Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (781)

Search Parameters:
Keywords = engineered cell membrane

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3757 KB  
Article
Optimized Zebrafish AP2M1A-Derived Decapeptide AP10RW with Robust Stability Suppresses Multidrug-Resistant Bacteria
by Yi Gong, Jun Li, Yameng Zhang, Xiaozheng Zhang and Jun Xie
Biomolecules 2026, 16(2), 207; https://doi.org/10.3390/biom16020207 - 28 Jan 2026
Abstract
The increasing crisis of antimicrobial resistance requires innovative therapeutic strategies that can overcome the limitations of conventional antibiotics. Based on our previous finding that AP10 (a derivative of AP29) possesses antimicrobial activity but lacks thermal stability, we rationally redesigned ten new AP10 analogues [...] Read more.
The increasing crisis of antimicrobial resistance requires innovative therapeutic strategies that can overcome the limitations of conventional antibiotics. Based on our previous finding that AP10 (a derivative of AP29) possesses antimicrobial activity but lacks thermal stability, we rationally redesigned ten new AP10 analogues to enhance functional robustness while maintaining efficacy. Among these, AP10RW is identified as the optimal candidate due to its exceptional broad-spectrum activity against both drug-sensitive and multidrug-resistant (MDR) bacterial pathogens. Structural analysis reveals that AP10RW adopts an environmentally responsive conformation, transitioning from random coil to amphiphilic α-helix in membrane-mimicking environments, while demonstrating remarkable stability under challenges including serum exposure, varying pH, high salt concentrations, and thermal stress. Mechanistic studies indicate that AP10RW exerts its effects through multiple bactericidal mechanisms involving initial high-affinity binding to bacterial characteristic molecules (LTA, LPS and PGN), followed by rapid membrane depolarization, ultrastructural damage and the induction of lethal oxidative stress. Notably, this potent antimicrobial efficacy is coupled with exceptional biosafety, demonstrating little hemolysis and negligible cytotoxicity against mammalian cells. This systematic optimization represents a significant advancement in antimicrobial peptide engineering. We have successfully transformed a thermally unstable peptide into a robust therapeutic candidate and positioned AP10RW as a promising clinical candidate for addressing the growing threat of multidrug-resistant infections. Full article
(This article belongs to the Section Natural and Bio-derived Molecules)
Show Figures

Figure 1

13 pages, 2822 KB  
Article
Genetically Engineered Biomimetic Nanovesicles Co-Deliveing a Checkpoint Inhibitor and Doxorubicin for Enhanced Cancer Chemo-Immunotherapy
by Yunying Xing, Xinyi Liu, Zhenkun Wang, Yingze Wang, Jing Zhang and Wenxiang Zhu
Pharmaceutics 2026, 18(2), 159; https://doi.org/10.3390/pharmaceutics18020159 - 26 Jan 2026
Viewed by 133
Abstract
Background/Objectives: Despite the clinical success of immune checkpoint blockade (ICB), its efficacy remains limited in immunologically “cold” tumors, primarily due to poor immunogenicity and an immunosuppressive tumor microenvironment (TME). Chemo-immunotherapy offers a potential strategy to enhance ICB response, yet its application is [...] Read more.
Background/Objectives: Despite the clinical success of immune checkpoint blockade (ICB), its efficacy remains limited in immunologically “cold” tumors, primarily due to poor immunogenicity and an immunosuppressive tumor microenvironment (TME). Chemo-immunotherapy offers a potential strategy to enhance ICB response, yet its application is often hindered by inadequate tumor-targeted delivery and systemic immunosuppressive side effects. Biomimetic nanotechnology represents a promising approach to overcoming these limitations by improving drug delivery and facilitating effective combination regimens. Methods: We developed a biomimetic nanosystem (NVs@DOX) through genetic engineering of cellular membranes and optimized nanoformulation techniques, enabling co-delivery of doxorubicin (DOX) and ICB agents. This design aims to maximize synergistic antitumor effects while minimizing adverse impacts. Results: In vitro studies demonstrated the potent cytotoxicity of NVs@DOX, including significant inhibition of cancer cell proliferation and complete suppression of colony formation. In a 4T1 murine breast cancer model, NVs@DOX treatment led to substantial tumor growth inhibition (approximately 72%) without notable body weight loss, underscoring a favorable safety profile alongside enhanced therapeutic efficacy. Conclusions: The NVs@DOX platform effectively integrates doxorubicin with ICB within a biomimetic nanocarrier, significantly improving chemo-immunotherapy outcomes. This strategy highlights the potential of genetically engineered cellular nanoparticles as a promising combinatorial approach for the treatment of breast cancer. Full article
Show Figures

