SSA) and South Asia, LMICs can advance equitable cancer prevention and control strategies. A holistic, exposome-informed strategy is essential for reducing global cancer disparities and improving outcomes in vulnerable populations. Full article
Show Figures

Figure 1

27 pages, 2012 KiB  
Article
Dual Effects of Maternal Diet and Perinatal Organophosphate Flame Retardant Treatment on Offspring Development, Behavior and Metabolism
by Ali Yasrebi, Catherine M. Rojas, Shabree Anthony, Samantha Feltri, Jamilah Evelyn, Kimberly Wiersielis, Samantha Adams, Veronia Basaly, Grace L. Guo, Lauren M. Aleksunes and Troy A. Roepke
Toxics 2025, 13(8), 639; https://doi.org/10.3390/toxics13080639 - 29 Jul 2025
Viewed by 284
Abstract
The maternal–fetal environment is influenced by multiple factors, including nutrition and environmental contaminants, which can impact long-term development. Perinatal exposure to organophosphate flame retardants (OPFRs) disrupts energy homeostasis and causes maladaptive behaviors in mice. Maternal obesity affects development by impairing blood–brain barrier (BBB) [...] Read more.
The maternal–fetal environment is influenced by multiple factors, including nutrition and environmental contaminants, which can impact long-term development. Perinatal exposure to organophosphate flame retardants (OPFRs) disrupts energy homeostasis and causes maladaptive behaviors in mice. Maternal obesity affects development by impairing blood–brain barrier (BBB) formation, influencing brain regions involved in energy regulation and behavior. This study examined the combined effects of maternal obesity and perinatal OPFR treatment on offspring development. Female mice were fed either a low-fat (LFD) or a high-fat diet (HFD) for 8 weeks, mated, and treated with either sesame oil or an OPFR mixture (tris(1,3-dichloro-2-propyl)phosphate, tricresyl phosphate, and triphenyl phosphate, 1 mg/kg each) from gestational day 7 to postnatal day 14. Results showed that both maternal diet and OPFR treatment disrupted blood–brain barrier integrity, energy balance, and reproductive gene expression in the hypothalamus of neonates. The expression of hepatic genes related to lipid and xenobiotic metabolism was also altered. In adulthood, LFD OPFR-treated female offspring exhibited increased avoidance behavior, while HFD OPFR-treated females demonstrated memory impairments. Metabolic assessments revealed decreased energy expenditure and nighttime activity in LFD OPFR-treated females. These findings suggest that maternal diet and OPFR treatment alter hypothalamic and liver gene expression in neonates, potentially leading to long-term metabolic and behavioral changes. Full article
Show Figures

Graphical abstract

15 pages, 1228 KiB  
Article
Predicting Future Respiratory Hospitalizations in Extremely Premature Neonates Using Transcriptomic Data and Machine Learning
by Bryan G. McOmber, Lois Randolph, Patrick Lang, Przemko Kwinta, Jordan Kuiper, Kartikeya Makker, Khyzer B. Aziz and Alvaro Moreira
Children 2025, 12(8), 996; https://doi.org/10.3390/children12080996 - 29 Jul 2025
Viewed by 353
Abstract
Background: Extremely premature neonates are at increased risk for respiratory complications, often resulting in recurrent hospitalizations during early childhood. Early identification of preterm infants at highest risk of respiratory hospitalizations could enable targeted preventive interventions. While clinical and demographic factors offer some prognostic [...] Read more.
Background: Extremely premature neonates are at increased risk for respiratory complications, often resulting in recurrent hospitalizations during early childhood. Early identification of preterm infants at highest risk of respiratory hospitalizations could enable targeted preventive interventions. While clinical and demographic factors offer some prognostic value, integrating transcriptomic data may improve predictive accuracy. Objective: To determine whether early-life gene expression profiles can predict respiratory-related hospitalizations within the first four years of life in extremely preterm neonates. Methods: We conducted a retrospective cohort study of 58 neonates born at <32 weeks’ gestational age, using publicly available transcriptomic data from peripheral blood samples collected on days 5, 14, and 28 of life. Random forest models were trained to predict unplanned respiratory readmissions. Model performance was evaluated using sensitivity, specificity, positive predictive value, negative predictive value, and area under the receiver operating characteristic curve (AUC). Results: All three models, built using transcriptomic data from days 5, 14, and 28, demonstrated strong predictive performance (AUC = 0.90), though confidence intervals were wide due to small sample size. We identified 31 genes and eight biological pathways that were differentially expressed between preterm neonates with and without subsequent respiratory readmissions. Conclusions: Transcriptomic data from the neonatal period, combined with machine learning, accurately predicted respiratory-related rehospitalizations in extremely preterm neonates. The identified gene signatures offer insight into early biological disruptions that may predispose preterm neonates to chronic respiratory morbidity. Validation in larger, diverse cohorts is needed to support clinical translation. Full article
(This article belongs to the Section Pediatric Neonatology)
Show Figures

