Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,618)

Search Parameters:
Keywords = energy storage applications

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 6511 KB  
Article
Effect of B/N Doping on Enhanced Hydrogen Storage in Transition Metal-Modified Graphene: A First-Principles DFT Study
by Qian Nie, Lei Wang, Ye Chen and Zhengwei Nie
Materials 2025, 18(19), 4635; https://doi.org/10.3390/ma18194635 (registering DOI) - 8 Oct 2025
Abstract
Hydrogen energy is viewed as a promising green energy source because of its high energy density, abundant availability, and clean combustion results. Hydrogen storage is the critical link in a hydrogen economy. Using first-principles density functional theory calculations, this work explored the role [...] Read more.
Hydrogen energy is viewed as a promising green energy source because of its high energy density, abundant availability, and clean combustion results. Hydrogen storage is the critical link in a hydrogen economy. Using first-principles density functional theory calculations, this work explored the role of B and N in modulating the binding properties of transition metal-modified graphene. The hydrogen storage performance of Sc-, Ti-, and V-modified B-doped graphene was evaluated. Boron doping induces an electron-deficient state, enhancing interactions between transition metals and graphene. Sc, Ti, and V preferentially adsorbed at the carbon ring’s hollow site in B-doped graphene, with their binding energies being 1.87, 1.74, and 1.69 eV higher than those in pure graphene, respectively. These systems can stably adsorb up to 5, 4, and 4 H2 molecules, with average adsorption energies of −0.528, −0.645, and −0.620 eV/H2, respectively. The hydrogen adsorption mechanism was dominated by orbital interactions and polarization effects. Among the systems studied, Sc-modified B-doped graphene exhibited superior hydrogen storage characteristics, making it a promising candidate for reversible applications. Full article
(This article belongs to the Special Issue Advanced Nanomaterials for Gaseous Storage)
23 pages, 4283 KB  
Article
Synergistic Regulation of δ-MnO2 Cathode via Crystal Engineering and pH Buffering for Long-Cycle Aqueous Zinc-Ion Batteries
by Fan Zhang, Haotian Yu, Qiongyue Zhang, Yahao Wang, Haodong Ren, Huirong Liang, Jinrui Li, Yuanyuan Feng, Bin Zhao and Xiaogang Han
Materials 2025, 18(19), 4632; https://doi.org/10.3390/ma18194632 - 8 Oct 2025
Abstract
Aqueous zinc-ion batteries (ZIBs) have emerged as a promising candidate for large-scale energy storage due to their inherent safety, low cost, and environmental friendliness. However, manganese dioxide (MnO2)-based cathodes, which are widely studied for ZIBs owing to their high theoretical capacity [...] Read more.
Aqueous zinc-ion batteries (ZIBs) have emerged as a promising candidate for large-scale energy storage due to their inherent safety, low cost, and environmental friendliness. However, manganese dioxide (MnO2)-based cathodes, which are widely studied for ZIBs owing to their high theoretical capacity and low cost, face severe capacity fading issues that hinder the commercialization of ZIBs. This performance degradation mainly stems from the weak van der Waals forces between MnO2 layers leading to structural collapse during repeated Zn2+ insertion and extraction; it is also exacerbated by irreversible Mn dissolution via Mn3+ disproportionation that depletes active materials, and further aggravated by dynamic electrolyte pH fluctuations promoting insulating zinc hydroxide sulfate (ZHS) formation to block ion diffusion channels. To address these interconnected challenges, in this study, a synergistic strategy was developed combining crystal engineering and pH buffer regulation. We synthesized three MnO2 polymorphs (α-, δ-, γ-MnO2), identified δ-MnO2 with flower-like microspheres as optimal, and introduced sodium dihydrogen phosphate (NaH2PO4) as a pH buffer (stabilizing pH at 2.8 ± 0.2). The modified electrolyte improved δ-MnO2 wettability (contact angle of 17.8° in NaH2PO4-modified electrolyte vs. 26.1° in base electrolyte) and reduced charge transfer resistance (Rct = 78.17 Ω), enabling the optimized cathode to retain 117.25 mAh g−1 (82.16% retention) after 2500 cycles at 1 A g−1. This work provides an effective strategy for stable MnO2-based ZIBs, promoting their application in renewable energy storage. Full article
(This article belongs to the Section Energy Materials)
Show Figures

