Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (19)

Search Parameters:
Keywords = enhanced rabies surveillance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
60 pages, 6483 KiB  
Review
The Challenge of Lyssavirus Infections in Domestic and Other Animals: A Mix of Virological Confusion, Consternation, Chagrin, and Curiosity
by Charles E. Rupprecht, Aniruddha V. Belsare, Florence Cliquet, Philip P. Mshelbwala, Janine F. R. Seetahal and Vaughn V. Wicker
Pathogens 2025, 14(6), 586; https://doi.org/10.3390/pathogens14060586 - 13 Jun 2025
Viewed by 2390
Abstract
Lyssaviruses are RNA viruses in the Family Rhabdoviridae, Genus Lyssavirus. They represent the causative agents of acute, progressive encephalitis, known historically as rabies. Regardless of specific etiology, their collective viral morphology, biochemistry, pathobiology, associated clinical signs, diagnosis, epizootiology, and management are essentially [...] Read more.
Lyssaviruses are RNA viruses in the Family Rhabdoviridae, Genus Lyssavirus. They represent the causative agents of acute, progressive encephalitis, known historically as rabies. Regardless of specific etiology, their collective viral morphology, biochemistry, pathobiology, associated clinical signs, diagnosis, epizootiology, and management are essentially the same. Despite centuries of clinical recognition, these quintessential neurotropic agents remain significant pathogens today, with substantive consequences to agriculture, public health, and conservation biology. Notably, the singular morbidity caused by lyssaviruses is incurable and constitutes the highest case fatality of any viral disease. All warm-blooded vertebrates are believed to be susceptible. The dog is the only domestic animal that serves as a reservoir, vector, and victim. In contrast, felids are effective vectors, but not reservoirs. All other rabid domestic species, such as livestock, constitute spillover infections, as a bellwether to local lyssavirus activity. Frequently, professional confusion abounds among the veterinary community, because although the viral species Lyssavirus rabies is inarguably the best-known representative in the Genus, at least 20 other recognized or putative members of this monophyletic group are known. Frequently, this is simply overlooked. Moreover, often the ‘taxonomic etiology’ (i.e., ‘Lyssavirus x’) is mistakenly referenced in a biopolitcal context, instead of the obvious clinical illness (i.e., ‘rabies’). Global consternation persists, if localities believe they are ‘disease-free’, when documented lyssaviruses circulate or laboratory-based surveillance is inadequate to support such claims. Understandably, professional chagrin develops when individuals mistake the epidemiological terminology of control, prevention, elimination, etc. Management is not simple, given that the only licensed veterinary and human vaccines are against rabies virus, sensu lato. There are no adequate antiviral drugs for any lyssaviruses or cross-reactive biologics developed against more distantly related viral members. While representative taxa among the mammalian Orders Chiroptera, Carnivora, and Primates exemplify the major global reservoirs, which mammalian species are responsible for the perpetuation of other lyssaviruses remains a seemingly academic curiosity. This zoonosis is neglected. Clearly, with such underlying characteristics as a fundamental ‘disease of nature’, rabies, unlike smallpox and rinderpest, is not a candidate for eradication. With the worldwide zeal to drive human fatalities from canine rabies viruses to zero by the rapidly approaching year 2030, enhanced surveillance and greater introspection of the poorly appreciated burden posed by rabies virus and diverse other lyssaviruses may manifest as an epidemiological luxury to the overall global program of the future. Full article
(This article belongs to the Special Issue Current Challenges in Veterinary Virology)
Show Figures

