Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (114)

Search Parameters:
Keywords = energy-efficient photonic devices

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 5209 KiB  
Review
Integrated Photonics for IoT, RoF, and Distributed Fog–Cloud Computing: A Comprehensive Review
by Gerardo Antonio Castañón Ávila, Walter Cerroni and Ana Maria Sarmiento-Moncada
Appl. Sci. 2025, 15(13), 7494; https://doi.org/10.3390/app15137494 - 3 Jul 2025
Viewed by 830
Abstract
Integrated photonics is a transformative technology for enhancing communication and computation in Cloud and Fog computing networks. Photonic integrated circuits (PICs) enable significant improvements in data-processing speed, energy-efficiency, scalability, and latency. In Cloud infrastructures, PICs support high-speed optical interconnects, energy-efficient switching, and compact [...] Read more.
Integrated photonics is a transformative technology for enhancing communication and computation in Cloud and Fog computing networks. Photonic integrated circuits (PICs) enable significant improvements in data-processing speed, energy-efficiency, scalability, and latency. In Cloud infrastructures, PICs support high-speed optical interconnects, energy-efficient switching, and compact wavelength division multiplexing (WDM), addressing growing data demands. Fog computing, with its edge-focused processing and analytics, benefits from the compactness and low latency of integrated photonics for real-time signal processing, sensing, and secure data transmission near IoT devices. PICs also facilitate the low-loss, high-speed modulation, transmission, and detection of RF signals in scalable Radio-over-Fiber (RoF) links, enabling seamless IoT integration with Cloud and Fog networks. This results in centralized processing, reduced latency, and efficient bandwidth use across distributed infrastructures. Overall, integrating photonic technologies into RoF, Fog and Cloud computing networks paves the way for ultra-efficient, flexible, and scalable next-generation network architectures capable of supporting diverse real-time and high-bandwidth applications. This paper provides a comprehensive review of the current state and emerging trends in integrated photonics for IoT sensors, RoF, Fog and Cloud computing systems. It also outlines open research opportunities in photonic devices and system-level integration, aimed at advancing performance, energy-efficiency, and scalability in next-generation distributed computing networks. Full article
(This article belongs to the Special Issue New Trends in Next-Generation Optical Networks)
Show Figures

Figure 1

22 pages, 3862 KiB  
Article
Composition-Dependent Structural, Phonon, and Thermodynamical Characteristics of Zinc-Blende BeZnO
by Devki N. Talwar and Piotr Becla
Materials 2025, 18(13), 3101; https://doi.org/10.3390/ma18133101 - 1 Jul 2025
Cited by 1 | Viewed by 296
Abstract
Both ZnO and BeO semiconductors crystallize in the hexagonal wurtzite (wz), cubic rock salt (rs), and zinc-blende (zb) phases, depending upon their growth conditions. Low-dimensional heterostructures ZnO/BexZn1-xO and BexZn1-xO ternary alloy-based devices have recently gained [...] Read more.
Both ZnO and BeO semiconductors crystallize in the hexagonal wurtzite (wz), cubic rock salt (rs), and zinc-blende (zb) phases, depending upon their growth conditions. Low-dimensional heterostructures ZnO/BexZn1-xO and BexZn1-xO ternary alloy-based devices have recently gained substantial interest to design/improve the operations of highly efficient and flexible nano- and micro-electronics. Attempts are being made to engineer different electronic devices to cover light emission over a wide range of wavelengths to meet the growing industrial needs in photonics, energy harvesting, and biomedical applications. For zb materials, both experimental and theoretical studies of lattice dynamics ωjq have played crucial roles for understanding their optical and electronic properties. Except for zb ZnO, inelastic neutron scattering measurement of ωjq for BeO is still lacking. For the BexZn1-xO ternary alloys, no experimental and/or theoretical studies exist for comprehending their structural, vibrational, and thermodynamical traits (e.g., Debye temperature ΘDT; specific heat CvT). By adopting a realistic rigid-ion model, we have meticulously simulated the results of lattice dynamics, and thermodynamic properties for both the binary zb ZnO, BeO and ternary BexZn1-xO alloys. The theoretical results are compared/contrasted against the limited experimental data and/or ab initio calculations. We strongly feel that the phonon/thermodynamic features reported here will encourage spectroscopists to perform similar measurements and check our theoretical conjectures. Full article
(This article belongs to the Special Issue Advanced Additive Manufacturing Processing of Ceramic Materials)
Show Figures