Figure 1

36 pages, 12414 KB  
Article
A Replication-Competent Flavivirus Genome with a Stable GFP Insertion at the NS1-NS2A Junction
by Pavel Tarlykov, Bakytkali Ingirbay, Dana Auganova, Tolganay Kulatay, Viktoriya Keyer, Sabina Atavliyeva, Maral Zhumabekova, Arman Abeev and Alexandr V. Shustov
Biology 2026, 15(3), 220; https://doi.org/10.3390/biology15030220 - 24 Jan 2026
Viewed by 187
Abstract
The flavivirus NS1 protein is a component of the viral replication complex and plays diverse, yet poorly understood, roles in the viral life cycle. To enable real-time visualization of the developing replication organelle and biochemical analysis of tagged NS1 and its interacting partners, [...] Read more.
The flavivirus NS1 protein is a component of the viral replication complex and plays diverse, yet poorly understood, roles in the viral life cycle. To enable real-time visualization of the developing replication organelle and biochemical analysis of tagged NS1 and its interacting partners, we engineered a replication-competent yellow fever virus (YFV) replicon encoding a C-terminal fusion of NS1 with green fluorescent protein (NS1–GFP). The initial variant was non-viable in the absence of trans-complementation with wild-type NS1; however, viability was partially restored through the introduction of co-adaptive mutations in GFP (Q204R/A206V) and NS4A (M108L). Subsequent cell culture adaptation generated a 17-nucleotide frameshift within the NS1–GFP linker, resulting in a more flexible and less hydrophobic linker sequence. The optimized genome, in the form of a replicon, replicates in packaging cells that produce YFV structural proteins, as well as in naive BHK-21 cells. In the packaging cells, the adapted NS1–GFP replicon produces titers of infectious particles of approximately 10^6 FFU/mL and is genetically stable over five passages. The expressed NS1–GFP fusion protein localizes to the endoplasmic reticulum and co-fractionates with detergent-resistant heavy membranes, a hallmark of flavivirus replication organelles. This NS1–GFP replicon provides a novel platform for studying NS1 functions and can be further adapted for proximity-labeling strategies aimed at identifying the still-unknown protease responsible for NS1–NS2A cleavage. Full article
36 pages, 6350 KB  
Review
Nanoparticle Applications in Plant Biotechnology: A Comprehensive Review
by Viktor Husak, Milos Faltus, Alois Bilavcik, Stanislav Narozhnyi and Olena Bobrova
Plants 2026, 15(3), 364; https://doi.org/10.3390/plants15030364 - 24 Jan 2026
Viewed by 427
Abstract
Nanotechnology is becoming a key tool in plant biotechnology, enabling nanoparticles (NPs) to deliver biomolecules with high precision and to enhance plant and tissue resilience under stress. However, the literature remains fragmented across genetic delivery, in vitro regeneration, stress mitigation, and germplasm cryopreservation, [...] Read more.
Nanotechnology is becoming a key tool in plant biotechnology, enabling nanoparticles (NPs) to deliver biomolecules with high precision and to enhance plant and tissue resilience under stress. However, the literature remains fragmented across genetic delivery, in vitro regeneration, stress mitigation, and germplasm cryopreservation, and it still lacks standardized, comparable protocols and robust long-term safety assessments—particularly for NP use in cryogenic workflows. This review critically integrates recent advances in NP-enabled (i) genetic engineering and transformation, (ii) tissue culture and regeneration, (iii) nanofertilization and abiotic stress mitigation, and (iv) cryopreservation of plant germplasm. Across these areas, the most consistent findings indicate that NPs can facilitate targeted transport of DNA, RNA, proteins, and regulatory complexes; modulate oxidative and osmotic stress responses; and improve regeneration performance in recalcitrant species. In cryopreservation, selected nanomaterials act as multifunctional cryoprotective adjuvants by suppressing oxidative injury, stabilizing cellular membranes, and improving post-thaw viability and regrowth of sensitive tissues. At the same time, NP outcomes are highly context-dependent, with efficacy governed by dose, size, and surface chemistry; formulation; plant genotype; and interactions with culture media or vitrification solutions. Evidence of potential phytotoxicity, persistence, and biosafety risks highlights the need for harmonized reporting, mechanistic studies on NP–cell interfaces, and evaluation of environmental fate. Expected outcomes of this review include a consolidated framework linking NP properties to biological endpoints, identification of design principles for application-specific NP selection, and a set of research priorities to accelerate the safe and reproducible translation of nanotechnology into sustainable plant biotechnology and long-term germplasm preservation. Full article
Show Figures

