Ternary Heterojunction Synaptic Transistors Based on Perovskite Quantum Dots
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fuller, E.J.; Keene, S.T.; Melianas, A.; Wang, Z.R.; Agarwal, S.; Li, Y.Y.; Tuchman, Y.; James, C.D.; Marinella, M.J.; Yang, J.J.; et al. Parallel programming of an ionic floating-gate memory array for scalable neuromorphic computing. Science 2019, 364, 570–574. [Google Scholar] [CrossRef] [PubMed]
- Zidan, M.A.; Strachan, J.P.; Lu, W.D. The future of electronics based on memristive systems. Nat. Electron. 2018, 1, 22–29. [Google Scholar] [CrossRef]
- Xie, Z.; Zhuge, C.; Zhao, Y.; Xiao, W.; Fu, Y.; Yang, D.; Zhang, S.; Li, Y.; Wang, Q.; Wang, Y.; et al. All-solid-state vertical three-terminal n-type organic synaptic devices for neuromorphic computing. Adv. Funct. Mater. 2022, 32, 2107314. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, H.; Xie, D. Recent Advance in synaptic plasticity modulation techniques for neuromorphic applications. Nanomicro Lett. 2024, 16, 211. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Qian, J.H.; Sangwan, V.K.; Hersam, M.C. Progress and challenges for memtransistors in neuromorphic circuits and systems. Adv. Mater. 2022, 34, e2108025. [Google Scholar] [CrossRef]
- Jeong, B.; Gkoupidenis, P.; Asadi, K. Solution-processed perovskite field-effect transistor artificial synapses. Adv. Mater. 2021, 33, e2104034. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, Z.; Jiang, J. Emerging photoelectric devices for neuromorphic vision applications: Principles, developments, and outlooks. Sci. Technol. Adv. Mater. 2023, 24, 2186689. [Google Scholar] [CrossRef]
- Yao, J.; Wang, Q.; Zhang, Y.; Teng, Y.; Li, J.; Zhao, P.; Zhao, C.; Hu, Z.; Shen, Z.; Liu, L.; et al. Ultra-low power carbon nanotube/porphyrin synaptic arrays for persistent photoconductivity and neuromorphic computing. Nat. Commun. 2024, 15, 6147. [Google Scholar] [CrossRef]
- Huang, F.; Fang, F.; Zheng, Y.; You, Q.; Li, H.; Fang, S.; Cong, X.; Jiang, K.; Wang, Y.; Han, C.; et al. Visible-light stimulated synaptic plasticity in amorphous indium-gallium-zinc oxide enabled by monocrystalline double perovskite for high-performance neuromorphic applications. Nano Res. 2022, 16, 1304–1312. [Google Scholar] [CrossRef]
- Yang, Y.; Li, Y.; Chen, D.; Shen, G. Multicolor vision perception of flexible optoelectronic synapse with high sensitivity for skin sunburn warning. Mater. Horiz. 2024, 11, 1934–1943. [Google Scholar] [CrossRef]
- Gao, Y.; Zhou, Y.; Ji, X.; Graham, A.J.; Dundas, C.M.; Miniel Mahfoud, I.E.; Tibbett, B.M.; Tan, B.; Partipilo, G.; Dodabalapur, A.; et al. A hybrid transistor with transcriptionally controlled computation and plasticity. Nat. Commun. 2024, 15, 1598. [Google Scholar] [CrossRef]
- Guo, T.; Pan, K.; Jiao, Y.; Sun, B.; Du, C.; Mills, J.P.; Chen, Z.; Zhao, X.; Wei, L.; Zhou, Y.N.; et al. Versatile memristor for memory and neuromorphic computing. Nanoscale Horiz. 2022, 7, 299–310. [Google Scholar] [CrossRef] [PubMed]