Figure 1

15 pages, 790 KiB  
Review
A Review of Avian Influenza Virus Exposure Patterns and Risks Among Occupational Populations
by Huimin Li, Ruiqi Ren, Wenqing Bai, Zhaohe Li, Jiayi Zhang, Yao Liu, Rui Sun, Fei Wang, Dan Li, Chao Li, Guoqing Shi and Lei Zhou
Vet. Sci. 2025, 12(8), 704; https://doi.org/10.3390/vetsci12080704 - 28 Jul 2025
Viewed by 528
Abstract
Avian influenza viruses (AIVs) pose significant risks to occupational populations engaged in poultry farming, livestock handling, and live poultry market operations due to frequent exposure to infected animals and contaminated environments. This review synthesizes evidence on AIV exposure patterns and risk factors through [...] Read more.
Avian influenza viruses (AIVs) pose significant risks to occupational populations engaged in poultry farming, livestock handling, and live poultry market operations due to frequent exposure to infected animals and contaminated environments. This review synthesizes evidence on AIV exposure patterns and risk factors through a comprehensive analysis of viral characteristics, host dynamics, environmental influences, and human behaviors. The main routes of transmission include direct animal contact, respiratory contact during slaughter/milking, and environmental contamination (aerosols, raw milk, shared equipment). Risks increase as the virus adapts between species, survives longer in cold/wet conditions, and spreads through wild bird migration (long-distance transmission) and live bird trade (local transmission). Recommended control measures include integrated animal–human–environment surveillance, stringent biosecurity measures, vaccination, and education. These findings underscore the urgent need for global ‘One Health’ collaboration to assess risk and implement preventive measures against potentially pandemic strains of influenza A viruses, especially in light of undetected mild/asymptomatic cases and incomplete knowledge of viral evolution. Full article
Show Figures