Figure 1

17 pages, 4374 KB  
Article
Development of a Cellular Membrane Nanovesicle-Based Vaccine Against Porcine Epidemic Diarrhea Virus
by Xianjun Wang, Weibing Zhang, Hong Hu, Wenjing Gao, Xu Ma, Yarong Wu, Yongfeng Qiao, Yang Wang, Ding Zhang, Chunbo Dong, Haidong Wang and Zhida Liu
Cells 2026, 15(2), 208; https://doi.org/10.3390/cells15020208 - 22 Jan 2026
Viewed by 159
Abstract
Porcine epidemic diarrhea virus (PEDV) has emerged as a major pathogen responsible for porcine diarrheal diseases, causing outbreaks of severe diarrhea and high mortality in neonatal piglets, thereby inflicting severe economic losses on the global swine industry. Current commercial PED vaccines, [...] Read more.
Porcine epidemic diarrhea virus (PEDV) has emerged as a major pathogen responsible for porcine diarrheal diseases, causing outbreaks of severe diarrhea and high mortality in neonatal piglets, thereby inflicting severe economic losses on the global swine industry. Current commercial PED vaccines, comprising conventional inactivated and live attenuated formulations, have exhibited progressively diminished efficacy in the face of emerging PEDV variants. The development of high-efficiency vaccine platforms is therefore critical for PED control. This study engineered a cellular membrane nanovesicle (CMN)-based vaccine, which differs from existing inactivated or subunit vaccines by presenting the PEDV spike (S) protein on the cell membranes to mimic the bilayer phospholipid structure of the viral envelope. The full-length S protein (FS, aa 19-1309) or a truncated S protein fragment (TS, aa 19-726) was expressed in Expi293F cells, followed by extraction of cell membranes to assemble antigen-displaying CMN vaccines. Compared with commercial live attenuated vaccine, administration of the CMN vaccine elicited high-titer neutralizing antibodies and elevated IFN-γ-producing CD8+ T cells in murine studies. Safety assessments revealed no adverse effects on body weight, hepatic/renal function indices, or histopathological parameters in vaccinated mice. Furthermore, immunization of piglets elicited notable humoral and CD8+ T cell immune responses. Collectively, the strategy of CMN-based vaccine described herein delivers a potential PEDV vaccine platform, thereby offering a novel avenue for next-generation veterinary vaccine development. Full article
(This article belongs to the Section Cellular Immunology)
Show Figures

