Ternary Heterojunction Synaptic Transistors Based on Perovskite Quantum Dots
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fuller, E.J.; Keene, S.T.; Melianas, A.; Wang, Z.R.; Agarwal, S.; Li, Y.Y.; Tuchman, Y.; James, C.D.; Marinella, M.J.; Yang, J.J.; et al. Parallel programming of an ionic floating-gate memory array for scalable neuromorphic computing. Science 2019, 364, 570–574. [Google Scholar] [CrossRef] [PubMed]
- Zidan, M.A.; Strachan, J.P.; Lu, W.D. The future of electronics based on memristive systems. Nat. Electron. 2018, 1, 22–29. [Google Scholar] [CrossRef]
- Xie, Z.; Zhuge, C.; Zhao, Y.; Xiao, W.; Fu, Y.; Yang, D.; Zhang, S.; Li, Y.; Wang, Q.; Wang, Y.; et al. All-solid-state vertical three-terminal n-type organic synaptic devices for neuromorphic computing. Adv. Funct. Mater. 2022, 32, 2107314. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, H.; Xie, D. Recent Advance in synaptic plasticity modulation techniques for neuromorphic applications. Nanomicro Lett. 2024, 16, 211. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Qian, J.H.; Sangwan, V.K.; Hersam, M.C. Progress and challenges for memtransistors in neuromorphic circuits and systems. Adv. Mater. 2022, 34, e2108025. [Google Scholar] [CrossRef]
- Jeong, B.; Gkoupidenis, P.; Asadi, K. Solution-processed perovskite field-effect transistor artificial synapses. Adv. Mater. 2021, 33, e2104034. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, Z.; Jiang, J. Emerging photoelectric devices for neuromorphic vision applications: Principles, developments, and outlooks. Sci. Technol. Adv. Mater. 2023, 24, 2186689. [Google Scholar] [CrossRef]
- Yao, J.; Wang, Q.; Zhang, Y.; Teng, Y.; Li, J.; Zhao, P.; Zhao, C.; Hu, Z.; Shen, Z.; Liu, L.; et al. Ultra-low power carbon nanotube/porphyrin synaptic arrays for persistent photoconductivity and neuromorphic computing. Nat. Commun. 2024, 15, 6147. [Google Scholar] [CrossRef]
- Huang, F.; Fang, F.; Zheng, Y.; You, Q.; Li, H.; Fang, S.; Cong, X.; Jiang, K.; Wang, Y.; Han, C.; et al. Visible-light stimulated synaptic plasticity in amorphous indium-gallium-zinc oxide enabled by monocrystalline double perovskite for high-performance neuromorphic applications. Nano Res. 2022, 16, 1304–1312. [Google Scholar] [CrossRef]
- Yang, Y.; Li, Y.; Chen, D.; Shen, G. Multicolor vision perception of flexible optoelectronic synapse with high sensitivity for skin sunburn warning. Mater. Horiz. 2024, 11, 1934–1943. [Google Scholar] [CrossRef]
- Gao, Y.; Zhou, Y.; Ji, X.; Graham, A.J.; Dundas, C.M.; Miniel Mahfoud, I.E.; Tibbett, B.M.; Tan, B.; Partipilo, G.; Dodabalapur, A.; et al. A hybrid transistor with transcriptionally controlled computation and plasticity. Nat. Commun. 2024, 15, 1598. [Google Scholar] [CrossRef]
- Guo, T.; Pan, K.; Jiao, Y.; Sun, B.; Du, C.; Mills, J.P.; Chen, Z.; Zhao, X.; Wei, L.; Zhou, Y.N.; et al. Versatile memristor for memory and neuromorphic computing. Nanoscale Horiz. 2022, 7, 299–310. [Google Scholar] [CrossRef] [PubMed]