Figure 1

20 pages, 264 KiB  
Review
One Health Landscape in Tennessee: Current Status, Challenges, and Priorities
by Walid Q. Alali, Jane Yackley, Katie Garman, Debra L. Miller, Ashley Morgan, Wesley Crabtree, Sonia Mongold, Dan Grove, Emily Leonard and Mary-Margaret A. Fill
Trop. Med. Infect. Dis. 2025, 10(6), 150; https://doi.org/10.3390/tropicalmed10060150 - 27 May 2025
Viewed by 1121
Abstract
Tennessee’s ecological diversity, spanning forests, farmland, and urban areas, provides an ideal foundation for applying the One Health approach, which integrates human, animal, and environmental health. This review examines Tennessee’s current One Health landscape, highlighting active initiatives, ongoing challenges, and future directions. Key [...] Read more.
Tennessee’s ecological diversity, spanning forests, farmland, and urban areas, provides an ideal foundation for applying the One Health approach, which integrates human, animal, and environmental health. This review examines Tennessee’s current One Health landscape, highlighting active initiatives, ongoing challenges, and future directions. Key efforts involve workforce development, disease surveillance, outbreak response, environmental conservation, and public education, led by a coalition of state agencies, universities, and the Tennessee One Health Committee. These programs promote cross-sector collaboration to address issues such as zoonotic diseases, climate change, land use shifts, and environmental contaminants. Notably, climate-driven changes, including rising temperatures and altered species distributions, pose increasing threats to health and ecological stability. Tennessee has responded with targeted monitoring programs and climate partnerships. Education is also a priority, with the growing integration of One Health into K–12 and higher education to build a transdisciplinary workforce. However, the state faces barriers, including limited funding for the One Health workforce, undefined workforce roles, and informal inter-agency data sharing. Despite these obstacles, Tennessee’s successful responses to outbreaks like avian influenza and rabies demonstrate the power of coordinated action. To strengthen its One Health strategy, the state must expand funding, formalize roles, improve data systems, and enhance biodiversity and climate resilience efforts positioning itself as a national leader in interdisciplinary collaborative solutions. Full article
(This article belongs to the Special Issue Tackling Emerging Zoonotic Diseases with a One Health Approach)
10 pages, 1882 KiB  
Brief Report
Human Herpesvirus 1 Associated with Epizootics in Belo Horizonte, Minas Gerais, Brazil
by Gabriela Fernanda Garcia-Oliveira, Mikaelly Frasson Biccas, Daniel Jacob, Marcelle Alves Oliveira, Ana Maria de Oliveira Paschoal, Pedro Augusto Alves, Cecília Barreto, Daniel Ambrósio da Rocha Vilela, Érika Procópio Tostes Teixeira, Thiago Lima Stehling, Thais Melo Mendes, Marlise Costa Silva, Munique Guimarães Almeida, Ivan Vieira Sonoda, Érica Munhoz Mello, Francisco Elias Nogueira Gama, Kathryn A. Hanley, Nikos Vasilakis and Betania Paiva Drumond
Viruses 2025, 17(5), 660; https://doi.org/10.3390/v17050660 - 30 Apr 2025
Cited by 1 | Viewed by 435
Abstract
Human activity in sylvatic environments and resulting contact with wildlife, such as non-human primates (NHPs), can lead to pathogen spillover or spillback. Both NHPs and humans host a variety of herpesviruses. While these viruses typically cause asymptomatic infections in their natural hosts, they [...] Read more.
Human activity in sylvatic environments and resulting contact with wildlife, such as non-human primates (NHPs), can lead to pathogen spillover or spillback. Both NHPs and humans host a variety of herpesviruses. While these viruses typically cause asymptomatic infections in their natural hosts, they can lead to severe disease or even death when they move into novel hosts. In early 2024, deaths of Callithrix penicillata, the black-tufted marmoset, were reported in an urban park in Belo Horizonte, Minas Gerais, Brazil. The epizootic was investigated in collaboration with CETAS/IBAMA and the Zoonoses Department of Belo Horizonte. Nine marmoset carcasses and four sick marmosets were found in the park; the latter exhibited severe neurological symptoms and systemic illness before succumbing within 48 h. Carcasses were tested for rabies virus and were all negative, and necropsy findings revealed widespread organ damage. In addition, the samples were tested for yellow fever virus, with negative results. Finally, molecular testing, viral isolation, and phylogenetic analysis demonstrated human herpesvirus 1 (HHV-1) as the causative agent. The likely source of infection was human-to-marmoset transmission, facilitated by close interactions such as feeding and handling. This study highlights the risks of pathogen spillover between humans and nonhuman primates, emphasizing the need for enhanced surveillance and public awareness to mitigate future epizootics. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