Figure 1

31 pages, 2399 KB  
Article
A Complete Control-Oriented Model for Hydrogen Hybrid Renewable Microgrids with High-Voltage DC Bus Stabilized by Batteries and Supercapacitors
by José Manuel Andújar Márquez, Francisco José Vivas Fernández and Francisca Segura Manzano
Appl. Sci. 2025, 15(19), 10810; https://doi.org/10.3390/app151910810 - 8 Oct 2025
Abstract
The growing penetration of renewable energy sources requires resilient microgrids capable of providing stable and continuous operation. Hybrid energy storage systems (HESS), which integrate hydrogen-based storage systems (HBSS), battery storage systems (BSS), and supercapacitor banks (SCB), are essential to ensuring the flexibility and [...] Read more.
The growing penetration of renewable energy sources requires resilient microgrids capable of providing stable and continuous operation. Hybrid energy storage systems (HESS), which integrate hydrogen-based storage systems (HBSS), battery storage systems (BSS), and supercapacitor banks (SCB), are essential to ensuring the flexibility and robustness of these microgrids. Accurate modelling of these microgrids is crucial for analysis, controller design, and performance optimization, but the complexity of HESS poses a significant challenge: simplified linear models fail to capture the inherent nonlinear dynamics, while nonlinear approaches often require excessive computational effort for real-time control applications. To address this challenge, this study presents a novel state space model with linear variable parameters (LPV), which effectively balances accuracy in capturing the nonlinear dynamics of the microgrid and computational efficiency. The research focuses on a high-voltage DC bus microgrid architecture, in which the BSS and SCB are connected directly in parallel to provide passive DC bus stabilization, a configuration that improves system resilience but has received limited attention in the existing literature. The proposed LPV framework employs recursive linearisation around variable operating points, generating a time-varying linear representation that accurately captures the nonlinear behaviour of the system. By relying exclusively on directly measurable state variables, the model eliminates the need for observers, facilitating its practical implementation. The developed model has been compared with a reference model validated in the literature, and the results have been excellent, with average errors, MAE, RAE and RMSE values remaining below 1.2% for all critical variables, including state-of-charge, DC bus voltage, and hydrogen level. At the same time, the model maintains remarkable computational efficiency, completing a 24-h simulation in just 1.49 s, more than twice as fast as its benchmark counterpart. This optimal combination of precision and efficiency makes the developed LPV model particularly suitable for advanced model-based control strategies, including real-time energy management systems (EMS) that use model predictive control (MPC). The developed model represents a significant advance in microgrid modelling, as it provides a general control-oriented approach that enables the design and operation of more resilient, efficient, and scalable renewable energy microgrids. Full article
(This article belongs to the Special Issue Challenges and Opportunities of Microgrids)
24 pages, 2257 KB  
Article
Hybrid Renewable Energy Systems: Integration of Urban Mobility Through Metal Hydrides Solution as an Enabling Technology for Increasing Self-Sufficiency
by Lorenzo Bartolucci, Edoardo Cennamo, Stefano Cordiner, Vincenzo Mulone and Alessandro Polimeni
Energies 2025, 18(19), 5306; https://doi.org/10.3390/en18195306 - 8 Oct 2025
Abstract
The ongoing energy transition and decarbonization efforts have prompted the development of Hybrid Renewable Energy Systems (HRES) capable of integrating multiple generation and storage technologies to enhance energy autonomy. Among the available options, hydrogen has emerged as a versatile energy carrier, yet most [...] Read more.
The ongoing energy transition and decarbonization efforts have prompted the development of Hybrid Renewable Energy Systems (HRES) capable of integrating multiple generation and storage technologies to enhance energy autonomy. Among the available options, hydrogen has emerged as a versatile energy carrier, yet most studies have focused either on stationary applications or on mobility, seldom addressing their integration withing a single framework. In particular, the potential of Metal Hydride (MH) tanks remains largely underexplored in the context of sector coupling, where the same storage unit can simultaneously sustain household demand and provide in-house refueling for light-duty fuel-cell vehicles. This study presents the design and analysis of a residential-scale HRES that combines photovoltaic generation, a PEM electrolyzer, a lithium-ion battery and MH storage intended for direct integration with a fuel-cell electric microcar. A fully dynamic numerical model was developed to evaluate system interactions and quantify the conditions under which low-pressure MH tanks can be effectively integrated into HRES, with particular attention to thermal management and seasonal variability. Two simulation campaigns were carried out to provide both component-level and system-level insights. The first focused on thermal management during hydrogen absorption in the MH tank, comparing passive and active cooling strategies. Forced convection reduced absorption time by 44% compared to natural convection, while avoiding the additional energy demand associated with thermostatic baths. The second campaign assessed seasonal operation: even under winter irradiance conditions, the system ensured continuous household supply and enabled full recharge of two MH tanks every six days, in line with the hydrogen requirements of the light vehicle daily commuting profile. Battery support further reduced grid reliance, achieving a Grid Dependency Factor as low as 28.8% and enhancing system autonomy during cold periods. Full article
Show Figures