Figure 1

20 pages, 3209 KiB  
Article
Experimental Evaluation of GAGG:Ce Crystalline Scintillator Properties Under X-Ray Radiation
by Anastasios Dimitrakopoulos, Christos Michail, Ioannis Valais, George Fountos, Ioannis Kandarakis and Nektarios Kalyvas
Crystals 2025, 15(7), 590; https://doi.org/10.3390/cryst15070590 - 23 Jun 2025
Viewed by 590
Abstract
The scope of this study was to evaluate the response of Ce-doped gadolinium aluminum gallium garnet (GAGG:Ce) crystalline scintillator under medical X-ray irradiation for medical imaging applications. A 10 × 10 × 10 mm3 crystal was irradiated at X-ray tube voltages ranging [...] Read more.
The scope of this study was to evaluate the response of Ce-doped gadolinium aluminum gallium garnet (GAGG:Ce) crystalline scintillator under medical X-ray irradiation for medical imaging applications. A 10 × 10 × 10 mm3 crystal was irradiated at X-ray tube voltages ranging from 50 kVp to 150 kVp. The crystal’s compatibility with several commercially available optical photon detectors was evaluated using the spectral matching factor (SMF) along with the absolute efficiency (AE) and the effective efficiency (EE). In addition, the energy-absorption efficiency (EAE), the quantum-detection efficiency (QDE) as well as the zero-frequency detective quantum detection efficiency DQE(0) were determined. The crystal demonstrated satisfactory AE values as high as 26.3 E.U. (where 1 E.U. = 1 μW∙m−2/(mR∙s−1)) at 150 kVp, similar, or in some cases, even superior to other cerium-doped scintillator materials. It also exhibits adequate DQE(0) performance ranging from 0.99 to 0.95 across all the examined X-ray tube voltages. Moreover, it showed high spectral compatibility with commonly used photoreceptors in modern day such as complementary metal–oxide–semiconductors (CMOS) and charge-coupled-devices (CCD) with SMF values of 0.95 for CCD with broadband anti-reflection coating and 0.99 for hybrid CMOS blue. The aforementioned properties of this scintillator material were indicative of its superior efficiency in the examined medical energy range, compared to other commonly used scintillators. Full article
(This article belongs to the Special Issue Exploring New Materials for the Transition to Sustainable Energy)
Show Figures

Figure 1

17 pages, 7002 KiB  
Article
Geant4 Simulations of a Scintillator Cosmic-Ray Detector
by Jerzy Pryga, Krzysztof Wiesław Woźniak, Łukasz Bibrzycki, Piotr Homola, Sławomir Stuglik, Kévin Almeida Cheminant, Ophir Ruimi and Olaf Bar
Appl. Sci. 2025, 15(12), 6652; https://doi.org/10.3390/app15126652 - 13 Jun 2025
Viewed by 503
Abstract
Reliable cosmic-ray measurements require a thorough understanding of the detector used. It is especially important when detectors are very simple like the scintillator detectors considered in this work, which provide only information about the amplitude of the signal generated by a detected particle. [...] Read more.
Reliable cosmic-ray measurements require a thorough understanding of the detector used. It is especially important when detectors are very simple like the scintillator detectors considered in this work, which provide only information about the amplitude of the signal generated by a detected particle. Arrays of these devices can work in coincidental setups to detect Extensive Air Showers caused by high-energy primary cosmic rays. Due to their low cost and simple design, they can be used as elements of large detector networks needed for the search for global correlations in the cosmic rays. To be able to interpret data collected by those arrays, extensive simulations of such detectors are necessary to determine their efficiency of detection of different types of particles. This work presents the results of analysis of such simulations performed using the Geant4 software (v1.1.2). The analysis results lead to the conclusion that detectors feature almost maximal (close to 100%) efficiency for the detection of cosmic-ray muons and electrons with momenta greater than 0.03 GeV/c. Their sensitivity to low-energy electrons and photons is lower but not negligible and has to be properly taken into account during the interpretation of collected data. Full article
(This article belongs to the Section Applied Physics General)
Show Figures