14 pages, 1248 KiB  
Article
Smallholder Cattle Farmers’ Knowledge, Attitudes, and Practices Toward Rabies: A Regional Survey in Kazakhstan
by Nurbek Ginayatov, Zukhra Aitpayeva, Izimgali Zhubantayev, Leila Kassymbekova, Assylbek Zhanabayev, Gulmira Abulgazimova, Raikhan Arynova, Alim Bizhanov, Assiya Mussayeva, Maxat Berdikulov, Marat Aisin, Zaure Sayakova, Spandiyar Tursunkulov, Nurkuisa Rametov, Ainur Akhmadiyeva, Aigul Bulasheva, Nurgul Jussupbekova, Olzhas Yeskhojayev, Gulnara Baikadamova, Kaissar Kushaliyev, Nadezhda Burambayeva and Arman Issimovadd Show full author list remove Hide full author list
Vet. Sci. 2025, 12(4), 335; https://doi.org/10.3390/vetsci12040335 - 4 Apr 2025
Cited by 1 | Viewed by 1508
Abstract
Rabies remains a significant public health and economic concern in Kazakhstan, particularly in rural livestock-farming communities. This study aimed to assess the knowledge, attitudes, and practices (KAPs) related to rabies among livestock farmers in the Aktobe and Oral regions of West Kazakhstan. A [...] Read more.
Rabies remains a significant public health and economic concern in Kazakhstan, particularly in rural livestock-farming communities. This study aimed to assess the knowledge, attitudes, and practices (KAPs) related to rabies among livestock farmers in the Aktobe and Oral regions of West Kazakhstan. A cross-sectional survey was conducted between April and August 2022, involving 688 randomly selected participants. The data were collected through structured interviews and analyzed using descriptive and inferential statistics. The findings revealed that 89% of respondents were aware of rabies, yet significant knowledge gaps existed regarding clinical signs, transmission, and prevention. While 87% recognized the importance of rabies vaccination in dogs, 81% were unaware of pre-exposure prophylaxis (PrEP) for cattle, and 72% lacked knowledge of PrEP for humans. Awareness of the post-exposure prophylaxis (PEP) regimen was significantly higher in the Aktobe region (p < 0.002). Attitudinal differences were observed, with the Oral region participants exhibiting more favorable perceptions of rabies control programs (p < 0.01). Additionally, the χ2 test revealed that the proportion of female respondents (p < 0.02), those with school-aged dependents (p < 0.003), respondents owning both exotic and indigenous cattle breeds (p < 0.002), and those possessing more than five cattle (p < 0.025) was statistically different in the Oral region. Practices such as free grazing, lack of protective equipment use, and improper carcass disposal were identified as potential risk factors for rabies transmission. This study highlights the need for targeted educational initiatives to improve rabies awareness and promote safer livestock management practices. Enhancing veterinary surveillance, strengthening community engagement, and expanding vaccination efforts could mitigate rabies transmission risks. Full article
Show Figures

Figure 1

18 pages, 956 KiB  
Review
Holistic Approaches to Zoonoses: Integrating Public Health, Policy, and One Health in a Dynamic Global Context
by Mohamed Mustaf Ahmed, Olalekan John Okesanya, Zhinya Kawa Othman, Adamu Muhammad Ibrahim, Olaniyi Abideen Adigun, Bonaventure Michael Ukoaka, Muhiadin Ismail Abdi and Don Eliseo Lucero-Prisno
Zoonotic Dis. 2025, 5(1), 5; https://doi.org/10.3390/zoonoticdis5010005 - 6 Mar 2025
Cited by 3 | Viewed by 3206
Abstract
Zoonotic diseases pose a significant global health threat, driven by factors such as globalization, climate change, urbanization, antimicrobial resistance (AMR), and intensified human–animal interactions. The increasing interconnectedness of human, animal, and environmental health underscores the importance of the OH paradigm in addressing zoonotic [...] Read more.
Zoonotic diseases pose a significant global health threat, driven by factors such as globalization, climate change, urbanization, antimicrobial resistance (AMR), and intensified human–animal interactions. The increasing interconnectedness of human, animal, and environmental health underscores the importance of the OH paradigm in addressing zoonotic threats in a globalized world. This review explores the complex epidemiology of zoonotic diseases, the challenges associated with their management, and the necessity for cross-sector collaboration to enhance prevention and control efforts. Key public health strategies, including surveillance systems, infection control measures, and community education programs, play crucial roles in mitigating outbreaks. However, gaps in governance, resource allocation, and interdisciplinary cooperation hinder effective disease management, particularly in low- and middle-income countries (LMICs). To illustrate the effectiveness of the OH approach, this review highlights successful programs, such as the PREDICT project, Rwanda’s National One Health Program, the EcoHealth Alliance, and the Rabies Elimination Program in the Philippines. These initiatives demonstrate how integrating human, animal, and environmental health efforts can enhance early detection, improve outbreak responses, and reduce public health burdens. Strengthening global health governance, enhancing surveillance infrastructure, regulating antimicrobial use, and investing in research and technological innovations are essential steps toward mitigating zoonotic risks. Ultimately, a coordinated, multidisciplinary approach is vital for addressing the dynamic challenges posed by zoonotic diseases and ensuring global health security in an increasingly interconnected world. Full article
Show Figures

