Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (335)

Search Parameters:
Keywords = enhanced green fluorescent protein

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2281 KiB  
Article
Amphipathic Alpha-Helical Peptides AH1 and AH3 Facilitate Immunogenicity of Enhanced Green Fluorescence Protein in Rainbow Trout (Oncorhynchus mykiss)
by Kuan Chieh Peng and Ten-Tsao Wong
J. Mar. Sci. Eng. 2025, 13(8), 1497; https://doi.org/10.3390/jmse13081497 - 4 Aug 2025
Viewed by 143
Abstract
Vaccination is the most effective method to counteract infectious diseases in farmed fish. It secures aquaculture production and safeguards the wild stock and aquatic ecosystem from catastrophic contagious diseases. In vaccine development, recombinant subunit vaccines are favorable candidates since they can be economically [...] Read more.
Vaccination is the most effective method to counteract infectious diseases in farmed fish. It secures aquaculture production and safeguards the wild stock and aquatic ecosystem from catastrophic contagious diseases. In vaccine development, recombinant subunit vaccines are favorable candidates since they can be economically produced in large quantities without growing many pathogens, as in inactivated or attenuated vaccine production. However, recombinant subunit vaccines are often weak or deficient in immunogenicity, resulting in inadequate defenses against infections. Technologies that can increase the immunogenicity of recombinant subunit vaccines are in desperate need. Enhanced green fluorescence protein (EGFP) has a low antigenicity and is susceptible to folding changes and losing fluorescence after fusing with other proteins. Using these valuable features of EGFP, we comprehend two amphipathic alpha-helical peptides, AH1 and AH3, derived from Hepatitis C virus and Influenza A virus, respectively, that can induce high immune responses of their fused EGFP in fish without affecting their folding. AH3-EGFP has the most elevated cell binding, significantly 62% and 36% higher than EGFP and AH1-EGFP, respectively. Immunizations with AH1-EGFP or AH3-EGFP significantly induced higher anti-EGFP antibody levels 300–500-fold higher than EGFP immunization after the boost injection in rainbow trout. Our results suggest that AH1 and AH3 effectively increase the immunogenicity of EGFP without influencing its structure. Further validation of their value in other recombinant proteins is necessary to demonstrate their broader utility in enhancing the immunogenicity of subunit vaccines. We also suggest that EGFP and its variants are promising candidates for initially screening proper immunogenicity-enhancing peptides or proteins to advance recombinant subunit vaccine development. Full article
(This article belongs to the Section Marine Aquaculture)
Show Figures

Figure 1

13 pages, 4134 KiB  
Communication
An Improved Agrobacterium-Mediated Transformation Method for an Important Fresh Fruit: Kiwifruit (Actinidia deliciosa)
by Chun-Lan Piao, Mengdou Ding, Yongbin Gao, Tao Song, Ying Zhu and Min-Long Cui
Plants 2025, 14(15), 2353; https://doi.org/10.3390/plants14152353 - 31 Jul 2025
Viewed by 288
Abstract
Genetic transformation is an essential tool for investigating gene function and editing genomes. Kiwifruit, recognized as a significant global fresh fruit crop, holds considerable economic and nutritional importance. However, current genetic transformation techniques for kiwifruit are impeded by low efficiency, lengthy culture durations [...] Read more.
Genetic transformation is an essential tool for investigating gene function and editing genomes. Kiwifruit, recognized as a significant global fresh fruit crop, holds considerable economic and nutritional importance. However, current genetic transformation techniques for kiwifruit are impeded by low efficiency, lengthy culture durations (a minimum of six months), and substantial labor requirements. In this research, we established an efficient system for shoot regeneration and the stable genetic transformation of the ‘Hayward’ cultivar, utilizing leaf explants in conjunction with two strains of Agrobacterium that harbor the expression vector pBI121-35S::GFP, which contains the green fluorescent protein (GFP) gene as a visible marker within the T-DNA region. Our results show that 93.3% of leaf explants responded positively to the regeneration medium, producing multiple independent adventitious shoots around the explants within a six-week period. Furthermore, over 71% of kanamycin-resistant plantlets exhibited robust GFP expression, and the entire transformation process was completed within four months of culture. Southern blot analysis confirmed the stable integration of GFP into the genome, while RT-PCR and fluorescence microscopy validated the sustained expression of GFP in mature plants. This efficient protocol for regeneration and transformation provides a solid foundation for micropropagation and the enhancement of desirable traits in kiwifruit through overexpression and gene silencing techniques. Full article
(This article belongs to the Special Issue Plant Transformation and Genome Editing)
Show Figures