- Feldmann, J.; Youngblood, N.; Wright, C.D.; Bhaskaran, H.; Pernice, W.H.P. All-optical spiking neurosynaptic networks with self-learning capabilities. Nature 2019, 569, 208–214. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Yang, S.; Ding, G.; Yang, J.-Q.; Ren, Y.; Zhang, S.-R.; Mao, J.-Y.; Yang, Y.; Zhou, Y.; Han, S.-T. Tunable synaptic behavior realized in C3N composite based memristor. Nano Energy 2019, 58, 293–303. [Google Scholar] [CrossRef]
- Choi, S.; Yang, J.; Wang, G. Emerging memristive artificial synapses and neurons for energy-efficient neuromorphic computing. Adv. Mater. 2020, 32, e2004659. [Google Scholar] [CrossRef]
- Jiang, L.; Xu, C.; Wu, X.; Zhao, X.; Zhang, L.; Zhang, G.; Wang, X.; Qiu, L. Deep ultraviolet light stimulated synaptic transistors based on poly(3-hexylthiophene) ultrathin films. ACS Appl. Mater. Interfaces 2022, 14, 11718–11726. [Google Scholar] [CrossRef]
- Zhang, Q.; Jin, T.; Ye, X.; Geng, D.; Chen, W.; Hu, W. Organic field effect transistor-based photonic synapses: Materials, devices, and applications. Adv. Funct. Mater. 2021, 31, 2106151. [Google Scholar] [CrossRef]
- Dai, S.; Zhao, Y.; Wang, Y.; Zhang, J.; Fang, L.; Jin, S.; Shao, Y.; Huang, J. Recent advances in transistor-based artificial synapses. Adv. Funct. Mater. 2019, 29, 1903700. [Google Scholar] [CrossRef]
- Chen, Y.; Li, Y.; Niu, S.; Yang, X.; Dou, W.; Shan, C.; Shen, G. High Temperature resistant solar-blind ultraviolet photosensor for neuromorphic computing and cryptography. Adv. Funct. Mater. 2024, 34, 2315383. [Google Scholar] [CrossRef]
- Xie, D.; Li, Y.; He, J.; Jiang, J. 0D-carbon-quantum-dots/2D-MoS2 mixed-dimensional heterojunction transistor for emulating pulsatile photoelectric therapy of visual amnesic behaviors. Sci. China Mater. 2023, 66, 4814–4824. [Google Scholar] [CrossRef]
- Miao, G.; Chen, L.; Ci, R.; Yin, Z.; Hao, D.; Liu, G.; Shan, F. Low-voltage synaptic transistors based on PrOx/ZrO2 bilayer dielectric for neuromorphic computing. IEEE T Electron. Dev. 2024, 71, 2702–2707. [Google Scholar] [CrossRef]
- Wang, J.; Yang, B.; Dai, S.; Guo, P.; Gao, Y.; Li, L.; Guo, Z.; Zhang, J.; Zhang, J.; Huang, J. Weak Light-stimulated synaptic transistors based on MoS2/organic semiconductor heterojunction for neuromorphic computing. Adv. Mater. Technol. 2023, 8, 2300449. [Google Scholar] [CrossRef]
- Shao, L.; Zhao, Y.; Liu, Y. Organic synaptic transistors: The evolutionary path from memory cells to the application of artificial neural networks. Adv. Funct. Mater. 2021, 31, 2101951. [Google Scholar] [CrossRef]
- Yu, Y.; Ma, Q.; Ling, H.; Li, W.; Ju, R.; Bian, L.; Shi, N.; Qian, Y.; Yi, M.; Xie, L.; et al. Small-molecule-based organic field-effect transistor for nonvolatile memory and artificial synapse. Adv. Funct. Mater. 2019, 29, 1904602. [Google Scholar] [CrossRef]
- Chen, K.; Hu, H.; Song, I.; Gobeze, H.B.; Lee, W.-J.; Abtahi, A.; Schanze, K.S.; Mei, J. Organic optoelectronic synapse based on photon-modulated electrochemical doping. Nat. Photonics 2023, 17, 629–637. [Google Scholar] [CrossRef]