Figure 1

14 pages, 21375 KiB  
Article
A Very Thin MCT Film in HDVIP Achieves High Absorption
by Lingwei Jiang, Changhong Sun, Xiaoning Hu, Ruijun Ding and Chun Lin
Sensors 2025, 25(12), 3701; https://doi.org/10.3390/s25123701 - 13 Jun 2025
Viewed by 422
Abstract
Compared to the traditional flip-chip bonded focal plane array, in high-density vertically integrated photodiode (HDVIP) focal plane technology, the thickness of the mercury cadmium telluride (MCT or Hg1−xCdxTe) layer serves as a more critical parameter. This parameter not only [...] Read more.
Compared to the traditional flip-chip bonded focal plane array, in high-density vertically integrated photodiode (HDVIP) focal plane technology, the thickness of the mercury cadmium telluride (MCT or Hg1−xCdxTe) layer serves as a more critical parameter. This parameter not only influences the efficiency of photon energy absorption but also defines the pn junction area, thereby affecting the magnitude of the dark current. Furthermore, it significantly impacts the manufacturability of via-hole etching and formation processes. This paper investigated the photonic crystal resonances and coherent perfect absorption (CPA) effect of a thin MCT layer in HDVIP by using COMSOL Multiphysics® 4.3b and optimized the structure of the loop-hole photodiode device. The CPA, which is formed by this structure, achieves high absorption of illumination in a very thin MCT film. It is demonstrated that an absorption rate of infrared radiation of more than 95% with a wavelength during the 8 µm–10 µm range can be achieved in Hg1−xCdxTe (x = 0.225) with a thickness of only 1.5 µm–3 µm. The benefit of thinner MCT film is that it decreases the dark current of pn junction and reduces the technical difficulty of etching and metallization of the loop-hole photodiode. Full article
(This article belongs to the Special Issue Spectroscopic Techniques for Optical Sensing)
Show Figures

Figure 1

11 pages, 2010 KiB  
Article
Metasurface-Enhanced Infrared Photodetection Using Layered van der Waals MoSe2
by Jinchun Li, Zhixiang Xie, Tianxiang Zhao, Hongliang Li, Di Wu and Xuechao Yu
Nanomaterials 2025, 15(12), 913; https://doi.org/10.3390/nano15120913 - 12 Jun 2025
Viewed by 464
Abstract
Transition metal dichalcogenide (TMD) materials have demonstrated promising potential for applications in photodetection due to their tunable bandgaps, high carrier mobility, and strong light absorption capabilities. However, limited by their intrinsic bandgaps, TMDs are unable to efficiently absorb photons with energies below the [...] Read more.
Transition metal dichalcogenide (TMD) materials have demonstrated promising potential for applications in photodetection due to their tunable bandgaps, high carrier mobility, and strong light absorption capabilities. However, limited by their intrinsic bandgaps, TMDs are unable to efficiently absorb photons with energies below the bandgap, resulting in a significant attenuation of photoresponse in spectral regions beyond the bandgap. This inherently restricts their broadband photodetection performance. By introducing metasurface structures consisting of subwavelength optical elements, localized plasmon resonance effects can be exploited to overcome this absorption limitation, significantly enhancing the light absorption of TMD films. Additionally, the heterogeneous integration process between the metasurface and two-dimensional materials offers low-temperature compatibility advantages, effectively avoiding the limitations imposed by high-temperature doping processes in traditional semiconductor devices. Here, we systematically investigate metasurface-enhanced two-dimensional MoSe2 photodetectors, demonstrating broadband responsivity extension into the mid-infrared spectrum via precise control of metasurface structural dimensions. The optimized device possesses a wide spectrum response ranging from 808 nm to 10 μm, and the responsivity (R) and specific detection rate (D*) under 4 μm illumination achieve 7.1 mA/W and 1.12 × 108 Jones, respectively. Distinct metasurface configurations exhibit varying impacts on optical absorption characteristics and detection spectral ranges, providing experimental foundations for optimizing high-performance photodetectors. This work establishes a practical pathway for developing broadband optoelectronic devices through nanophotonic structure engineering. Full article
Show Figures