Figure 1

38 pages, 6401 KB  
Review
Silicon Nanostructures for Hydrogen Generation and Storage
by Gauhar Mussabek, Gulmira Yar-Mukhamedova, Sagi Orazbayev, Valeriy Skryshevsky and Vladimir Lysenko
Nanomaterials 2025, 15(19), 1531; https://doi.org/10.3390/nano15191531 - 7 Oct 2025
Abstract
Today, hydrogen is already widely regarded as up-and-coming source of energy. It is essential to meet energy needs while reducing environmental pollution, since it has a high energy capacity and does not emit carbon oxide when burned. However, for the widespread application of [...] Read more.
Today, hydrogen is already widely regarded as up-and-coming source of energy. It is essential to meet energy needs while reducing environmental pollution, since it has a high energy capacity and does not emit carbon oxide when burned. However, for the widespread application of hydrogen energy, it is necessary to search new technical solutions for both its production and storage. A promising effective and cost-efficient method of hydrogen generation and storage can be the use of solid materials, including nanomaterials in which chemical or physical adsorption of hydrogen occurs. Focusing on the recommendations of the DOE, the search is underway for materials with high gravimetric capacity more than 6.5% wt% and in which sorption and release of hydrogen occurs at temperatures from −20 to +100 °C and normal pressure. This review aims to summarize research on hydrogen generation and storage using silicon nanostructures and silicon composites. Hydrogen generation has been observed in Si nanoparticles, porous Si, and Si nanowires. Regardless of their size and surface chemistry, the silicon nanocrystals interact with water/alcohol solutions, resulting in their complete oxidation, the hydrolysis of water, and the generation of hydrogen. In addition, porous Si nanostructures exhibit a large internal specific surface area covered by SiHx bonds. A key advantage of porous Si nanostructures is their ability to release molecular hydrogen through the thermal decomposition of SiHx groups or in interaction with water/alkali. The review also covers simulations and theoretical modeling of H2 generation and storage in silicon nanostructures. Using hydrogen with fuel cells could replace Li-ion batteries in drones and mobile gadgets as more efficient. Finally, some recent applications, including the potential use of Si-based agents as hydrogen sources to address issues associated with new approaches for antioxidative therapy. Hydrogen acts as a powerful antioxidant, specifically targeting harmful ROS such as hydroxyl radicals. Antioxidant therapy using hydrogen (often termed hydrogen medicine) has shown promise in alleviating the pathology of various diseases, including brain ischemia–reperfusion injury, Parkinson’s disease, and hepatitis. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Graphical abstract