Figure 1

10 pages, 1344 KiB  
Article
Establishing a Novel E. coli Heterologous Secretion Expression System Mediated by mScarlet3 for the Expression of a Novel Lipolytic Enzyme
by Jun Yang, Mingjun Yang, Huichen Liu, Xinyu Liu, Fei Wang, Wenqiang Li, Yang Liu, Chao Zhai and Lixin Ma
Biomolecules 2025, 15(6), 842; https://doi.org/10.3390/biom15060842 - 9 Jun 2025
Viewed by 541
Abstract
Our previous study demonstrated that an Escherichia coli heterologous secretion expression system, mediated by superfolder green fluorescent protein (sfGFP) mutants, significantly enhances recombinant lipase yield and reduces large-scale production costs. In this study, we identified mScarlet3, a fast-folding fluorescent protein, as another effective [...] Read more.
Our previous study demonstrated that an Escherichia coli heterologous secretion expression system, mediated by superfolder green fluorescent protein (sfGFP) mutants, significantly enhances recombinant lipase yield and reduces large-scale production costs. In this study, we identified mScarlet3, a fast-folding fluorescent protein, as another effective mediator of secretion expression in E. coli. A novel lipolytic enzyme, named LipHu6, was identified through sequence alignment. Secretion expression of LipHu6 was achieved by fusing mScarlet3 to either its N- or C-terminus. The specific activity of mScarlet3-LipHu6 reached 669,151.75 U/mmol, slightly surpassing that of LipHu6 alone (646,682.69 U/mmol) and markedly exceeding that of sfGFP(-15)-LipHu6 (492,432.39 U/mmol). Notably, N-terminal mScarlet3 fusion had no impact on LipHu6 hydrolytic activity toward short-chain p-nitrophenyl fatty acyl esters (C2–C8). In contrast, mScarlet3-LipHu6 exhibited approximately 1.5- and 1.7-fold increases in hydrolytic activity toward p-nitrophenyl palmitate (p-NPP, C16) and p-nitrophenyl stearate (p-NPS, C18), respectively. In conclusion, this study establishes a novel E. coli heterologous secretion expression system mediated by mScarlet3, offering a highly efficient and cost-effective strategy for the large-scale production of lipolytic enzymes. Full article
(This article belongs to the Section Biomacromolecules: Proteins, Nucleic Acids and Carbohydrates)
Show Figures

Figure 1

38 pages, 7289 KiB  
Review
The Biomodification and Biomimetic Synthesis of 2D Nanomaterial-Based Nanohybrids for Biosensor Applications: A Review
by Ranran Wang, Xinyue Wang, Yan Wang and Gang Wei
Biosensors 2025, 15(5), 328; https://doi.org/10.3390/bios15050328 - 20 May 2025
Viewed by 918
Abstract
Two-dimensional nanomaterials (2DNMs) exhibit significant potential for the development of functional and specifically targeted biosensors, owing to their unique planar nanosheet structures and distinct physical and chemical properties. Biomodification and biomimetic synthesis offer green and mild approaches for the fabrication of multifunctional nanohybrids [...] Read more.
Two-dimensional nanomaterials (2DNMs) exhibit significant potential for the development of functional and specifically targeted biosensors, owing to their unique planar nanosheet structures and distinct physical and chemical properties. Biomodification and biomimetic synthesis offer green and mild approaches for the fabrication of multifunctional nanohybrids with enhanced catalytic, fluorescent, electronic, and optical properties, thereby expanding their utility in constructing high-performance biosensors. In this review, we present recent advances in the synthesis of 2DNM-based nanohybrids via both biomodification and biomimetic strategies for biosensor applications. We discuss covalent and non-covalent biomodification methods involving various biomolecules, including peptides, proteins, DNA/RNA, enzymes, biopolymers, and bioactive polysaccharides. The engineering of biomolecule–nanomaterial interfaces for the creation of biomodified 2DNM-based nanohybrids is also explored. Furthermore, we summarize the biomimetic synthesis of 2DNM-based bio–nanohybrids through pathways such as bio-templating, biomolecule-directed self-assembly, biomineralization, and biomimetic functional integration. The potential applications of these nanohybrids in diverse biosensing platforms—including colorimetric, surface plasmon resonance, electrochemical, fluorescence, photoelectrochemical, and integrated multimodal biosensors—are introduced and discussed. Finally, we analyze the opportunities and challenges associated with this rapidly developing field. We believe this comprehensive review will provide valuable insights into the biofunctionalization of 2DNMs and guide the rational design of advanced biosensors for diagnostic applications. Full article
(This article belongs to the Special Issue Nano- and Micro-biosensing Technologies)
Show Figures