Figure 1

14 pages, 242 KiB  
Article
Factors Associated with Successful Smoking Cessation Among Adults in Saudi Arabia—A Cross-Sectional Study
by Nada A. Alyousefi, Reema S. Alquraini, Lina F. Alyahya, Norah M. Bin Hamad, Deema K. Aljuribah and Kadi K. Aldossari
Healthcare 2025, 13(15), 1813; https://doi.org/10.3390/healthcare13151813 - 25 Jul 2025
Viewed by 351
Abstract
Purpose: Smoking is a major preventable cause of illness and death. Quitting smoking can reduce related health complications. Numerous factors, including age, socioeconomic status, smoking habits, and availability of support, influence smoking cessation success. Despite anti-smoking measures and smoking cessation clinics in Saudi [...] Read more.
Purpose: Smoking is a major preventable cause of illness and death. Quitting smoking can reduce related health complications. Numerous factors, including age, socioeconomic status, smoking habits, and availability of support, influence smoking cessation success. Despite anti-smoking measures and smoking cessation clinics in Saudi Arabia, smoking-related deaths are increasing. This study aimed to identify factors influencing successful smoking cessation among Saudi adults and examine the relationship between cessation methods and success rates. Patients and methods: A cross-sectional study was conducted through an online survey targeting Saudi adults who had attempted to quit smoking of all types, whether traditional cigarettes, e-cigarettes, shisha, or others. Success was defined as quitting for at least six months. The data collected included sociodemographic details, smoking history, and experiences with cessation. Logistic regression analysis was used to identify factors associated with successful cessation. Results: Of 364 participants, 18.4% were successful quitters, with a mean age of 34.94. Occupation was a key predictor; freelance workers had significantly higher odds of unsuccessful quitting (OR = 12.96, 95% CI: 2.08–80.79, p = 0.006). Those who continued smoking despite illness were less likely to quit successfully (OR = 2.33, 95% CI: 1.16–4.68, p = 0.018). Early initiation of smoking also negatively impacted cessation success (OR = 1.10, 95% CI: 1.03–1.17, p = 0.006). Successful quitters reported fewer adverse symptoms during their attempts (p = 0.018) and employed behavioral strategies, such as disposing of tobacco products (p < 0.001), avoiding smoking triggers (p = 0.002), and engaging in exercise (p < 0.001). Confidence in quitting significantly contributed to success (p < 0.001). Conclusions: This study highlights the role of individual, social, and environmental factors in smoking cessation. Tailored interventions that address socioeconomic, psychological, and lifestyle factors are crucial for enhancing cessation success among Saudi adults. Full article
13 pages, 919 KiB  
Article
Cognitive Functions Among Pupils in Schools Near and Around an Electronic Waste Recycling Site at Agbogbloshie in Accra, Ghana
by Serwaa A. Bawua, Kwame M. Agbeko, Ibrahim Issah, Afua A. Amoabeng-Nti, Saskia Waldschmidt, Katja Löhndorf, Thomas Küpper, Jonathan Hogarh and Julius N. Fobil
Toxics 2025, 13(8), 615; https://doi.org/10.3390/toxics13080615 - 23 Jul 2025
Viewed by 396
Abstract
Background: Electronic waste (e-waste) recycling in informal settings like Agbogbloshie in Accra, Ghana, releases toxic metals into the environment, posing serious health risks to nearby residents, particularly children. This study assessed the body burdens of lead (Pb), manganese (Mn), cadmium (Cd), chromium (Cr), [...] Read more.
Background: Electronic waste (e-waste) recycling in informal settings like Agbogbloshie in Accra, Ghana, releases toxic metals into the environment, posing serious health risks to nearby residents, particularly children. This study assessed the body burdens of lead (Pb), manganese (Mn), cadmium (Cd), chromium (Cr), nickel (Ni), and arsenic (As) and their association with cognitive function in schoolchildren living within 1 km of the Agbogbloshie site. Method: A cross-sectional study involving 56 pupils collected demographic data and blood and urine samples and administered the Wechsler Intelligence Scale for Children—Fourth Edition (WISC-IV). Blood was tested for Pb and Mn and urine for Cd, Cr, Ni, and As. Associations between metal levels and cognitive outcomes were examined using regression analyses, adjusting for confounders. Result: Children showed elevated metal levels, with mean blood Pb of 60.43 µg/L and urinary s of 21.50 µg/L. Symptoms of cognitive dysfunction were common: 75% reported confusion, 67.9% poor memory, and 66% poor concentration. Urinary Cr levels were significantly associated with lower Full-Scale IQ (β = −18.42, p < 0.05) and increased difficulty in decision-making (OR = 0.1, p < 0.05). Conclusion: These findings underscore the neurodevelopmental risks of heavy metal exposure from e-waste in low- and middle-income countries and call for urgent public health interventions and policy actions. Full article
Show Figures