Figure 1

14 pages, 1626 KB  
Article
Experimental Evaluation of Pulse Width Effects Under Equal-Dose Pulsed Electric Field Treatment on A375 Cells
by Hongyu Kou, Feiyu Wu, Kai Chen, Shupeng Wang, Runze Liang and Chenguo Yao
Appl. Sci. 2026, 16(2), 1086; https://doi.org/10.3390/app16021086 - 21 Jan 2026
Viewed by 95
Abstract
Pulsed electric fields (PEFs) are widely recognized as a non-thermal, selective physical therapy with wide clinical application in tumor ablation. The pulse width determines how electrical energy is distributed across plasma membrane to intracellular organelles. However, under an engineering-defined equal-dose condition (N·E2 [...] Read more.
Pulsed electric fields (PEFs) are widely recognized as a non-thermal, selective physical therapy with wide clinical application in tumor ablation. The pulse width determines how electrical energy is distributed across plasma membrane to intracellular organelles. However, under an engineering-defined equal-dose condition (N·E2·tp), which serves as a practical control parameter rather than a measure of true cellular energy absorption, systematic and comparable experimental characterization of cellular and subcellular responses across pulse widths from the microsecond to nanosecond range remains limited. In this study, PEFs with pulse widths ranging from 100 μs to 50 ns were applied under equal-dose constraints, and cellular responses were evaluated using transmission electron microscopy (TEM), multi-organelle fluorescence imaging, and flow cytometry. The results indicate that pulse-width-dependent effects were observed under a fixed pulse-number, dose-equalized framework in which electric field strength varied across conditions. Structural and functional changes were observed in multiple organelles, including the nucleus, mitochondria, endoplasmic reticulum, and Golgi apparatus. Notably, nanosecond pulses were more effective in inducing mitochondrial membrane potential loss and increasing the proportion of apoptotic or non-viable cells. These findings demonstrate that, under equal-dose conditions, pulse width is a key temporal parameter governing PEF-induced biological effects, indicating that identical dose constraints do not necessarily result in equivalent biological responses. This work provides experimental foundation for parameter selection and optimization in PEF-based biomedical applications. Full article
Show Figures

Figure 1

60 pages, 7234 KB  
Review
Cellular Allies Against Glioblastoma: Therapeutic Potential of Macrophages and Mesenchymal Stromal Cells
by Bruno Agustín Cesca, Kali Pellicer San Martin and Luis Exequiel Ibarra
Pharmaceutics 2026, 18(1), 124; https://doi.org/10.3390/pharmaceutics18010124 - 19 Jan 2026
Viewed by 251
Abstract
Background/Objectives: Glioblastoma (GBM) remains the most aggressive primary brain tumor in adults, with limited therapeutic options and poor prognosis despite maximal surgery, radiotherapy, and chemotherapy. The complex and immunosuppressive tumor microenvironment, pronounced intratumoral heterogeneity, and the presence of the blood–brain barrier (BBB) [...] Read more.
Background/Objectives: Glioblastoma (GBM) remains the most aggressive primary brain tumor in adults, with limited therapeutic options and poor prognosis despite maximal surgery, radiotherapy, and chemotherapy. The complex and immunosuppressive tumor microenvironment, pronounced intratumoral heterogeneity, and the presence of the blood–brain barrier (BBB) severely restrict the efficacy of conventional and emerging therapies. In this context, cell-based strategies leveraging macrophages, mesenchymal stromal cells (MSCs), and their derivatives have gained attention as “cellular allies” capable of modulating the GBM microenvironment and acting as targeted delivery platforms. Methods: This review systematically analyzes preclinical and early clinical literature on macrophage- and MSC-based therapeutic strategies in GBM, including engineered cells, extracellular vesicles (EVs), membrane-coated nanoparticles, and hybrid biomimetic systems. Studies were selected based on relevance to GBM biology, delivery across or bypass of the BBB, microenvironmental modulation, and translational potential. Evidence from in vitro models, orthotopic and syngeneic in vivo models, and available clinical trials was critically evaluated, with emphasis on efficacy endpoints, biodistribution, safety, and manufacturing considerations. Results: The reviewed evidence demonstrates that macrophages and MSCs can function as active therapeutic agents or delivery vehicles, enabling localized oncolysis, immune reprogramming, stromal and vascular remodeling, and enhanced delivery of viral, genetic, and nanotherapeutic payloads. EVs and membrane-based biomimetic platforms further extend these capabilities while reducing cellular risks. However, therapeutic efficacy is highly context-dependent, influenced by tumor heterogeneity, BBB integrity, delivery route, and microenvironmental dynamics. Clinical translation remains limited, with most approaches at preclinical or early-phase clinical stages. Conclusions: Cell-based and cell-derived platforms represent a promising but still evolving therapeutic paradigm for GBM. Their successful translation will require rigorous biomarker-driven patient selection, improved models that capture invasive GBM biology, scalable GMP-compliant manufacturing, and rational combination strategies to overcome adaptive resistance mechanisms. Full article
(This article belongs to the Special Issue Where Are We Now and Where Is Cell Therapy Headed? (2nd Edition))
Show Figures