Figure 1

8 pages, 1745 KiB  
Opinion
The Silent Threat: Unraveling the Impact of Rabies in Herbivores in Brazil
by Marcelo Cardoso da Silva Ventura, Jéssica Milena Moura Neves, Randyson da Silva Pinheiro, Marcos Vinicius Costa Santos, Elba Regina Sampaio de Lemos and Marco Aurelio Pereira Horta
Animals 2024, 14(16), 2305; https://doi.org/10.3390/ani14162305 - 8 Aug 2024
Cited by 4 | Viewed by 2241
Abstract
Rabies, a zoonotic viral disease, poses a significant threat due to its adaptability to diverse environments. Herbivore rabies, predominantly affecting cattle, horses, and goats in Brazil, remains a concern, results in substantial losses in the livestock industry, and poses risks to public health. [...] Read more.
Rabies, a zoonotic viral disease, poses a significant threat due to its adaptability to diverse environments. Herbivore rabies, predominantly affecting cattle, horses, and goats in Brazil, remains a concern, results in substantial losses in the livestock industry, and poses risks to public health. Rabies virus transmission, primarily through hematophagous bats in Latin America, underscores the need for effective strategies, and vaccination plays a crucial role in controlling herbivorous rabies, with systematic vaccination beingly the primary method. Efforts to control rabies in herbivores include vaccination campaigns, public awareness programs, and the enhancement of surveillance systems. Despite these initiatives, rabies persists and imposes an economic burden and a significant health risk. Economic impacts include losses in the livestock industry, trade restrictions on livestock products, and financial burdens on governments and farmers owing to control measures. Despite the considerable costs of campaigns, surveillance, and control, investing in rabies vaccination and control not only safeguards livestock, but also preserves public health, reduces human cases, and strengthens the sustainability of the livestock industry. Mitigating the impact of herbivorous rabies in Brazil requires integrated approaches and continuous investments in vaccination, surveillance, and control measures to protect public health and ensure the sustainability of the livestock industry, thus contributing to food and economic security. Full article
(This article belongs to the Special Issue Pathogens in the Wildlife–Livestock–Human Interface)
Show Figures

Figure 1

18 pages, 5943 KiB  
Article
Rabies Realities: Navigating Barriers to Rabies Control in Rural Zambia—A Case Study of Manyinga and Mwansabombwe Districts
by Muma Chipo Misapa, Eugene C. Bwalya, Ladslav Moonga, Josiah Zimba, Emmanuel S. Kabwali, Mwenya Silombe, Edgar Chilanzi Mulwanda, Christopher Mulenga, Martin C. Simuunza, Hirofumi Sawa, Bernard Hang’ombe and Walter Muleya
Trop. Med. Infect. Dis. 2024, 9(7), 161; https://doi.org/10.3390/tropicalmed9070161 - 18 Jul 2024
Viewed by 3194
Abstract
Rabies persists as a longstanding issue in Zambia, despite being preventable. The current control measures, including dog vaccination, population control, and movement restriction, guided by ‘The Control of Dogs Act Chapter 247 of the Laws of Zambia’, have not yielded the desired impact [...] Read more.
Rabies persists as a longstanding issue in Zambia, despite being preventable. The current control measures, including dog vaccination, population control, and movement restriction, guided by ‘The Control of Dogs Act Chapter 247 of the Laws of Zambia’, have not yielded the desired impact in many areas of the country including Manyinga and Mwansabombwe districts. These two districts continue to report low dog vaccination rates, unrestricted dog movements, and escalating cases of animal and human rabies, along with dog bites. Aligned with global aspirations to achieve zero human rabies cases by 2030, this study scrutinizes the determinants and obstacles hampering the execution of rabies control initiatives in Manyinga and Mwansabombwe. Spanning approximately 11 months, this cross-sectional study gathered pre- and post-vaccination data from 301 households in Manyinga and 100 households in Mwansabombwe. Questionnaires probed knowledge, attitudes, and practices related to rabies prevention and control. A transect survey, key informant interviews, and assessment of rabies vaccination and dog bite records complemented the data collection. Findings revealed that 88.0% of respondents from both districts possessed knowledge about rabies, confirming affected species and transmission. Moreover, 76.8% in Manyinga and 88.6% in Mwansabombwe were acquainted with rabies prevention and control methods. Concerning dog owners, 89.0% were aware of rabies, 66.0% understood its prevention and control, and the majority identified bites as the primary mode of transmission. Despite the high level of knowledge recorded during the survey, the implementation of preventive measures was low, which was attributed to low levels of law enforcement by the local government authority, inadequate staffing in the veterinary department, unwillingness to pay for dog vaccinations, and unavailability of rabies vaccine at the veterinary office in both districts. Vaccination coverage stood at 64.0% in Manyinga and 21.0% in Mwansabombwe. Notably, education and occupation exhibited a positive significant association with rabies knowledge. In terms of dog bite cases, Manyinga recorded 538 dog bite cases from 2017 to June 2022, while Mwansabombwe recorded 81 dog bite and 23 jackal bite cases from 2021 to June 2022. The study underscores critical knowledge gaps in rural areas and emphasizes the imperative for enhanced public education and awareness programs, improved rabies surveillance, free mass vaccination campaigns, and community engagement to augment vaccination coverage and knowledge about rabies. Full article
(This article belongs to the Special Issue Rabies: Current Knowledge and Future Perspectives)
Show Figures