- Feldmann, J.; Youngblood, N.; Wright, C.D.; Bhaskaran, H.; Pernice, W.H.P. All-optical spiking neurosynaptic networks with self-learning capabilities. Nature 2019, 569, 208–214. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Yang, S.; Ding, G.; Yang, J.-Q.; Ren, Y.; Zhang, S.-R.; Mao, J.-Y.; Yang, Y.; Zhou, Y.; Han, S.-T. Tunable synaptic behavior realized in C3N composite based memristor. Nano Energy 2019, 58, 293–303. [Google Scholar] [CrossRef]
- Choi, S.; Yang, J.; Wang, G. Emerging memristive artificial synapses and neurons for energy-efficient neuromorphic computing. Adv. Mater. 2020, 32, e2004659. [Google Scholar] [CrossRef]
- Jiang, L.; Xu, C.; Wu, X.; Zhao, X.; Zhang, L.; Zhang, G.; Wang, X.; Qiu, L. Deep ultraviolet light stimulated synaptic transistors based on poly(3-hexylthiophene) ultrathin films. ACS Appl. Mater. Interfaces 2022, 14, 11718–11726. [Google Scholar] [CrossRef]
- Zhang, Q.; Jin, T.; Ye, X.; Geng, D.; Chen, W.; Hu, W. Organic field effect transistor-based photonic synapses: Materials, devices, and applications. Adv. Funct. Mater. 2021, 31, 2106151. [Google Scholar] [CrossRef]
- Dai, S.; Zhao, Y.; Wang, Y.; Zhang, J.; Fang, L.; Jin, S.; Shao, Y.; Huang, J. Recent advances in transistor-based artificial synapses. Adv. Funct. Mater. 2019, 29, 1903700. [Google Scholar] [CrossRef]
- Chen, Y.; Li, Y.; Niu, S.; Yang, X.; Dou, W.; Shan, C.; Shen, G. High Temperature resistant solar-blind ultraviolet photosensor for neuromorphic computing and cryptography. Adv. Funct. Mater. 2024, 34, 2315383. [Google Scholar] [CrossRef]
- Xie, D.; Li, Y.; He, J.; Jiang, J. 0D-carbon-quantum-dots/2D-MoS2 mixed-dimensional heterojunction transistor for emulating pulsatile photoelectric therapy of visual amnesic behaviors. Sci. China Mater. 2023, 66, 4814–4824. [Google Scholar] [CrossRef]
- Miao, G.; Chen, L.; Ci, R.; Yin, Z.; Hao, D.; Liu, G.; Shan, F. Low-voltage synaptic transistors based on PrOx/ZrO2 bilayer dielectric for neuromorphic computing. IEEE T Electron. Dev. 2024, 71, 2702–2707. [Google Scholar] [CrossRef]
- Wang, J.; Yang, B.; Dai, S.; Guo, P.; Gao, Y.; Li, L.; Guo, Z.; Zhang, J.; Zhang, J.; Huang, J. Weak Light-stimulated synaptic transistors based on MoS2/organic semiconductor heterojunction for neuromorphic computing. Adv. Mater. Technol. 2023, 8, 2300449. [Google Scholar] [CrossRef]
- Shao, L.; Zhao, Y.; Liu, Y. Organic synaptic transistors: The evolutionary path from memory cells to the application of artificial neural networks. Adv. Funct. Mater. 2021, 31, 2101951. [Google Scholar] [CrossRef]
- Yu, Y.; Ma, Q.; Ling, H.; Li, W.; Ju, R.; Bian, L.; Shi, N.; Qian, Y.; Yi, M.; Xie, L.; et al. Small-molecule-based organic field-effect transistor for nonvolatile memory and artificial synapse. Adv. Funct. Mater. 2019, 29, 1904602. [Google Scholar] [CrossRef]
- Chen, K.; Hu, H.; Song, I.; Gobeze, H.B.; Lee, W.-J.; Abtahi, A.; Schanze, K.S.; Mei, J. Organic optoelectronic synapse based on photon-modulated electrochemical doping. Nat. Photonics 2023, 17, 629–637. [Google Scholar] [CrossRef]