Graphical abstract

17 pages, 1011 KB  
Review
Biomolecular Condensates in Disease: Decoding the Material State and Engineering Precision Modulators
by Biwei Han, Boxian Li, Xingyue Wang and Liang Wang
Int. J. Mol. Sci. 2026, 27(2), 837; https://doi.org/10.3390/ijms27020837 - 14 Jan 2026
Viewed by 160
Abstract
The recognition of liquid–liquid phase separation (LLPS) as a widespread organizing principle has revolutionized our view of cellular biochemistry. By forming biomolecular condensates, cells spatially orchestrate reactions without membranes. However, the dysregulation of this precise physical organization is emerging as a driver of [...] Read more.
The recognition of liquid–liquid phase separation (LLPS) as a widespread organizing principle has revolutionized our view of cellular biochemistry. By forming biomolecular condensates, cells spatially orchestrate reactions without membranes. However, the dysregulation of this precise physical organization is emerging as a driver of diverse pathologies, collectively termed “Condensatopathies.” Unlike traditional proteinopathies defined by static aggregates, these disorders span a dynamic spectrum of material state dysfunctions, from the failure to assemble essential compartments to the formation of aberrant, toxic phases. While research has largely focused on neurodegeneration and cancer, the impact of condensate dysfunction likely extends across broad physiological landscapes. A central unresolved challenge lies in deciphering the “molecular grammar” that governs the transition from functional fluids to pathological solids and, critically, visualizing these transitions in situ. This “material science” perspective presents a profound conundrum for drug discovery: how to target the collective physical state of a protein ensemble rather than a fixed active site. This review navigates the evolving therapeutic horizon, examining the limitations of current pharmacological approaches in addressing the complex “condensatome.” Moving beyond inhibition, we propose that the future of intervention lies in “reverse-engineering” the biophysical codes of phase separation. We discuss how deciphering these principles enables the creation of programmable molecular tools—such as synthetic peptides and state-specific degraders—designed to precisely modulate or dismantle pathological condensates, paving the way for a new era of precision medicine governed by soft matter physics. Full article
Show Figures

Figure 1

17 pages, 6384 KB  
Article
Numerical Investigation of Heat Dissipation Components and Thermal Management System in PEM Fuel Cell Engines
by Yuchen Zhou, Zhuqian Zhang, Haojie Zhang, Heyao Li, Xianglong Meng, Luwei Zhu and Xinyu Liao
Batteries 2026, 12(1), 26; https://doi.org/10.3390/batteries12010026 - 13 Jan 2026
Viewed by 230
Abstract
A one-dimensional analytical model for a proton exchange membrane fuel cell (PEMFC) engine is presented. The model is structured into three main subsystems: the fuel cell stack, the intake and exhaust system, and the thermal management system. The modeling of the thermal management [...] Read more.
A one-dimensional analytical model for a proton exchange membrane fuel cell (PEMFC) engine is presented. The model is structured into three main subsystems: the fuel cell stack, the intake and exhaust system, and the thermal management system. The modeling of the thermal management system specifically encompasses key components such as the expansion tank, thermostat, pump, fan, and radiator. The heat transfer and fluid flow within key thermal management components—primarily fans and radiators—are analyzed via three-dimensional modeling. A porous media model represents the unit parallel-flow radiator, where the complex fin structures are replaced by a homogenized medium. This allows for the efficient calculation of 3D thermal and flow fields once the necessary constitutive parameters are identified. Ultimately, the one-dimensional (1D) thermal management system is coupled with the three-dimensional (3D) flow field analysis. This integrated 1D-3D co-simulation framework is implemented to enhance the computational fidelity of the PEMFC engine’s thermal management model. Full article
Show Figures