Figure 1

18 pages, 1637 KiB  
Article
Characterization of the VOC Promoter That Is Active Under Low-Salinity Conditions in the Diatom Phaeodactylum tricornutum
by Charlotte Toustou, Carole Plasson, Marie-Christine Kiefer-Meyer and Muriel Bardor
Mar. Drugs 2025, 23(5), 185; https://doi.org/10.3390/md23050185 - 26 Apr 2025
Viewed by 665
Abstract
Microalgae such as Phaeodactylum tricornutum are promising cell biofactories for the production of high-value molecules, including monoclonal antibodies (mAbs). However, to date, the production of mAbs in P. tricornutum using the inducible nitrate reductase (NR) promoter has yielded only a limited amount of [...] Read more.
Microalgae such as Phaeodactylum tricornutum are promising cell biofactories for the production of high-value molecules, including monoclonal antibodies (mAbs). However, to date, the production of mAbs in P. tricornutum using the inducible nitrate reductase (NR) promoter has yielded only a limited amount of mAbs. Therefore, the identification of a robust promoter that produces high yields of mAbs is crucial for the development of a cost-effective expression system. To date, only a few endogenous promoters have been characterized in P. tricornutum. In this study, we identified thirty-three potential “strong” endogenous promoters based on our previously published transcriptomic data from the P. tricornutum Pt3 strain. These putative promoter sequences were cloned into an episomal vector and fused to the gene encoding enhanced green fluorescent protein (eGFP). Their strength was assessed by measuring eGFP fluorescence, which reflects the level of eGFP protein expression. Of the thirty-three promoters, thirteen were able to successfully drive eGFP protein expression. Among them, the best results were obtained with the VOC promoter, which allowed a significant increase in eGFP expression compared to that induced by the NR promoter. These results contribute to the identification of new genetic tools that can be used in future studies to increase the yield of production of recombinant proteins in P. tricornutum at an industrial scale. Full article
(This article belongs to the Special Issue Applications of Marine Microalgal Biotechnology)
Show Figures

Graphical abstract

13 pages, 2630 KiB  
Article
Rapid and Economic Baculovirus Titer Determination Using a Novel Transgenic Sf9-QE Cell Line
by Hyuk-Jin Moon, Hyun-Jung Kim, Dong-Hyun Lee, Seo-Yeong Mun and Soo-Dong Woo
Insects 2025, 16(4), 426; https://doi.org/10.3390/insects16040426 - 17 Apr 2025
Viewed by 855
Abstract
A baculovirus expression system (BES) for the production of recombinant proteins requires rapid and easy virus titer determination. In this study, a novel direct titration method was developed using a novel Sf9-QE cell line to easily and economically determine virus titers in a [...] Read more.
A baculovirus expression system (BES) for the production of recombinant proteins requires rapid and easy virus titer determination. In this study, a novel direct titration method was developed using a novel Sf9-QE cell line to easily and economically determine virus titers in a short time. This direct titration method can determine virus titers by directly counting the initially infected cells. This method requires the rapid identification of the initial virus-infected cells. The genome of Sf9-QE cells, which fluoresce upon virus infection, was found to contain at least seven copy numbers of the enhanced green fluorescent protein (EGFP) transgene. This result suggests that Sf9-QE cells in the early stages of virus infection can be identified by the high expression of EGFP. It was also shown that for accurate virus titration using the direct titration method, Sf9-QE cells should be used within 3 d of subculturing. Additionally, counting fluorescent cells to establish virus infection should be performed within 15 to 30 h after virus infection for reliable virus titration. The direct titration method using Sf9-QE cells provides a rapid, reliable, and cost-effective alternative for determining baculovirus titers in BES research. Full article
(This article belongs to the Special Issue Research on Insect Molecular Biology)
Show Figures