- Wang, S.; Chen, C.; Yu, Z.; He, Y.; Chen, X.; Wan, Q.; Shi, Y.; Zhang, D.W.; Zhou, H.; Wang, X.; et al. A MoS2 /PTCDA hybrid heterojunction synapse with efficient photoelectric dual modulation and versatility. Adv. Mater. 2019, 31, e1806227. [Google Scholar] [CrossRef]
- Gao, C.; Liu, D.; Xu, C.; Bai, J.; Li, E.; Zhang, X.; Zhu, X.; Hu, Y.; Lin, Z.; Guo, T.; et al. Feedforward photoadaptive organic neuromorphic transistor with mixed-weight plasticity for augmenting perception. Adv. Funct. Mater. 2024, 34, 2313217. [Google Scholar] [CrossRef]
- Lan, S.; Zhong, J.; Chen, J.; He, W.; He, L.; Yu, R.; Chen, G.; Chen, H. An optoelectronic synaptic transistor with efficient dual modulation by light illumination. J. Mater. Chem. C 2021, 9, 3412–3420. [Google Scholar] [CrossRef]
- Wadsworth, A.; Hamid, Z.; Kosco, J.; Gasparini, N.; McCulloch, I. The Bulk Heterojunction in organic photovoltaic, photodetector, and photocatalytic applications. Adv. Mater. 2020, 22, e2001763. [Google Scholar] [CrossRef]
- Lan, S.; Zhong, J.; Li, E.; Yan, Y.; Wu, X.; Chen, Q.; Lin, W.; Chen, H.; Guo, T. High-performance nonvolatile organic photoelectronic transistor memory based on bulk heterojunction structure. ACS Appl. Mater. Interfaces 2020, 12, 31716–31724. [Google Scholar] [CrossRef]
- Guo, P.; Zhang, J.; Liu, D.; Wang, R.; Li, L.; Tian, L.; Huang, J. Optoelectronic synaptic transistors based on solution-processable organic semiconductors and CsPbCl3 quantum dots for visual nociceptor simulation and neuromorphic computing. ACS Appl. Mater. Interfaces 2023, 15, 51483–51491. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Sun, Q.; Peng, G.; Yan, Y.; Yu, X.; Li, E.; Yu, R.; Gao, C.; Zhang, X.; Duan, S.; et al. CsPbBr3 quantum dots/PDVT-10 conjugated polymer hybrid film-based photonic synaptic transistors toward high-efficiency neuromorphic computing. Sci. China Mater. 2022, 65, 3077–3086. [Google Scholar] [CrossRef]
- Yang, J.T.; Ge, C.; Du, J.Y.; Huang, H.Y.; He, M.; Wang, C.; Lu, H.B.; Yang, G.Z.; Jin, K.J. Artificial synapses emulated by an electrolyte-gated tungsten-oxide transistor. Adv. Mater. 2018, 30, e1801548. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lan, S.; Si, J.; Xu, W.; Yang, L.; Lin, J.; Wu, C. Ternary Heterojunction Synaptic Transistors Based on Perovskite Quantum Dots. Nanomaterials 2025, 15, 688. https://doi.org/10.3390/nano15090688
Lan S, Si J, Xu W, Yang L, Lin J, Wu C. Ternary Heterojunction Synaptic Transistors Based on Perovskite Quantum Dots. Nanomaterials. 2025; 15(9):688. https://doi.org/10.3390/nano15090688
Chicago/Turabian StyleLan, Shuqiong, Jinkui Si, Wangying Xu, Lan Yang, Jierui Lin, and Chen Wu. 2025. "Ternary Heterojunction Synaptic Transistors Based on Perovskite Quantum Dots" Nanomaterials 15, no. 9: 688. https://doi.org/10.3390/nano15090688
APA StyleLan, S., Si, J., Xu, W., Yang, L., Lin, J., & Wu, C. (2025). Ternary Heterojunction Synaptic Transistors Based on Perovskite Quantum Dots. Nanomaterials, 15(9), 688. https://doi.org/10.3390/nano15090688