Figure 1

16 pages, 1760 KB  
Article
Targeting of Human Mitochondrial DNA with Programmable pAgo Nuclease
by Beatrisa Rimskaya, Ekaterina Kropocheva, Elza Shchukina, Egor Ulashchik, Daria Gelfenbein, Lidiya Lisitskaya, Vadim Shmanai, Svetlana Smirnikhina, Andrey Kulbachinskiy and Ilya Mazunin
Cells 2026, 15(2), 127; https://doi.org/10.3390/cells15020127 - 10 Jan 2026
Viewed by 305
Abstract
Manipulating the mitochondrial genome remains a significant challenge in genetic engineering, primarily due to the mitochondrial double-membrane structure. While recent advances have expanded the genetic toolkit for nuclear and cytoplasmic targets, precise editing of mitochondrial DNA (mtDNA) has remained elusive. Here we report [...] Read more.
Manipulating the mitochondrial genome remains a significant challenge in genetic engineering, primarily due to the mitochondrial double-membrane structure. While recent advances have expanded the genetic toolkit for nuclear and cytoplasmic targets, precise editing of mitochondrial DNA (mtDNA) has remained elusive. Here we report the first successful mitochondrial import of a catalytically active RNA-guided prokaryotic Argonaute protein from the mesophilic bacterium Alteromonas macleodii (AmAgo). By guiding AmAgo to the single-stranded D- or R-loop region of mtDNA using synthetic RNA guides, we observed a nearly threefold reduction in mtDNA copy number in human cell lines. This proof of concept study demonstrates that a bacterial Argonaute can remain active within the mitochondrial environment and influence mtDNA levels. These findings establish a foundational framework for further development of programmable systems for mitochondrial genome manipulation. Full article
(This article belongs to the Special Issue Mitochondria at the Crossroad of Health and Disease—Second Edition)
Show Figures

Figure 1

44 pages, 1670 KB  
Review
Synergistic Interactions Between Bacteria-Derived Metabolites and Emerging Technologies for Meat Preservation
by Carlos Alberto Guerra, André Fioravante Guerra and Marcelo Cristianini
Fermentation 2026, 12(1), 43; https://doi.org/10.3390/fermentation12010043 - 10 Jan 2026
Viewed by 596
Abstract
Considering the challenges associated with implementing emerging technologies and bacterial-derived antimicrobial metabolites at an industrial scale in the meat industry, this comprehensive review investigates the interactions between lactic acid bacteria-producing antimicrobial metabolites and emerging food preservation technologies applied to meat systems. By integrating [...] Read more.
Considering the challenges associated with implementing emerging technologies and bacterial-derived antimicrobial metabolites at an industrial scale in the meat industry, this comprehensive review investigates the interactions between lactic acid bacteria-producing antimicrobial metabolites and emerging food preservation technologies applied to meat systems. By integrating evidence from microbiology, food engineering, and molecular physiology, the review characterizes how metabolites-derived compounds exert inhibitory activity through pH modulation, membrane permeabilization, disruption of proton motive force, and interference with cell wall biosynthesis. These biochemical actions are evaluated in parallel with the mechanistic effects of high-pressure processing, pulsed electric fields, cold plasma, irradiation, pulsed light, ultrasound, ohmic heating and nanotechnology. Across the literature, consistent patterns of synergy emerge: many emerging technologies induce structural and metabolic vulnerabilities in microbial cells, thereby amplifying the efficacy of antimicrobial metabolites while enabling reductions in process intensity. The review consolidates these findings to elucidate multi-hurdle strategies capable of improving microbial safety, extending shelf life, and preserving the physicochemical integrity of meat products. Remaining challenges include optimizing combinational parameters, ensuring metabolite stability within complex matrices, and aligning integrated preservation strategies with regulatory and industrial constraints. Full article
(This article belongs to the Special Issue Microbial Fermentation: A Sustainable Approach to Food Production)
Show Figures