Graphical abstract

20 pages, 4379 KiB  
Article
Dual GSK-3β/HDAC Inhibitors Enhance the Efficacy of Macrophages to Control Mycobacterium tuberculosis Infection
by Sadaf Kalsum, Ruilan Xu, Mira Akber, Shengjie Huang, Maria Lerm, Yuqing Chen, Magda Lourda, Yang Zhou and Susanna Brighenti
Biomolecules 2025, 15(4), 550; https://doi.org/10.3390/biom15040550 - 9 Apr 2025
Viewed by 885
Abstract
Multitarget drug discovery, including host-directed therapy, is particularly promising for tuberculosis (TB) due to the resilience of Mycobacterium tuberculosis (Mtb) as well as the complexity of the host’s immune response. In this proof-of-concept study, we used high-content imaging to test a novel panel [...] Read more.
Multitarget drug discovery, including host-directed therapy, is particularly promising for tuberculosis (TB) due to the resilience of Mycobacterium tuberculosis (Mtb) as well as the complexity of the host’s immune response. In this proof-of-concept study, we used high-content imaging to test a novel panel of dual glycogen synthase kinase 3 beta (GSK-3β) and histone deacetylase (HDAC) 1 and 6 inhibitor candidates for their efficacy in reducing the growth of green fluorescent protein (GFP)-expressing mycobacteria in human primary macrophages. We demonstrate that all ten test compounds, also including the GSK-3β inhibitor SB415286, exhibit an antimycobacterial effect of 20–60% at low micromolar doses and are non-toxic to host cells. Mtb growth showed a positive correlation with the respective 50% inhibitory concentration (IC50) values of GSK-3β, HDAC1, and HDAC6 in each compound, indicating that compounds with a potent IC50 value for HDAC1, in particular, corresponded to higher antimycobacterial activity. Furthermore, the results from multiparametric flow cytometry and a customized multiplex RNA array demonstrated that SB415286 and selected compounds, C02 and C06, could modulate immune polarization and inflammation in Mtb-infected macrophages involving an enhanced expression of CCL2, IL-10 and S100A9, but a decrease in inflammatory mediators including COX-2, TNF-α, and NFκB. These data suggest that GSK-3β inhibition alone can decrease the intracellular growth of mycobacteria and regulate macrophage inflammation, while dual GSK-3β/HDAC inhibitors enhance this efficacy. Accordingly, the tailored design of dual GSK-3β/HDAC inhibitors could represent an innovative approach to host-directed therapy in TB. Full article
(This article belongs to the Special Issue Tuberculosis: Immunopathogenesis and Therapeutic Strategies)
Show Figures

Graphical abstract

16 pages, 4805 KiB  
Article
Microfluidic Optimization of PEI-Lipid Hybrid Nanoparticles for Efficient DNA Delivery and Transgene Expression
by Mahboubeh Hosseini-Kharat, Anthony Wignall, Zelalem A. Mekonnen, Ben S.-Y. Ung, Bradley Chereda, Kristen E. Bremmell, Branka Grubor-Bauk and Clive A. Prestidge
Pharmaceutics 2025, 17(4), 454; https://doi.org/10.3390/pharmaceutics17040454 - 1 Apr 2025
Viewed by 1105
Abstract
Background: Lipid nanoparticles (LNPs) and polyethyleneimine (PEI) have independently been used for DNA complexation and delivery. However, non-ideal gene delivery efficiency and toxicity have hindered their clinical translation. We developed DNA-PEI-LNPs as a strategy to overcome these limitations and enhance DNA delivery [...] Read more.
Background: Lipid nanoparticles (LNPs) and polyethyleneimine (PEI) have independently been used for DNA complexation and delivery. However, non-ideal gene delivery efficiency and toxicity have hindered their clinical translation. We developed DNA-PEI-LNPs as a strategy to overcome these limitations and enhance DNA delivery and transgene expression. Methods: Three microfluidic mixing protocols were evaluated: (i) LNPs without PEI, (ii) a single-step process incorporating PEI in the organic phase, and (iii) a two-step process with DNA pre-complexed with PEI before LNP incorporation. The influence of DNA/PEI ratios (1:1, 1:2, 1:3) and DNA/lipid ratios (1:10, 1:40) on particle properties and delivery efficiency was examined. Results: In luciferase formulations, higher DNA/lipid ratios (1:40) produced smaller particles (136 nm vs. 188 nm) with improved cellular uptake (77% vs. 50%). The two-step method with higher DNA/PEI ratios improved transfection efficiency, with LNP-Luc/PEI 1:3 (40) achieving ~1.9 × 106 relative light units (RLU) in luciferase expression. In green fluorescent protein (GFP) studies, LNP-GFP/PEI 1:3 (40) showed ~23.8% GFP-positive cells, nearly twofold higher than LNP-GFP (40) at ~12.6%. Conclusions: These results demonstrate the capability of microfluidic-prepared DNA-PEI-LNPs to improve DNA delivery and transgene expression through optimized formulation strategies and selection of appropriate preparation methods. Full article
(This article belongs to the Section Gene and Cell Therapy)
Show Figures