Figure 1

11 pages, 275 KiB  
Article
Cardiovascular and Functional Consequences of Lung Function Impairment in Northern Thai Agricultural Workers
by Anurak Wongta, Muhammad Samar, Nan Ei Moh Moh Kyi, Tipsuda Pintakham, Nootchakarn Sawarng and Surat Hongsibsong
Int. J. Environ. Res. Public Health 2025, 22(8), 1168; https://doi.org/10.3390/ijerph22081168 - 23 Jul 2025
Viewed by 309
Abstract
In low- and middle-income countries, notably in rural agricultural populations exposed to environmental and occupational dangers, respiratory impairment and noncommunicable diseases (NCDs) are major public health issues. This cross-sectional study examined the associations between lung function, functional capacity, and cardiovascular responses to the [...] Read more.
In low- and middle-income countries, notably in rural agricultural populations exposed to environmental and occupational dangers, respiratory impairment and noncommunicable diseases (NCDs) are major public health issues. This cross-sectional study examined the associations between lung function, functional capacity, and cardiovascular responses to the Six-Minute Walk Test (6MWT) in 137 adults from San Pa Tong District, Northern Thailand. Lung function was assessed using spirometry, and participants were classified accordingly. Hemodynamic parameters, including blood pressure, heart rate, rate-pressure product, and oxygen saturation, were measured before and after the 6MWT. Participants with impaired lung function walked significantly shorter distances (p = 0.004), and walking distance was positively correlated with forced vital capacity (FVC) and forced expiratory volume in one second (FEV1). Logistic regression confirmed that walking distance independently predicted lung function impairment after adjusting for age and sex. Cardiovascular responses to exercise also varied significantly across demographic subgroups. These findings support the use of the 6MWT as a practical, cost-effective, and scalable method for detecting lung function impairments in resource-limited rural settings. To our knowledge, this is among the first studies to demonstrate the predictive value of the 6MWT for lung function impairment in a Southeast Asian agricultural population. Full article
23 pages, 2437 KiB  
Article
From Farmworkers to Urban Residents: Mapping Multi-Class Pesticide Exposure Gradients in Morocco via Urinary Biomonitoring
by Zineb Ben Khadda, Andrei-Flavius Radu, Souleiman El Balkhi, Fagroud Mustapha, Yahya El Karmoudi, Gabriela Bungau, Pierre Marquet, Tarik Sqalli Houssaini and Sanae Achour
J. Xenobiot. 2025, 15(4), 120; https://doi.org/10.3390/jox15040120 - 23 Jul 2025
Viewed by 339
Abstract
Pesticide exposure gradients between occupational, para-occupational, and general populations remain poorly characterized in North African agricultural contexts. This study evaluates urinary pesticide levels among farmers, indirectly exposed individuals, and a control group in Morocco’s Fez-Meknes region. A cross-sectional survey measured pesticide concentrations using [...] Read more.
Pesticide exposure gradients between occupational, para-occupational, and general populations remain poorly characterized in North African agricultural contexts. This study evaluates urinary pesticide levels among farmers, indirectly exposed individuals, and a control group in Morocco’s Fez-Meknes region. A cross-sectional survey measured pesticide concentrations using LC-MS/MS in urine samples collected from 154 adults residing in both rural and urban areas. A questionnaire was used to gather information from participants regarding factors that may elevate the risk of pesticide exposure. The results revealed that farmers exhibited the highest concentrations of pesticides in their urine, including compounds classified as Ia/Ib by the World Health Organization. Indirectly exposed individuals showed moderate levels of contamination, with notable detections such as dichlofluanid (22.13 µg/L), while the control group had residual traces of neonicotinoids, notably imidacloprid (2.05 µg/L). Multivariate analyses revealed several sociodemographic factors significantly associated with increased pesticide exposure. The main risk factors identified included low education, residence in an agricultural area, and the consumption of untreated water (wells/rivers). Conversely, wearing personal protective equipment was associated with reduced urinary concentrations. This study highlights intense occupational exposure among farmers, secondary environmental contamination among residents living near treated areas, and the widespread dispersion of pesticide residues into urban areas. Full article
Show Figures