Figure 1

39 pages, 1790 KB  
Review
Lactic Acid Bacteria as the Green and Safe Food Preservatives: Their Mechanisms, Applications and Prospects
by Yuwei Zhang, Lianrui Li, Xiaoyang Pang, Shuwen Zhang, Yang Liu, Yunna Wang, Ning Xie and Xu Li
Foods 2026, 15(2), 241; https://doi.org/10.3390/foods15020241 - 9 Jan 2026
Viewed by 339
Abstract
Microbial contamination of food is a crucial cause of food spoilage and foodborne diseases, posing a severe threat to global public health. Although chemical preservatives are effective, their potential hazards to human health and the environment, coupled with the growing demand for “clean [...] Read more.
Microbial contamination of food is a crucial cause of food spoilage and foodborne diseases, posing a severe threat to global public health. Although chemical preservatives are effective, their potential hazards to human health and the environment, coupled with the growing demand for “clean label” products, have driven the search for natural alternatives. Lactic acid bacteria (LAB), recognized as the Generally Recognized as Safe (GRAS) microorganisms, have emerged as the promising bio-preservatives due to their safety, effectiveness, and multifunctionality. This review systematically summarized the core antimicrobial properties of LAB, including their inhibitory spectrum against foodborne pathogens, spoilage microorganisms, viruses, parasites, and their ability to degrade toxic substances such as mycotoxins, pesticides, and heavy metals. Key inhibitory mechanisms of LAB are highlighted, encompassing the production of antimicrobial metabolites, leading to metabolism disruption and cell membrane damage, nutrition and niche competition, quorum-sensing interference, and anti-biofilm formation. Furthermore, recent advances in LAB applications in preserving various food matrices (meat, dairy products, fruits and vegetables, cereals) are integrated, including their roles in enhancing food sensory quality, extending shelf life, and retaining nutritional value. The review also discusses critical factors influencing LAB’s inhibitory activity (medium composition, culture conditions, ionic components, pathway regulator, etc.) and the challenges associated with the application of LAB. Finally, future research directions are outlined, including the novel LAB and metabolites exploration, AI-driven cultural condition optimization, genetic engineering application, nano-encapsulation and active packaging development, and building up the LAB-based cellular factories. In conclusion, LAB and their antimicrobial metabolites hold great promise as green and safe food preservatives. This review is to provide comprehensive theoretical support for the rational improvement and efficient application of LAB-based natural food preservatives, contributing to the development of a safer and more sustainable food processing and preservation systems. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

34 pages, 1713 KB  
Review
Extracellular Vesicles as Biological Templates for Next-Generation Drug-Coated Cardiovascular Devices: Cellular Mechanisms of Vascular Healing, Inflammation, and Restenosis
by Rasit Dinc and Nurittin Ardic
Cells 2026, 15(2), 121; https://doi.org/10.3390/cells15020121 - 9 Jan 2026
Viewed by 269
Abstract
While drug-eluting cardiovascular devices, including drug-eluting stents and drug-coated balloons, have significantly reduced restenosis rates, they remain limited by delayed vascular healing, chronic inflammation, and late adverse events. These limitations reflect a fundamental mismatch between current device pharmacology, which relies on nonselective antiproliferative [...] Read more.
While drug-eluting cardiovascular devices, including drug-eluting stents and drug-coated balloons, have significantly reduced restenosis rates, they remain limited by delayed vascular healing, chronic inflammation, and late adverse events. These limitations reflect a fundamental mismatch between current device pharmacology, which relies on nonselective antiproliferative drugs, and the highly coordinated, cell-specific programs that orchestrate vascular repair. Extracellular vesicles (EVs), nanometer-scale membrane-bound particles secreted by virtually all cell types, provide a biologically evolved platform for intercellular communication and cargo delivery. In the cardiovascular system, EVs regulate endothelial regeneration, smooth muscle cell phenotype, extracellular matrix remodeling, and macrophage polarization through precisely orchestrated combinations of miRNA, proteins, and lipids. Here, we synthesize mechanistic insights into EV biogenesis, cargo selection, recruitment, and functional effects in vascular healing and inflammation and translate these into a formal framework for EV-inspired device engineering. We discuss how EV-based or EV-mimetic coatings can be designed to sense the local microenvironment, deliver encoded biological “instruction sets,” and function within ECM-mimetic scaffolds to couple local stent healing with systemic tissue repair. Finally, we outline the manufacturing, regulatory, and clinical trial issues that must be addressed for EV-inspired cardiovascular devices to transition from proof of concept to clinical reality. By shifting the focus from pharmacological suppression to biological regulation of healing, EV-based strategies offer a path to resolve the long-standing tradeoff between restenosis prevention and durable vascular healing. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Cardiac Repair and Regeneration)
Show Figures