Figure 1

13 pages, 3019 KiB  
Article
Distinct Fgf21 Expression Patterns in Various Tissues in Response to Different Dietary Regimens Using a Reporter Mouse Model
by Xinhui Zhang, Zixuan Li, Shuying Wang and Yan Chen
Nutrients 2025, 17(7), 1179; https://doi.org/10.3390/nu17071179 - 28 Mar 2025
Viewed by 658
Abstract
Background: Fibroblast growth factor 21 (FGF21), a secreted protein, plays a crucial role in regulating metabolism and energy homeostasis. Nevertheless, the expression pattern of Fgf21 across diverse tissues and its responsiveness to various dietary regimens remain incompletely understood. Methods: In this [...] Read more.
Background: Fibroblast growth factor 21 (FGF21), a secreted protein, plays a crucial role in regulating metabolism and energy homeostasis. Nevertheless, the expression pattern of Fgf21 across diverse tissues and its responsiveness to various dietary regimens remain incompletely understood. Methods: In this study, we developed a Fgf21-enhanced green fluorescent protein (EGFP) reporter mouse model to explore the expression of endogenous Fgf21 in different tissues under four dietary conditions: normal chow, low-protein diet, fasting, and fasting-refeeding. Results: A low-protein diet was found to induce Fgf21 expression in both the liver and skeletal muscle. Notably, Fgf21 was predominantly expressed in the periportal region of the liver. In the pancreas, Fgf21 exhibited a patchy expression pattern in the exocrine portion, but was absent in the endocrine part, regardless of the dietary regimens. Regarding the spleen, fasting triggered the expression of Fgf21, which was mainly localized in the red pulp area. Moreover, under fasting conditions, Fgf21 showed a scattered expression pattern in the small intestine. Conclusions: The Fgf21-EGFP reporter mouse model serves as a valuable tool for dissecting the expression of endogenous Fgf21 in different tissues under various dietary and stress conditions. Further investigations using this model may contribute to uncovering the hitherto unrecognized functions of locally produced FGF21. Full article
(This article belongs to the Section Nutrition and Metabolism)
Show Figures

Figure 1

20 pages, 3477 KiB  
Article
Development of 3D Cell-Based Fluorescent Reporter Assay for Screening of Drugs Downregulating Telomerase Reverse Transcriptase
by You Li, Fengli Zhang, Zhen Qin and Shang-Tian Yang
Bioengineering 2025, 12(4), 335; https://doi.org/10.3390/bioengineering12040335 - 23 Mar 2025
Viewed by 964
Abstract
A fluorescent cell-based assay was developed for the screening of chemicals repressing the expression of human telomerase reverse transcriptase (hTERT). hTERT is reactivated during carcinogenesis and is overexpressed in more than 90% of cancers but is almost silent in normal tissue cells. Because [...] Read more.
A fluorescent cell-based assay was developed for the screening of chemicals repressing the expression of human telomerase reverse transcriptase (hTERT). hTERT is reactivated during carcinogenesis and is overexpressed in more than 90% of cancers but is almost silent in normal tissue cells. Because of its critical role in cancer, hTERT is a target in various therapeutic strategies for cancer treatment. In this study, the hTERT promoter was cloned in MCF7 breast cancer cells and used to control the expression of enhanced green fluorescent protein (EGFP). The fluorescence of EGFP indicated the activity of the hTERT promoter, and, in the presence of an hTERT repressor, the EGFP fluorescence signal was reduced as compared to the EGFP fluorescence controlled by the human cytomegalovirus (CMV) promoter, which was not affected by changes in culture conditions and worked as a control. The EGFP reporter cells were cultivated in three-dimensional (3D) microbioreactors to resemble the in vivo tumor physiology and provide in vivo-like responses. The assay’s predictability was demonstrated with three known hTERT inhibitors, pristimerin, epigallocatechin gallate, and n-butylidenephthalide, and further evaluated with five widely used anticancer compounds, doxorubicin, cisplatin, paclitaxel, blasticidin, and tamoxifen. The results showed overall accuracy of over 83.3%, demonstrating the feasibility of using the hTERT promoter with EGFP as a reporter for the screening of potential cancer drugs targeting hTERT. Full article
(This article belongs to the Section Biochemical Engineering)
Show Figures