- Wang, S.; Chen, C.; Yu, Z.; He, Y.; Chen, X.; Wan, Q.; Shi, Y.; Zhang, D.W.; Zhou, H.; Wang, X.; et al. A MoS2 /PTCDA hybrid heterojunction synapse with efficient photoelectric dual modulation and versatility. Adv. Mater. 2019, 31, e1806227. [Google Scholar] [CrossRef]
- Gao, C.; Liu, D.; Xu, C.; Bai, J.; Li, E.; Zhang, X.; Zhu, X.; Hu, Y.; Lin, Z.; Guo, T.; et al. Feedforward photoadaptive organic neuromorphic transistor with mixed-weight plasticity for augmenting perception. Adv. Funct. Mater. 2024, 34, 2313217. [Google Scholar] [CrossRef]
- Lan, S.; Zhong, J.; Chen, J.; He, W.; He, L.; Yu, R.; Chen, G.; Chen, H. An optoelectronic synaptic transistor with efficient dual modulation by light illumination. J. Mater. Chem. C 2021, 9, 3412–3420. [Google Scholar] [CrossRef]
- Wadsworth, A.; Hamid, Z.; Kosco, J.; Gasparini, N.; McCulloch, I. The Bulk Heterojunction in organic photovoltaic, photodetector, and photocatalytic applications. Adv. Mater. 2020, 22, e2001763. [Google Scholar] [CrossRef]
- Lan, S.; Zhong, J.; Li, E.; Yan, Y.; Wu, X.; Chen, Q.; Lin, W.; Chen, H.; Guo, T. High-performance nonvolatile organic photoelectronic transistor memory based on bulk heterojunction structure. ACS Appl. Mater. Interfaces 2020, 12, 31716–31724. [Google Scholar] [CrossRef]
- Guo, P.; Zhang, J.; Liu, D.; Wang, R.; Li, L.; Tian, L.; Huang, J. Optoelectronic synaptic transistors based on solution-processable organic semiconductors and CsPbCl3 quantum dots for visual nociceptor simulation and neuromorphic computing. ACS Appl. Mater. Interfaces 2023, 15, 51483–51491. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Sun, Q.; Peng, G.; Yan, Y.; Yu, X.; Li, E.; Yu, R.; Gao, C.; Zhang, X.; Duan, S.; et al. CsPbBr3 quantum dots/PDVT-10 conjugated polymer hybrid film-based photonic synaptic transistors toward high-efficiency neuromorphic computing. Sci. China Mater. 2022, 65, 3077–3086. [Google Scholar] [CrossRef]
- Yang, J.T.; Ge, C.; Du, J.Y.; Huang, H.Y.; He, M.; Wang, C.; Lu, H.B.; Yang, G.Z.; Jin, K.J. Artificial synapses emulated by an electrolyte-gated tungsten-oxide transistor. Adv. Mater. 2018, 30, e1801548. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lan, S.; Si, J.; Xu, W.; Yang, L.; Lin, J.; Wu, C. Ternary Heterojunction Synaptic Transistors Based on Perovskite Quantum Dots. Nanomaterials 2025, 15, 688. https://doi.org/10.3390/nano15090688
Lan S, Si J, Xu W, Yang L, Lin J, Wu C. Ternary Heterojunction Synaptic Transistors Based on Perovskite Quantum Dots. Nanomaterials. 2025; 15(9):688. https://doi.org/10.3390/nano15090688
Chicago/Turabian StyleLan, Shuqiong, Jinkui Si, Wangying Xu, Lan Yang, Jierui Lin, and Chen Wu. 2025. "Ternary Heterojunction Synaptic Transistors Based on Perovskite Quantum Dots" Nanomaterials 15, no. 9: 688. https://doi.org/10.3390/nano15090688
APA StyleLan, S., Si, J., Xu, W., Yang, L., Lin, J., & Wu, C. (2025). Ternary Heterojunction Synaptic Transistors Based on Perovskite Quantum Dots. Nanomaterials, 15(9), 688. https://doi.org/10.3390/nano15090688