Figure 1

13 pages, 741 KiB  
Article
Comparison of Pan-Lyssavirus RT-PCRs and Development of an Improved Protocol for Surveillance of Non-RABV Lyssaviruses
by Petra Drzewnioková, Sabrina Marciano, Stefania Leopardi, Valentina Panzarin and Paola De Benedictis
Viruses 2023, 15(3), 680; https://doi.org/10.3390/v15030680 - 4 Mar 2023
Cited by 7 | Viewed by 2932
Abstract
Rabies is a zoonotic and fatal encephalitis caused by members of the Lyssavirus genus. Among them, the most relevant species is Lyssavirus rabies, which is estimated to cause 60,000 human and most mammal rabies deaths annually worldwide. Nevertheless, all lyssaviruses can invariably [...] Read more.
Rabies is a zoonotic and fatal encephalitis caused by members of the Lyssavirus genus. Among them, the most relevant species is Lyssavirus rabies, which is estimated to cause 60,000 human and most mammal rabies deaths annually worldwide. Nevertheless, all lyssaviruses can invariably cause rabies, and therefore their impact on animal and public health should not be neglected. For accurate and reliable surveillance, diagnosis should rely on broad-spectrum tests able to detect all known lyssaviruses, including the most divergent ones. In the present study, we evaluated four different pan-lyssavirus protocols widely used at an international level, including two real-time RT-PCR assays (namely LN34 and JW12/N165-146), a hemi-nested RT-PCR and a one-step RT-PCR. Additionally, an improved version of the LN34 assay ((n) LN34) was developed to increase primer–template complementarity with respect to all lyssavirus species. All protocols were evaluated in silico, and their performance was compared in vitro employing 18 lyssavirus RNAs (encompassing 15 species). The (n) LN34 assay showed enhanced sensitivity in detecting most lyssavirus species, with limits of detection ranging from 10 to 100 RNA copies/µL depending on the strain, while retaining high sensitivity against Lyssavirus rabies. The development of this protocol represents a step forward towards improved surveillance of the entire Lyssavirus genus. Full article
(This article belongs to the Special Issue Advances in Rabies Research)
Show Figures

Figure 1

8 pages, 1027 KiB  
Article
Use of a Direct, Rapid Immunohistochemical Test for Diagnosis of Rabies Virus in Bats
by Charles E. Rupprecht, Lolita I. Van Pelt, April D. Davis, Richard B. Chipman and David L. Bergman
Zoonotic Dis. 2022, 2(1), 1-8; https://doi.org/10.3390/zoonoticdis2010001 - 6 Jan 2022
Cited by 5 | Viewed by 4740
Abstract
Rabies, a zoonotic encephalitis due to transmission of a lyssavirus, such as rabies virus (RABV), has the highest case fatality of any infectious disease. A global program for the elimination of human rabies caused by dogs is proposed for realization by 2030. Sensitive, [...] Read more.
Rabies, a zoonotic encephalitis due to transmission of a lyssavirus, such as rabies virus (RABV), has the highest case fatality of any infectious disease. A global program for the elimination of human rabies caused by dogs is proposed for realization by 2030. Sensitive, specific, and inexpensive diagnostic tests are necessary for enhanced surveillance to detect infection, inform public health and veterinary professionals during risk assessments of exposure, and support overall programmatic goals. Multiple laboratory techniques are used to confirm a suspect case of rabies. One method for the detection of lyssavirus antigens within the brain is the direct rapid immunohistochemical test (dRIT), using light microscopy, and suitable for use under field conditions. Besides dogs, other major RABV reservoirs reside among mammalian mesocarnivores and bats. To date, use of the dRIT has been applied primarily for the diagnosis of RABV in suspect mesocarnivores. The purpose of this study was to assess the usefulness of the dRIT to the diagnosis of rabies in bats, compared to the gold-standard, the direct fluorescent antibody test (DFAT). Brains of 264 suspect bats, consisting of 21 species from Arizona and Texas, were used in the evaluation of the dRIT. The overall sensitivity of the dRIT was 100% (0.969–1.0, 95% CI) and the specificity was 94.6% (0.896–0.976, 95% CI), comparable to the DFAT. This preliminary study demonstrated the utility of the dRIT in the confirmation of RABV infection in bats. Future studies should include additional geographic, lyssavirus, and mammalian species representations for broader application during enhanced rabies surveillance, with incorporation of any potential adjustments to standard protocols, as needed. Full article
(This article belongs to the Special Issue Feature Papers of Zoonotic Diseases 2021–2022)
Show Figures