Figure 1

11 pages, 1957 KiB  
Article
Highly Efficient Upconversion Emission Platform Based on the MDM Cavity Effect in Aluminum Nanopillar Metasurface
by Xiaofeng Wu, Xiangyuan Mao, Shengbin Cheng, Haiou Li and Shiping Zhan
Photonics 2025, 12(6), 582; https://doi.org/10.3390/photonics12060582 - 7 Jun 2025
Viewed by 414
Abstract
Rare earth-doped upconversion nanoparticles (UCNPs) can convert low-energy photons (NIRs) into high-energy photons (visible light), offering advantages such as low background signal, good stability, and excellent biocompatibility. However, exploring a strategy to combine the advantages of high efficiency, low cost, and easy fabrication [...] Read more.
Rare earth-doped upconversion nanoparticles (UCNPs) can convert low-energy photons (NIRs) into high-energy photons (visible light), offering advantages such as low background signal, good stability, and excellent biocompatibility. However, exploring a strategy to combine the advantages of high efficiency, low cost, and easy fabrication of a plasmonics–UCNPs system is still a challenge. Here, we reported a metal–dielectric–metal (MDM)-type plasmonic platform based on the aluminum metasurface, which can efficiently enhance the luminescence intensity of magnetic and non-magnetic rare earth-doped UCNPs. Attributed to the strong local field effect of the nanocavities formed by the aluminum anti-transmission layer at the bottom, the fluorescence of the two types of UCNPs in such a platform can be enhanced by over 1000 folds compared with that in the conventional substrate. It is found that the deposited UCNPs amount and the aluminum pillar size can both impact the enhancement. We confirmed that the constructed MDM nanocavities could enhance and regulate the local field strength, and the optimum enhancement can be achieved by choosing proper parameters. All these findings provide an efficient way of exploring the plasmon-enhanced UCNPs luminescence system with low cost, high efficiency, and easy fabrication and can be promising in the fields of biosensing and photovoltaic devices. Full article
Show Figures

Figure 1

14 pages, 921 KiB  
Article
Numerical Insights into Wide-Angle, Phase-Controlled Optical Absorption in a Single-Layer Vanadium Dioxide Structure
by Abida Parveen, Ahsan Irshad, Deepika Tyagi, Mehboob Alam, Shakeel Ahmed, Keyu Tao and Zhengbiao Ouyang
Crystals 2025, 15(5), 450; https://doi.org/10.3390/cryst15050450 - 10 May 2025
Cited by 2 | Viewed by 368
Abstract
Vanadium dioxide (VO2) is a well-known phase-change material that exhibits a thermally driven insulator-to-metal transition (IMT) near 68 °C, leading to significant changes in its electrical and optical properties. This transition is governed by structural modifications in the VO2 crystal [...] Read more.
Vanadium dioxide (VO2) is a well-known phase-change material that exhibits a thermally driven insulator-to-metal transition (IMT) near 68 °C, leading to significant changes in its electrical and optical properties. This transition is governed by structural modifications in the VO2 crystal lattice, enabling dynamic control over absorption, reflection, and transmission. Despite its promising tunability, VO2-based optical absorbers face challenges such as a narrow IMT temperature window, intrinsic optical losses, and fabrication complexities associated with multilayer designs. In this work, we propose and numerically investigate a single-layer VO2-based optical absorber for the visible spectrum using full-wave electromagnetic simulations. The proposed absorber achieves nearly 95% absorption at 25 °C (insulating phase), which drops below 5% at 80 °C (metallic phase), demonstrating exceptional optical tunability. This behavior is attributed to VO2’s high refractive index in the insulating state, which enhances resonant light trapping. Unlike conventional multilayer absorbers, our single-layer VO2 design eliminates structural complexity, simplifying fabrication and reducing material costs. These findings highlight the potential of VO2-based crystalline materials for tunable and energy-efficient optical absorption, making them suitable for adaptive optics, smart windows, and optical switching applications. The numerical results presented in this study contribute to the ongoing development of crystal-based phase-transition materials for next-generation reconfigurable photonic and optoelectronic devices. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