Graphical abstract

27 pages, 1133 KB  
Review
Recent Advances in Scaling Up Microbial Fuel Cell Systems for Wastewater Treatment, Energy Recovery, and Environmental Sustainability
by Tahereh Jafary, Ali Mousavi, Anteneh Mesfin Yeneneh, Mohammed Saif Al-Kalbani and Buthaina Mahfoud Al-Wahaibi
Sustainability 2026, 18(2), 638; https://doi.org/10.3390/su18020638 - 8 Jan 2026
Viewed by 370
Abstract
Microbial fuel cells (MFCs) are a promising technology for simultaneously treating wastewater and recovering energy, yet scaling them from lab prototypes to practical systems poses persistent challenges. This review addresses the scale-up gap by systematically examining recent pilot-scale MFC studies from multiple perspectives, [...] Read more.
Microbial fuel cells (MFCs) are a promising technology for simultaneously treating wastewater and recovering energy, yet scaling them from lab prototypes to practical systems poses persistent challenges. This review addresses the scale-up gap by systematically examining recent pilot-scale MFC studies from multiple perspectives, including reactor design configurations, materials innovations, treatment performance, energy recovery, and environmental impact. The findings show that pilot MFCs reliably achieve significant chemical oxygen demand (COD) removal (often 50–90%), but power densities remain modest (typically 0.1–10 W m−3)—far below levels needed for major energy generation. Key engineering advances have improved performance; modular stacking maintains higher power output, low-cost electrodes and membranes reduce costs (with some efficiency trade-offs), and power-management strategies mitigate issues like cell reversal. Life cycle assessments indicate that while MFC systems can outperform conventional treatment in specific scenarios, overall sustainability gains depend on boosting energy yields and optimizing materials. The findings highlight common trade-offs and emerging strategies. By consolidating recent insights, a roadmap of design principles and research directions to advance MFC technology toward sustainable, energy-positive wastewater treatment was outlined. Full article
Show Figures

Figure 1

22 pages, 1744 KB  
Review
From Circulation to Regeneration: Blood Cell Membrane-Coated Nanoparticles as Drug Delivery Platform for Immune-Regenerative Therapy
by Yun-A Kim, Min Hee Lee, Hee Su Sohn and Han Young Kim
Pharmaceutics 2026, 18(1), 66; https://doi.org/10.3390/pharmaceutics18010066 - 4 Jan 2026
Viewed by 625
Abstract
Cell membrane-coated nanoparticles represent a biomimetic drug delivery approach that integrates biological membrane functions with synthetic nanomaterials. Among the various membrane sources, those derived from blood cells such as red blood cells, platelets, and leukocytes offer distinctive advantages, including immune evasion, prolonged systemic [...] Read more.
Cell membrane-coated nanoparticles represent a biomimetic drug delivery approach that integrates biological membrane functions with synthetic nanomaterials. Among the various membrane sources, those derived from blood cells such as red blood cells, platelets, and leukocytes offer distinctive advantages, including immune evasion, prolonged systemic circulation, and selective tissue targeting. These properties collectively enable efficient and biocompatible delivery of therapeutic agents to diseased tissues, minimizing off-target effects and systemic toxicity. This review focuses on blood cell membrane-derived nanocarriers as drug delivery and immune-regenerative platforms, in which membrane-mediated immunomodulation synergizes with therapeutic payloads to address inflammatory or degenerative pathology. We discuss recent advances in blood cell membrane coating technologies, including membrane isolation, nanoparticle core selection, fabrication techniques, and the development of hybrid and engineered membrane systems that enhance therapeutic efficacy through integrated immune regulation and localized drug action. To illustrate these advances, we also compile membrane type-specific nanocarrier systems, summarizing their core nanoparticle designs, coating strategies, therapeutic cargoes, and associated disease models. Challenges related to biological source variability, scalability, safety, and regulatory standardization remain important considerations for clinical translation. In this review we systematically address these issues and discuss emerging solutions and design strategies aimed at advancing blood cell membrane-based nanocarriers toward clinically viable immune-regenerative therapies. Full article
(This article belongs to the Special Issue Cell-Mediated Delivery Systems)
Show Figures

Figure 1

Back to TopTop