Figure 1

13 pages, 4078 KiB  
Article
An Engineered Yeast Expressing an Artificial Heavy Metal-Binding Protein Enhances the Phytoremediation of Alum Mine Soils
by Wenming Wang, Liling Xie, Lin Zhao and Qilin Yu
Microorganisms 2025, 13(3), 612; https://doi.org/10.3390/microorganisms13030612 - 7 Mar 2025
Viewed by 843
Abstract
Alum mining leads to significant heavy metal and acid pollution within soils. Phytoremediation is a common strategy used to treat alum mine soils, but its efficiency is frequently compromised by the alum-mining-induced impairment of plant growth. To improve the strength of plants against [...] Read more.
Alum mining leads to significant heavy metal and acid pollution within soils. Phytoremediation is a common strategy used to treat alum mine soils, but its efficiency is frequently compromised by the alum-mining-induced impairment of plant growth. To improve the strength of plants against mine pollution, this study constructed the artificial yeast strain ScHB (heavy metal-binding protein-containing Saccharomyces cerevisiae) expressing the de novo designed protein HBGFP (heavy metal-binding green fluorescence protein) and investigated its effect on the phytoremediation of alum mine soils with soil physiochemical assays and heavy metal quantification. This protein was composed of an N-terminal signal peptide, an HB (heavy metal-binding) domain, and a GFP (green fluorescence protein) domain, as well as a C-terminal glycolphosphatidylinositol-anchoring fragment. The exposure of the HBGFP on the ScHB surface increased the growth rate of the yeast cells and enhanced cadmium capture from the cadmium-containing medium. After culturing Medicago sativa in the alum mine soils for 30 days, ScHB remarkably increased the plants’ average height from 17.5 cm to 27.9 cm and their biomass from 3.03 g/plant to 4.35 g/plant, as well as increasing the accumulation of antioxidant agents in the plants. Moreover, the ScHB cells strongly improved the soil quality, with an increase in the soil pH values from 5.47 to 6.21 to 6.9, and increased the levels of soil organic matter, total nitrogen, available phosphorus, and living bacteria. Furthermore, ScHB efficiently improved the plants’ abilities to remove soil heavy metals, decreasing the levels of cadmium, lead, chromium, and copper by 90%, 86%, 97%, and 88%, respectively. This study developed a genetic engineering method to improve the efficiency of phytoremediation against pollution from alum mining. Full article
(This article belongs to the Special Issue Advances on Molecular Microbial Ecology)
Show Figures