Figure 1

51 pages, 4910 KiB  
Review
The Impact of Building Windows on Occupant Well-Being: A Review Integrating Visual and Non-Visual Pathways with Multi-Objective Optimization
by Siqi He, Wenli Zhang and Yang Guan
Buildings 2025, 15(14), 2577; https://doi.org/10.3390/buildings15142577 - 21 Jul 2025
Viewed by 440
Abstract
This review investigates the role of building windows in supporting occupant well-being through access to natural views and daylight. This review synthesizes recent interdisciplinary research from environmental psychology, building science, and human physiology to examine how windows impact cognitive performance, psychological restoration, and [...] Read more.
This review investigates the role of building windows in supporting occupant well-being through access to natural views and daylight. This review synthesizes recent interdisciplinary research from environmental psychology, building science, and human physiology to examine how windows impact cognitive performance, psychological restoration, and circadian health. Drawing on 304 peer-reviewed studies from 2000 to 2024, the review identifies two core pathways: visual effects—related to daylight availability, glare control, and view quality—and non-visual effects—linked to circadian entrainment and neuroendocrine regulation via ipRGCs. These effects interact yet compete, necessitating a multi-objective optimization approach. This paper evaluates commonly used metrics for visual comfort, circadian-effective lighting, and view quality and discusses their integration in design frameworks. The review also highlights the potential of adaptive facade technologies and artificial window systems to balance human-centered lighting goals with energy efficiency. A research roadmap is proposed to support future integrative design strategies that optimize both visual and non-visual outcomes in diverse architectural contexts. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

31 pages, 4435 KiB  
Article
A Low-Cost IoT Sensor and Preliminary Machine-Learning Feasibility Study for Monitoring In-Cabin Air Quality: A Pilot Case from Almaty
by Nurdaulet Tasmurzayev, Bibars Amangeldy, Gaukhar Smagulova, Zhanel Baigarayeva and Aigerim Imash
Sensors 2025, 25(14), 4521; https://doi.org/10.3390/s25144521 - 21 Jul 2025
Viewed by 512
Abstract
The air quality within urban public transport is a critical determinant of passenger health. In the crowded and poorly ventilated cabins of Almaty’s metro, buses, and trolleybuses, concentrations of CO2 and PM2.5 often accumulate, elevating the risk of respiratory and cardiovascular [...] Read more.
The air quality within urban public transport is a critical determinant of passenger health. In the crowded and poorly ventilated cabins of Almaty’s metro, buses, and trolleybuses, concentrations of CO2 and PM2.5 often accumulate, elevating the risk of respiratory and cardiovascular diseases. This study investigates the air quality along three of the city’s busiest transport corridors, analyzing how the concentrations of CO2, PM2.5, and PM10, as well as the temperature and relative humidity, fluctuate with the passenger density and time of day. Continuous measurements were collected using the Tynys mobile IoT device, which was bench-calibrated against a commercial reference sensor. Several machine learning models (logistic regression, decision tree, XGBoost, and random forest) were trained on synchronized environmental and occupancy data, with the XGBoost model achieving the highest predictive accuracy at 91.25%. Our analysis confirms that passenger occupancy is the primary driver of in-cabin pollution and that these machine learning models effectively capture the nonlinear relationships among environmental variables. Since the surveyed routes serve Almaty’s most densely populated districts, improving the ventilation on these lines is of immediate importance to public health. Furthermore, the high-temporal-resolution data revealed short-term pollution spikes that correspond with peak ridership, advancing the current understanding of exposure risks in transit. These findings highlight the urgent need to combine real-time monitoring with ventilation upgrades. They also demonstrate the practical value of using low-cost IoT technologies and data-driven analytics to safeguard public health in urban mobility systems. Full article
(This article belongs to the Special Issue IoT-Based Sensing Systems for Urban Air Quality Forecasting)
Show Figures