36 pages, 5120 KiB  
Review
Enhancing Optoelectronic Performance Through Rare-Earth-Doped ZnO: Insights and Applications
by Shagun Sood, Pawan Kumar, Isha Raina, Mrinmoy Misra, Sandeep Kaushal, Jyoti Gaur, Sanjeev Kumar and Gurjinder Singh
Photonics 2025, 12(5), 454; https://doi.org/10.3390/photonics12050454 - 8 May 2025
Viewed by 1754
Abstract
Rare-earth (RE) doping has been found to be a potent method to improve the structural, optical, electronic, and magnetic properties of ZnO, positioning it as a versatile material for future optoelectronic devices. This review herein thoroughly discusses the latest developments in RE-doped ZnO [...] Read more.
Rare-earth (RE) doping has been found to be a potent method to improve the structural, optical, electronic, and magnetic properties of ZnO, positioning it as a versatile material for future optoelectronic devices. This review herein thoroughly discusses the latest developments in RE-doped ZnO based on the role of the dopant type, concentration, synthesis method, and consequences of property modifications. The 4f electronic states of rare-earth elements create strong visible emissions, control charge carriers, and design defects. These structural changes lead to tunable bandgap energies and increased light absorption. Also, RE doping considerably enhances ZnO’s performance in electronic devices, like UV photodetectors, LEDs, TCOs, and gas sensors. Though, challenges like solubility constraints and lattice distortions at higher doping concentrations are still key challenges. Co-doping methodologies and new synthesis techniques to further optimize the incorporation of RE into ZnO matrices are also reviewed in this article. By showing a systematic comparison of different RE-doped ZnO systems, this paper sheds light on their future optoelectronic applications. The results are useful for the design of advanced ZnO-based materials with customized functionalities, which will lead to enhanced device efficiency and new photonic applications. Full article
Show Figures

Figure 1

10 pages, 2743 KiB  
Article
Ternary Heterojunction Synaptic Transistors Based on Perovskite Quantum Dots
by Shuqiong Lan, Jinkui Si, Wangying Xu, Lan Yang, Jierui Lin and Chen Wu
Nanomaterials 2025, 15(9), 688; https://doi.org/10.3390/nano15090688 - 1 May 2025
Viewed by 498
Abstract
The traditional von Neumann architecture encounters significant limitations in computational efficiency and energy consumption, driving the development of neuromorphic devices. The optoelectronic synaptic device serves as a fundamental hardware foundation for the realization of neuromorphic computing and plays a pivotal role in the [...] Read more.
The traditional von Neumann architecture encounters significant limitations in computational efficiency and energy consumption, driving the development of neuromorphic devices. The optoelectronic synaptic device serves as a fundamental hardware foundation for the realization of neuromorphic computing and plays a pivotal role in the development of neuromorphic chips. This study develops a ternary heterojunction synaptic transistor based on perovskite quantum dots to tackle the critical challenge of synaptic weight modulation in organic synaptic devices. Compared to binary heterojunction synaptic transistor, the ternary heterojunction synaptic transistor achieves an enhanced hysteresis window due to the synergistic charge-trapping effects of acceptor material and perovskite quantum dots. The memory window decreases with increasing source-drain voltage (VDS) but expands with prolonged program/erase time, demonstrating effective carrier trapping modulation. Furthermore, the device successfully emulates typical photonic synaptic behaviors, including excitatory postsynaptic currents (EPSCs), paired-pulse facilitation (PPF), and the transition from short-term plasticity (STP) to long-term plasticity (LTP). This work provides a simplified strategy for high-performance optoelectronic synaptic transistors, showcasing significant potential for neuromorphic computing and adaptive intelligent systems. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

19 pages, 7711 KiB  
Article
Exploring Options for the Application of Azobenzene for Molecular Solar Thermal Energy Storage: Integration with Parabolic Trough Solar Systems
by Li Zhang, Changcheng Guo, Yazhu Zhang, Haofeng Wang, Wenjing Liu, Jing Jin, Shaopeng Guo and Erdem Cuce
Energies 2025, 18(9), 2298; https://doi.org/10.3390/en18092298 - 30 Apr 2025
Viewed by 543
Abstract
Molecular solar thermal (MOST) energy systems can be utilized for the absorption, storage, and release of energy from the ultraviolet (UV) band of the solar spectrum. In this study, we designed a molecular solar thermal energy storage and release device based on the [...] Read more.
Molecular solar thermal (MOST) energy systems can be utilized for the absorption, storage, and release of energy from the ultraviolet (UV) band of the solar spectrum. In this study, we designed a molecular solar thermal energy storage and release device based on the photoisomerization reaction of azobenzene. The device was integrated with a parabolic trough solar system, broadening the absorption range of the solar spectrum. By utilizing a coated secondary reflector, the system achieved efficient reflection of ultraviolet (UV) light in the 290–490 nm range, while solid-state azobenzene enabled the conversion of photon energy into chemical energy for storage and release. Experimental results under winter outdoor conditions demonstrated that: the secondary reflector significantly enhanced UV light concentration; the molecular solar thermal energy device exhibited remarkable thermal efficiency. Under an average solar irradiance of 302.23 W·m−2, the device demonstrated excellent thermal performance, with the azobenzene reaching a peak temperature of 42.07 °C. The maximum heat release capacity was measured at 10.89 kJ·kg−1·m−1, while achieving a remarkable heat release power of 29.31 W·kg−1·m−1. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