Figure 1

15 pages, 4537 KiB  
Article
Construction of a Cofactor Self-Sufficient Enzyme Cascade System Coupled with Microenvironmental Engineering for Efficient Biosynthesis of Tetrahydrofolate and Its Derivative of L-5-Methyltetrahydrofolate
by Ziting Yan, Lisha Qin, Ruirui Qin, Xin Wang and Kequan Chen
Catalysts 2025, 15(3), 235; https://doi.org/10.3390/catal15030235 - 28 Feb 2025
Viewed by 1017
Abstract
Tetrahydrofolate (THF), the biologically active form of folate, serves as a crucial carrier of one-carbon units essential for synthesizing cellular components such as amino acids and purine nucleotides in vivo. It also acts as an important precursor for the production of pharmaceuticals, including [...] Read more.
Tetrahydrofolate (THF), the biologically active form of folate, serves as a crucial carrier of one-carbon units essential for synthesizing cellular components such as amino acids and purine nucleotides in vivo. It also acts as an important precursor for the production of pharmaceuticals, including folinate and L-5-methyltetrahydrofolate (L-5-MTHF). In this study, we developed an efficient enzyme cascade system for the production tetrahydrofolate from folate, incorporating NADPH recycling, and explored its application in the synthesis of L-5-MTHF, a derivative of tetrahydrofolate. To achieve this, we first screened dihydrofolate reductases (DHFRs) from various organisms, identifying SmDHFR from Serratia marcescens as the enzyme with the highest catalytic activity. We then conducted a comparative analysis of formate dehydrogenases (FDHs) from different sources, successfully establishing an NADPH recycling system. To further enhance biocatalytic efficiency, we optimized key reaction parameters, including temperature, pH, enzyme ratio, and substrate concentration. To address the challenge of pH mismatch in dual-enzyme reactions, we employed an enzymatic microenvironment regulation strategy. This involved covalently conjugating SmDHFR with a superfolder green fluorescent protein mutant carrying 30 surface negative charges (−30sfGFP), using the SpyCatcher/SpyTag system. This modification resulted in a 2.16-fold increase in tetrahydrofolate production, achieving a final yield of 4223.4 µM. Finally, we extended the application of this tetrahydrofolate synthesis system to establish an enzyme cascade for L-5-MTHF production with NADH recycling. By incorporating methylenetetrahydrofolate reductase (MTHFR), we successfully produced 389.8 μM of L-5-MTHF from folate and formaldehyde. This work provides a novel and efficient pathway for the biosynthesis of L-5-MTHF and highlights the potential of enzyme cascade systems in the production of tetrahydrofolate-derived compounds. Full article
(This article belongs to the Special Issue Enzyme Engineering—the Core of Biocatalysis)
Show Figures

Graphical abstract

14 pages, 3501 KiB  
Article
Achieving Optimal Transfection Conditions in Chicken Primordial Germ Cells Under Feeder- and Serum-Free Medium
by Zhifeng Zhao, Xian Zou, Ying Zhu, Yanhua He, Endashaw Jebessa, Jiannan Zhang, Jian Ji, Peng Chen and Chenglong Luo
Animals 2025, 15(4), 590; https://doi.org/10.3390/ani15040590 - 18 Feb 2025
Viewed by 958
Abstract
The successful application of primordial germ cells (PGCs) is an ideal method for generating gene-edited birds. However, barriers to efficient DNA transfection in PGCs lead to low transfection efficiency, limiting the generation of genetically modified chickens. The current study utilized chemical transfection and [...] Read more.
The successful application of primordial germ cells (PGCs) is an ideal method for generating gene-edited birds. However, barriers to efficient DNA transfection in PGCs lead to low transfection efficiency, limiting the generation of genetically modified chickens. The current study utilized chemical transfection and electroporation methods to determine the optimal transfection conditions for the PGC line under feeder- and serum-free medium. Among the tested methods, the Lonza electroporation system exhibited the highest transduction efficiency, with a previously unreported rate of 71.13 ± 1.26%. Optimal transfection conditions were achieved using 4 µg of DNA and 100 µL of EntransterTM-E in 1 × 106 PGCs. Furthermore, the optimal electroporation conditions resulted in low cell death and normal expression of pluripotency-related genes, highlighting the low cytotoxicity. The resulting electroporation models were then used to deliver the enhanced green fluorescent protein (EGFP) gene to the Z chromosome with a Cas9-gRNA plasmid, achieving a 7-day insertion efficiency of 14.63 ± 1.07%. Our study highlights the vast potential of electroporation technology for the transfection of PGCs. Full article
(This article belongs to the Special Issue Recent Advances in Reproductive Biotechnologies—Second Edition)
Show Figures