Figure 1

11 pages, 1171 KiB  
Article
Data-Driven Management—A Dynamic Occupancy Approach to Enhanced Rabies Surveillance Prioritization
by Amy J. Davis, Jordona D. Kirby, Richard B. Chipman, Kathleen M. Nelson and Amy T. Gilbert
Viruses 2021, 13(9), 1795; https://doi.org/10.3390/v13091795 - 9 Sep 2021
Cited by 12 | Viewed by 2849
Abstract
Rabies lyssavirus (RABV) is enzootic in raccoons across the eastern United States. Intensive management of RABV by oral rabies vaccination (ORV) has prevented its spread westward and shown evidence of local elimination in raccoon populations of the northeastern US. The USDA, Wildlife Services, [...] Read more.
Rabies lyssavirus (RABV) is enzootic in raccoons across the eastern United States. Intensive management of RABV by oral rabies vaccination (ORV) has prevented its spread westward and shown evidence of local elimination in raccoon populations of the northeastern US. The USDA, Wildlife Services, National Rabies Management Program (NRMP) collaborates with other agencies to implement broad-scale ORV and conducts extensive monitoring to measure the effectiveness of the management. Enhanced Rabies Surveillance (ERS) was initiated during 2005 and updated in 2016 to direct surveillance efforts toward higher-value specimens by assigning points to different methods of encountering specimens for collection (strange-acting, roadkill, surveillance-trapped, etc.; specimen point values ranged from 1 to 15). We used the 2016–2019 data to re-evaluate the point values using a dynamic occupancy model. Additionally, we used ERS data from 2012–2015 and 2016–2019 to examine the impact that the point system had on surveillance data. Implementation of a point system increased positivity rates among specimens by 64%, indicating a substantial increase in the efficiency of the ERS to detect wildlife rabies. Our re-evaluation found that most points accurately reflect the value of the surveillance specimens. The notable exception was that samples from animals found dead were considerably more valuable for rabies detection than originally considered (original points = 5, new points = 20). This work demonstrates how specimen prioritization strategies can be used to refine and improve ERS in support of wildlife rabies management. Full article
Show Figures

Figure 1

13 pages, 1303 KiB  
Communication
Retrospective Enhanced Bat Lyssavirus Surveillance in Germany between 2018–2020
by Antonia Klein, Sten Calvelage, Kore Schlottau, Bernd Hoffmann, Elisa Eggerbauer, Thomas Müller and Conrad M. Freuling
Viruses 2021, 13(8), 1538; https://doi.org/10.3390/v13081538 - 3 Aug 2021
Cited by 11 | Viewed by 3802
Abstract
Lyssaviruses are the causative agents for rabies, a zoonotic and fatal disease. Bats are the ancestral reservoir host for lyssaviruses, and at least three different lyssaviruses have been found in bats from Germany. Across Europe, novel lyssaviruses were identified in bats recently and [...] Read more.
Lyssaviruses are the causative agents for rabies, a zoonotic and fatal disease. Bats are the ancestral reservoir host for lyssaviruses, and at least three different lyssaviruses have been found in bats from Germany. Across Europe, novel lyssaviruses were identified in bats recently and occasional spillover infections in other mammals and human cases highlight their public health relevance. Here, we report the results from an enhanced passive bat rabies surveillance that encompasses samples without human contact that would not be tested under routine conditions. To this end, 1236 bat brain samples obtained between 2018 and 2020 were screened for lyssaviruses via several RT-qPCR assays. European bat lyssavirus type 1 (EBLV-1) was dominant, with 15 positives exclusively found in serotine bats (Eptesicus serotinus) from northern Germany. Additionally, when an archived set of bat samples that had tested negative for rabies by the FAT were screened in the process of assay validation, four samples tested EBLV-1 positive, including two detected in Pipistrellus pipistrellus. Subsequent phylogenetic analysis of 17 full genomes assigned all except one of these viruses to the A1 cluster of the EBLV-1a sub-lineage. Furthermore, we report here another Bokeloh bat lyssavirus (BBLV) infection in a Natterer’s bat (Myotis nattereri) found in Lower Saxony, the tenth reported case of this novel bat lyssavirus. Full article
(This article belongs to the Special Issue Ecology of Virus Emergence from Wildlife)
Show Figures