11 pages, 747 KiB  
Perspective
Will Quantum Topology Redesign Semiconductor Technology?
by Giuseppina Simone
Nanomaterials 2025, 15(9), 671; https://doi.org/10.3390/nano15090671 - 28 Apr 2025
Viewed by 607
Abstract
Semiconductors underpin modern technology, enabling applications from power electronics and photovoltaics to communications and medical diagnostics. However, the industry faces pressing challenges, including shortages of critical raw materials and the unsustainable nature of conventional fabrication processes. Recent developments in quantum computing and topological [...] Read more.
Semiconductors underpin modern technology, enabling applications from power electronics and photovoltaics to communications and medical diagnostics. However, the industry faces pressing challenges, including shortages of critical raw materials and the unsustainable nature of conventional fabrication processes. Recent developments in quantum computing and topological quantum materials offer a transformative path forward. In particular, materials exhibiting non-Hermitian physics and topological protection, such as topological insulators and superconductors, enable robust, energy-efficient electronic states. These states are resilient to disorder and local perturbations, positioning them as ideal candidates for next-generation quantum devices. Non-Hermitian systems, which break traditional Hermitian constraints, have revealed phenomena like the skin effect, wherein eigenstates accumulate at boundaries, violating bulk-boundary correspondence. This effect has recently been observed in semiconductor-based quantum Hall devices, marking a significant milestone in condensed matter physics. By integrating these non-Hermitian topological principles into semiconductor technology, researchers can unlock new functionalities for fault-tolerant quantum computing, low-power electronics, and ultra-sensitive sensing platforms. This convergence of topology, quantum physics, and semiconductor engineering may redefine the future of electronic and photonic devices. Full article
Show Figures

Figure 1

21 pages, 5617 KiB  
Review
Decoding the Role of Interface Engineering in Energy Transfer: Pathways to Enhanced Efficiency and Stability in Quasi-2D Perovskite Light-Emitting Diodes
by Peichao Zhu, Fang Yuan, Fawad Ali, Shuaiqi He, Songting Zhang, Puyang Wu, Qianhao Ma and Zhaoxin Wu
Nanomaterials 2025, 15(8), 592; https://doi.org/10.3390/nano15080592 - 12 Apr 2025
Viewed by 915
Abstract
Quasi-two-dimensional (quasi-2D) perovskites have emerged as a transformative platform for high-efficiency perovskite light-emitting diodes (PeLEDs), benefiting from their tunable quantum confinement, high photoluminescence quantum yields (PLQYs), and self-assembled energy funneling mechanisms. This review systematically explores interfacial energy transfer engineering strategies that underpin advancements [...] Read more.
Quasi-two-dimensional (quasi-2D) perovskites have emerged as a transformative platform for high-efficiency perovskite light-emitting diodes (PeLEDs), benefiting from their tunable quantum confinement, high photoluminescence quantum yields (PLQYs), and self-assembled energy funneling mechanisms. This review systematically explores interfacial energy transfer engineering strategies that underpin advancements in device performance. By tailoring phase composition distributions, passivating defects via additive engineering, and optimizing charge transport layers, researchers have achieved external quantum efficiencies (EQEs) exceeding 20% in green and red PeLEDs. However, challenges persist in blue emission stability, efficiency roll-off at high currents, and long-term operational durability driven by spectral redshift, Auger recombination, and interfacial ion migration. Emerging solutions include dual-cation/halogen alloying for bandgap control, microcavity photon management, and insulator–perovskite–insulator (IPI) architectures to suppress leakage currents. Future progress hinges on interdisciplinary efforts in multifunctional material design, scalable fabrication, and mechanistic studies of carrier–photon interactions. Through these innovations, quasi-2D PeLEDs hold promise for next-generation displays and solid-state lighting, offering a cost-effective and efficient alternative to conventional technologies. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Graphical abstract