Figure 1

19 pages, 6248 KiB  
Article
An Osteoblast-Specific Enhancer and Subenhancer Cooperatively Regulate Runx2 Expression in Chondrocytes
by Yuki Matsuo, Xin Qin, Takeshi Moriishi, Viviane K. S. Kawata-Matsuura, Hisato Komori, Chiharu Sakane, Suemi Yabuta, Qing Jiang, Hitomi Kaneko, Kosei Ito, Mayo Shigeta, Takaya Abe and Toshihisa Komori
Int. J. Mol. Sci. 2025, 26(4), 1653; https://doi.org/10.3390/ijms26041653 - 14 Feb 2025
Viewed by 649
Abstract
Runx2 is an essential transcription factor for osteoblast differentiation and chondrocyte maturation. The spatiotemporal expression of Runx2 is regulated by enhancers. We previously identified a 1.3 kb osteoblast-specific enhancer; however, mice with this deletion showed no phenotypes. A 0.8 kb conserved region detected [...] Read more.
Runx2 is an essential transcription factor for osteoblast differentiation and chondrocyte maturation. The spatiotemporal expression of Runx2 is regulated by enhancers. We previously identified a 1.3 kb osteoblast-specific enhancer; however, mice with this deletion showed no phenotypes. A 0.8 kb conserved region detected near the 1.3 kb enhancer did not exhibit enhancer activity in reporter assays, whereas four tandem repeats of 452 bp (452 × 4) containing the most conserved region of 0.8 kb induced strong reporter activity in chondrocyte cell lines. However, chondrocytes of enhanced green fluorescent protein (EGFP) reporter mice using 452 × 4 did not express EGFP. When 452 × 4 was combined with the 1.3 kb enhancer, hypertrophic chondrocytes highly expressed EGFP. Moreover, the 0.8 kb region combined with the 1.3 kb enhancer induced EGFP expression in prehypertrophic and hypertrophic chondrocytes. The deletion of both the 1.3 kb enhancer and the 0.8 kb conserved region slightly reduced Runx2 expression in the limbs. However, neither homozygous nor heterozygous deletions in the Runx2+/− background showed phenotypes. The 0.8 kb conserved region itself lacked enhancer activity, but when combined with the 1.3 kb enhancer, EGFP expression was induced in chondrocytes with a similar expression pattern to Runx2. Therefore, the 0.8 kb conserved region has a novel function as a subenhancer. Full article
(This article belongs to the Special Issue Molecular Aspects of Cartilage Biology)
Show Figures

Figure 1

17 pages, 5197 KiB  
Article
Descriptive Comparative Transcriptomic Analysis of Genotype IV SHEV ORF3-Expressing HepG2 Cells
by Hanwei Jiao, Chi Meng, Fengyuan Jiao, Gengxu Zhou, Lingjie Wang, Shengping Wu, Cailiang Fan, Jixiang Li, Liting Cao, Yu Zhao and Yichen Luo
Microorganisms 2025, 13(2), 412; https://doi.org/10.3390/microorganisms13020412 - 13 Feb 2025
Viewed by 1114
Abstract
Background: Swine hepatitis E (HEV) is a zoonotic infectious disease caused by the swine hepatitis E virus (SHEV). Open reading frame 3 (ORF3) is a key virulence factor in swine HEV, playing a crucial role in the release of viral particles, the modulation [...] Read more.
Background: Swine hepatitis E (HEV) is a zoonotic infectious disease caused by the swine hepatitis E virus (SHEV). Open reading frame 3 (ORF3) is a key virulence factor in swine HEV, playing a crucial role in the release of viral particles, the modulation of the host innate immune response, and regulation of autophagy and apoptosis, etc. However, its main function and pathogenic mechanism remain incompletely understood. Results: In our study, adenoviruses ADV4-ORF3 and ADV4-GFP were successfully constructed and mediated the overexpression of enhanced green fluorescent protein (EGFP)-ORF3 and EGFP in HepG2 cells. A total of 217 differentially expressed messenger RNAs (mRNAs) were screened by high-throughput sequencing, and 27 statistically significant differentially expressed genes were screened for further quantitative real-time reverse transcription (qRT-PCR) verification by functional enrichment (Gene Ontology [GO] and Kyoto Encyclopedia of Genes and Genomes [KEGG]). They are mainly involved in six pathways: the cellular response to unfolded protein, inflammatory response, cytokine activity, TNF signaling pathway, influenza A, and pathways in cancer. In a comparative analysis of transcriptome and mRNA expression profiles of lncRNA sequencing, the results showed that 3 mRNAs of GPX1, MDM4, and CLDN and 39 transcripts overlapped and have been identified. Conclusions: Eight differential genes, HSPA1A, HSPA1B, PLD3, RELA, GPI, SAMHD1, RPS6KA4, and PIK3CB, were successfully verified. Comparing and analyzing the results of the two sequencing methods indicated that the 3 mRNAs of GPX1, MDM4, and CLDN and 39 transcripts overlapped and have been identified in SHEV ORF3-expressing HepG2 cells, which has laid a genetic foundation for the physiological function and mechanism of SHEV ORF3. Full article
(This article belongs to the Section Virology)
Show Figures

Figure 1

Back to TopTop