Figure 1

23 pages, 871 KiB  
Review
Bat-Borne Coronaviruses in Jordan and Saudi Arabia: A Threat to Public Health?
by Laith N. AL-Eitan, Amneh H. Tarkhan, Mansour A. Alghamdi, Denise A. Marston, Guanghui Wu, Lorraine M. McElhinney, Ian H. Brown and Anthony R. Fooks
Viruses 2020, 12(12), 1413; https://doi.org/10.3390/v12121413 - 9 Dec 2020
Cited by 8 | Viewed by 4804
Abstract
Emerging infectious diseases are of great concern to public health, as highlighted by the ongoing coronavirus disease 2019 (COVID-19) pandemic. Such diseases are of particular danger during mass gathering and mass influx events, as large crowds of people in close proximity to each [...] Read more.
Emerging infectious diseases are of great concern to public health, as highlighted by the ongoing coronavirus disease 2019 (COVID-19) pandemic. Such diseases are of particular danger during mass gathering and mass influx events, as large crowds of people in close proximity to each other creates optimal opportunities for disease transmission. The Hashemite Kingdom of Jordan and the Kingdom of Saudi Arabia are two countries that have witnessed mass gatherings due to the arrival of Syrian refugees and the annual Hajj season. The mass migration of people not only brings exotic diseases to these regions but also brings new diseases back to their own countries, e.g., the outbreak of MERS in South Korea. Many emerging pathogens originate in bats, and more than 30 bat species have been identified in these two countries. Some of those bat species are known to carry viruses that cause deadly diseases in other parts of the world, such as the rabies virus and coronaviruses. However, little is known about bats and the pathogens they carry in Jordan and Saudi Arabia. Here, the importance of enhanced surveillance of bat-borne infections in Jordan and Saudi Arabia is emphasized, promoting the awareness of bat-borne diseases among the general public and building up infrastructure and capability to fill the gaps in public health preparedness to prevent future pandemics. Full article
(This article belongs to the Special Issue Viral Zoonoses and Global Public Health)
Show Figures

Figure 1

13 pages, 1640 KiB  
Article
Rabies Surveillance Identifies Potential Risk Corridors and Enables Management Evaluation
by Amy J. Davis, Kathleen M. Nelson, Jordona D. Kirby, Ryan Wallace, Xiaoyue Ma, Kim M. Pepin, Richard B. Chipman and Amy T. Gilbert
Viruses 2019, 11(11), 1006; https://doi.org/10.3390/v11111006 - 31 Oct 2019
Cited by 24 | Viewed by 3873
Abstract
Intensive efforts are being made to eliminate the raccoon variant of rabies virus (RABV) from the eastern United States and Canada. The United States Department of Agriculture (USDA) Wildlife Services National Rabies Management Program has implemented enhanced rabies surveillance (ERS) to improve case [...] Read more.
Intensive efforts are being made to eliminate the raccoon variant of rabies virus (RABV) from the eastern United States and Canada. The United States Department of Agriculture (USDA) Wildlife Services National Rabies Management Program has implemented enhanced rabies surveillance (ERS) to improve case detection across the extent of the raccoon oral rabies vaccination (ORV) management area. We evaluated ERS and public health surveillance data from 2006 to 2017 in three northeastern USA states using a dynamic occupancy modeling approach. Our objectives were to examine potential risk corridors for RABV incursion from the U.S. into Canada, evaluate the effectiveness of ORV management strategies, and identify surveillance gaps. ORV management has resulted in a decrease in RABV cases over time within vaccination zones (from occupancy ( ψ ¯ ) of 0.60 standard error (SE) = 0.03 in the spring of 2006 to ψ ¯ of 0.33 SE = 0.10 in the spring 2017). RABV cases also reduced in the enzootic area (from ψ ¯ of 0.60 SE = 0.03 in the spring of 2006 to ψ ¯ of 0.45 SE = 0.05 in the spring 2017). Although RABV occurrence was related to habitat type, greater impacts were associated with ORV and trap–vaccinate–release (TVR) campaigns, in addition to seasonal and yearly trends. Reductions in RABV occupancy were more pronounced in areas treated with Ontario Rabies Vaccine Bait (ONRAB) compared to RABORAL V-RG®. Our approach tracked changes in RABV occurrence across space and time, identified risk corridors for potential incursions into Canada, and highlighted surveillance gaps, while evaluating the impacts of management actions. Using this approach, we are able to provide guidance for future RABV management. Full article
(This article belongs to the Special Issue Rabies Virus: Knowledge Gaps and Challenges to Elimination)
Show Figures