21 pages, 5911 KiB  
Article
Ultra-Thin Films of CdS Doped with Silver: Synthesis and Modification of Optical, Structural, and Morphological Properties by the Doping Concentration Effect
by Juan P. Molina-Jiménez, Sindi D. Horta-Piñeres, S. J. Castillo, J. L. Izquierdo and D. A. Avila
Coatings 2025, 15(4), 431; https://doi.org/10.3390/coatings15040431 - 7 Apr 2025
Cited by 1 | Viewed by 852
Abstract
Obtaining wide energy-gap semiconductor ultra-thin films is an important aspect for their application in sulfide-based solar cells. By reducing the optical losses associated with light reflection and exhibiting absorption edge shifts towards short wavelengths, these layers can optimize the amount of photons interacting [...] Read more.
Obtaining wide energy-gap semiconductor ultra-thin films is an important aspect for their application in sulfide-based solar cells. By reducing the optical losses associated with light reflection and exhibiting absorption edge shifts towards short wavelengths, these layers can optimize the amount of photons interacting with the active photovoltaic material, which increases the conversion efficiency of the solar cell. Ultra-thin CdS films were prepared by a low-cost chemical synthesis and the impact of silver doping on the optical, structural, and morphological properties was evaluated. SEM micrographs revealed that the layers are ultra-thin, homogeneous and uniform, with a reduction in particle size with increasing doping concentration. X-ray diffraction data confirmed the crystallization of CdS in the hexagonal phase for all prepared samples. A low concentration contributed to the formation of Ag2S in the monoclinic phase according to the diffractograms. The optical properties of the thin films revealed an absorption edge shift that increased the CdS band gap from 2.267 ± 0.007 to 2.353 ± 0.005 eV with increasing doping concentration, improving the spectral transmittance response. These results make these layers particularly useful for implementation in next-generation flexible photovoltaic devices. Full article
(This article belongs to the Special Issue Thin-Film Synthesis, Characterization and Properties)
Show Figures

Figure 1

38 pages, 9980 KiB  
Review
Metasurfaces with Multipolar Resonances and Enhanced Light–Matter Interaction
by Evan Modak Arup, Li Liu, Haben Mekonnen, Dominic Bosomtwi and Viktoriia E. Babicheva
Nanomaterials 2025, 15(7), 477; https://doi.org/10.3390/nano15070477 - 21 Mar 2025
Cited by 3 | Viewed by 2579
Abstract
Metasurfaces, composed of engineered nanoantennas, enable unprecedented control over electromagnetic waves by leveraging multipolar resonances to tailor light–matter interactions. This review explores key physical mechanisms that govern their optical properties, including the role of multipolar resonances in shaping metasurface responses, the emergence of [...] Read more.
Metasurfaces, composed of engineered nanoantennas, enable unprecedented control over electromagnetic waves by leveraging multipolar resonances to tailor light–matter interactions. This review explores key physical mechanisms that govern their optical properties, including the role of multipolar resonances in shaping metasurface responses, the emergence of bound states in the continuum (BICs) that support high-quality factor modes, and the Purcell effect, which enhances spontaneous emission rates at the nanoscale. These effects collectively underpin the design of advanced photonic devices with tailored spectral, angular, and polarization-dependent properties. This review discusses recent advances in metasurfaces and applications based on them, highlighting research that employs full-wave numerical simulations, analytical and semi-analytic techniques, multipolar decomposition, nanofabrication, and experimental characterization to explore the interplay of multipolar resonances, bound and quasi-bound states, and enhanced light–matter interactions. A particular focus is given to metasurface-enhanced photodetectors, where structured nanoantennas improve light absorption, spectral selectivity, and quantum efficiency. By integrating metasurfaces with conventional photodetector architectures, it is possible to enhance responsivity, engineer photocarrier generation rates, and even enable functionalities such as polarization-sensitive detection. The interplay between multipolar resonances, BICs, and emission control mechanisms provides a unified framework for designing next-generation optoelectronic devices. This review consolidates recent progress in these areas, emphasizing the potential of metasurface-based approaches for high-performance sensing, imaging, and energy-harvesting applications. Full article
(This article belongs to the Section Nanophotonics Materials and Devices)
Show Figures

Figure 1

Back to TopTop