Figure 1

16 pages, 1637 KiB  
Article
Contextualizing Radon Mitigation into Healthy and Sustainable Home Design in the Commonwealth of Kentucky: A Conjoint Analysis
by Osama E. Mansour, Lydia (Niang) Cing and Omar Mansour
Sustainability 2025, 17(14), 6543; https://doi.org/10.3390/su17146543 - 17 Jul 2025
Viewed by 335
Abstract
Indoor radon constitutes a public health issue in various regions across the United States as the second leading cause of lung cancer following tobacco smoke. The U.S. Environmental Protection Agency advises radon mitigation interventions for residential buildings with indoor radon concentrations exceeding the [...] Read more.
Indoor radon constitutes a public health issue in various regions across the United States as the second leading cause of lung cancer following tobacco smoke. The U.S. Environmental Protection Agency advises radon mitigation interventions for residential buildings with indoor radon concentrations exceeding the threshold level of 4 pCi/L. Despite considerable research assessing the technical effectiveness of radon mitigation systems, there remains a gap in understanding their broader influence on occupant behavior and preferences in residential design. This study aims to investigate the impact of residing in radon-mitigated homes within the Commonwealth of Kentucky—an area known for elevated radon concentrations—on occupants’ preferences regarding healthy home design attributes. The objectives of this research are twofold: firstly to determine if living in radon-mitigated homes enhances occupant awareness and consequently influences their preferences toward health-related home attributes and secondly to quantitatively evaluate and compare the relative significance homeowners assign to health-related attributes such as indoor air quality, thermal comfort, and water quality relative to conventional attributes including home size, architectural style, and neighborhood quality. The overarching purpose is to explore the potential role radon mitigation initiatives may play in motivating occupants towards healthier home construction and renovation practices. Using choice-based conjoint (CBC) analysis, this paper compares preferences reported by homeowners from radon-mitigated homes against those from non-mitigated homes. While the findings suggest a relationship between radon mitigation and increased preference for indoor air quality, the cross-sectional design limits causal interpretation, and the possibility of reverse causation—where health-conscious individuals are more likely to seek mitigation—must be considered. The results provide novel insights into how radon mitigation efforts might effectively influence occupant priorities towards integrating healthier design elements in residential environments. Full article
(This article belongs to the Section Pollution Prevention, Mitigation and Sustainability)
Show Figures

Figure 1

15 pages, 845 KiB  
Article
Three Decades of Trends in Risk Factors Attributed to Disease Burden in Saudi Arabia: Findings from the Global Burden of Disease Study 2021
by Amal Zaidan
Healthcare 2025, 13(14), 1717; https://doi.org/10.3390/healthcare13141717 - 17 Jul 2025
Viewed by 394
Abstract
Objective: This study aimed to explore the burden attributable to different groups of risk factors (environmental/occupational, behavioral, and metabolic) in Saudi Arabia that were stratified by gender and year and measured by summary exposure values (SEVs) and disability-adjusted life years (DALYs) per 100,000. [...] Read more.
Objective: This study aimed to explore the burden attributable to different groups of risk factors (environmental/occupational, behavioral, and metabolic) in Saudi Arabia that were stratified by gender and year and measured by summary exposure values (SEVs) and disability-adjusted life years (DALYs) per 100,000. Design: This study was structured as a systematic analysis. Methods: Using the GBD 2021 data, we extracted information on different risk factors attributed to the disease burden in Saudi Arabia to quantify the differences in exposure value (SEV) and disability-adjusted life year (DALY) rates (per 100,000) between females and males across different years. Results: Over the years, sustained progress in reducing the number of DALYs attributable to specific environmental and occupational risks has been observed, as well as a slight decrease in some behavioral risks. The highest disease burden was attributed to metabolic and behavioral risk factors, with body mass index being the leading risk factor for both genders. Between 1990 and 2021, the age-standardized DALY rate in those with high body mass indices increased by 168.4% and reached 3436.23 (95% UI 1878.7–5031.5) in males and increased by 125.2% to reach 2952.6 (95% UI 1456.9–4.407) in females. The age-standardized SEVs were the highest in females with a high body mass index, reaching an SEV of 57.98 (95% UI: 64.1–49.2), and in males, an SEV of 50.75 (95% UI: 57.1–42.3) was achieved. Regarding their attributable deaths in 2021, metabolic risk factors were identified as the primary contributors to NCD mortality in 2021. Conclusions: These results reveal persistent health disparities between males and females, underscoring the urgent need for gender-specific research, policies, and interventions. Strategies aimed at promoting health and reducing disease burden should acknowledge the unique health challenges encountered by males and females. Full article
Show Figures

Figure 1

Back to TopTop