Figure 1

21 pages, 886 KiB  
Article
Rabies in the Caribbean: A Situational Analysis and Historic Review
by Janine F. R. Seetahal, Alexandra Vokaty, Marco A. N. Vigilato, Christine V. F. Carrington, Jennifer Pradel, Bowen Louison, Astrid Van Sauers, Rohini Roopnarine, Jusayma C. González Arrebato, Max F. Millien, Colin James and Charles E. Rupprecht
Trop. Med. Infect. Dis. 2018, 3(3), 89; https://doi.org/10.3390/tropicalmed3030089 - 20 Aug 2018
Cited by 37 | Viewed by 10007
Abstract
Rabies virus is the only Lyssavirus species found in the Americas. In discussions about rabies, Latin America and the Caribbean are often grouped together. Our study aimed to independently analyse the rabies situation in the Caribbean and examine changes in rabies spatiotemporal epidemiology. [...] Read more.
Rabies virus is the only Lyssavirus species found in the Americas. In discussions about rabies, Latin America and the Caribbean are often grouped together. Our study aimed to independently analyse the rabies situation in the Caribbean and examine changes in rabies spatiotemporal epidemiology. A questionnaire was administered to the 33 member countries and territories of the Caribbean Animal Health Network (CaribVET) to collect current data, which was collated with a literature review. Rabies was endemic in ten Caribbean localities, with the dog, mongoose, and vampire bat identified as enzootic reservoirs. The majority of animal cases occurred in Puerto Rico, the Dominican Republic, and Haiti, while human cases only consistently occurred in the latter two areas. Rabies vaccination was conducted for high-risk animal populations with variable coverage, and rabies diagnostic capacities varied widely throughout the region. Illegal importation and natural migration of animals may facilitate the introduction of rabies virus variants into virus-naïve areas. Passive surveillance, together with enhanced methods and serological screening techniques, can therefore be of value. The insularity of the Caribbean makes it ideal for conducting pilot studies on reservoir host population management. Best practice guidelines developed for these reservoir hosts can be individually modified to the epidemiological status and available resources within each locality. Full article
Show Figures

Figure 1

16 pages, 2483 KiB  
Review
Molecular Epidemiology and Evolution of European Bat Lyssavirus 2
by Lorraine M. McElhinney, Denise A. Marston, Emma L. Wise, Conrad M. Freuling, Hervé Bourhy, Reto Zanoni, Torfinn Moldal, Engbert A. Kooi, Antonie Neubauer-Juric, Tiina Nokireki, Thomas Müller and Anthony R. Fooks
Int. J. Mol. Sci. 2018, 19(1), 156; https://doi.org/10.3390/ijms19010156 - 5 Jan 2018
Cited by 30 | Viewed by 7216
Abstract
Bat rabies cases in Europe are mainly attributed to two lyssaviruses, namely European Bat Lyssavirus 1 (EBLV-1) and European Bat Lyssavirus 2 (EBLV-2). Prior to the death of a bat worker in Finland in 1985, very few bat rabies cases were reported. Enhanced [...] Read more.
Bat rabies cases in Europe are mainly attributed to two lyssaviruses, namely European Bat Lyssavirus 1 (EBLV-1) and European Bat Lyssavirus 2 (EBLV-2). Prior to the death of a bat worker in Finland in 1985, very few bat rabies cases were reported. Enhanced surveillance in the two subsequent years (1986–1987) identified 263 cases (more than a fifth of all reported cases to date). Between 1977 and 2016, 1183 cases of bat rabies were reported, with the vast majority (>97%) being attributed to EBLV-1. In contrast, there have been only 39 suspected cases of EBLV-2, of which 34 have been confirmed by virus typing and presently restricted to just two bat species; Myotis daubentonii and Myotis dasycneme. The limited number of EBLV-2 cases in Europe prompted the establishment of a network of European reference laboratories to collate all available viruses and data. Despite the relatively low number of EBLV-2 cases, a large amount of anomalous data has been published in the scientific literature, which we have here reviewed and clarified. In this review, 29 EBLV-2 full genome sequences have been analysed to further our understanding of the diversity and molecular evolution of EBLV-2 in Europe. Analysis of the 29 complete EBLV-2 genome sequences clearly corroborated geographical relationships with all EBLV-2 sequences clustering at the country level irrespective of the gene studied. Further geographical clustering was also observed at a local level. There are high levels of homogeneity within the EBLV-2 species with nucleotide identities ranging from 95.5–100% and amino acid identities between 98.7% and 100%, despite the widespread distribution of the isolates both geographically and chronologically. The mean substitution rate for EBLV-2 across the five concatenated genes was 1.65 × 10−5, and evolutionary clock analysis confirms the slow evolution of EBLV-2 both between and within countries in Europe. This is further supported by the first detailed EBLV-2 intra-roost genomic analysis whereby a relatively high sequence homogeneity was found across the genomes of three EBLV-2 isolates obtained several years apart (2007, 2008, and 2014) from M. daubentonii at the same site (Stokesay Castle, Shropshire, UK). Full article
(This article belongs to the Special Issue Virus Comparative Genomics)
Show Figures

Graphical abstract

Back to TopTop