25 pages, 3399 KB  
Article
Challenges in Aquaculture Hybrid Energy Management: Optimization Tools, New Solutions, and Comparative Evaluations
by Helena M. Ramos, Nicolas Soehlemann, Eyup Bekci, Oscar E. Coronado-Hernández, Modesto Pérez-Sánchez, Aonghus McNabola and John Gallagher
Technologies 2025, 13(10), 453; https://doi.org/10.3390/technologies13100453 - 7 Oct 2025
Abstract
A novel methodology for hybrid energy management in aquaculture is introduced, aimed at enhancing self-sufficiency and optimizing grid-related cash flows. Wind and solar energy generation are modeled using calibrated turbine performance curves and PVGIS data, respectively, with a photovoltaic capacity of 120 kWp. [...] Read more.
A novel methodology for hybrid energy management in aquaculture is introduced, aimed at enhancing self-sufficiency and optimizing grid-related cash flows. Wind and solar energy generation are modeled using calibrated turbine performance curves and PVGIS data, respectively, with a photovoltaic capacity of 120 kWp. The system also incorporates a 250 kW small hydroelectric plant and a wood drying kiln that utilizes surplus wind energy. This study conducts a comparative analysis between HY4RES, a research-oriented simulation model, and HOMER Pro, a commercially available optimization tool, across multiple hybrid energy scenarios at two aquaculture sites. For grid-connected configurations at the Primary site (base case, Scenarios 1, 2, and 6), both models demonstrate strong concordance in terms of energy balance and overall performance. In Scenario 1, a peak power demand exceeding 1000 kW is observed in both models, attributed to the biomass kiln load. Scenario 2 reveals a 3.1% improvement in self-sufficiency with the integration of photovoltaic generation, as reported by HY4RES. In the off-grid Scenario 3, HY4RES supplies an additional 96,634 kWh of annual load compared to HOMER Pro. However, HOMER Pro indicates a 3.6% higher electricity deficit, primarily due to battery energy storage system (BESS) losses. Scenario 4 yields comparable generation outputs, with HY4RES enabling 6% more wood-drying capacity through the inclusion of photovoltaic energy. Scenario 5, which features a large-scale BESS, highlights a 4.7% unmet demand in HY4RES, whereas HOMER Pro successfully meets the entire load. In Scenario 6, both models exhibit similar load profiles; however, HY4RES reports a self-sufficiency rate that is 1.3% lower than in Scenario 1. At the Secondary site, financial outcomes are closely aligned. For instance, in the base case, HY4RES projects a cash flow of 54,154 EUR, while HOMER Pro estimates 55,532 EUR. Scenario 1 presents nearly identical financial results, and Scenario 2 underscores HOMER Pro’s superior BESS modeling capabilities during periods of reduced hydroelectric output. In conclusion, HY4RES demonstrates robust performance across all scenarios. When provided with harmonized input parameters, its simulation results are consistent with those of HOMER Pro, thereby validating its reliability for hybrid energy management in aquaculture applications. Full article
(This article belongs to the Special Issue Innovative Power System Technologies)
15 pages, 9446 KB  
Article
Exploring the Mediterranean: AUV High-Resolution Mapping of the Roman Wreck Offshore of Santo Stefano al Mare (Italy)
by Christoforos Benetatos, Stefano Costa, Giorgio Giglio, Claudio Mastrantuono, Roberto Mo, Costanzo Peter, Candido Fabrizio Pirri, Adriano Rovere and Francesca Verga
J. Mar. Sci. Eng. 2025, 13(10), 1921; https://doi.org/10.3390/jmse13101921 - 7 Oct 2025
Abstract
Historically, the Mediterranean Sea has been an area of cultural exchange and maritime commerce. One out of many submerged archaeological sites is the Roman shipwreck that was discovered in 2006 off the coast of Santo Stefano al Mare, in the Ligurian Sea, Italy. [...] Read more.
Historically, the Mediterranean Sea has been an area of cultural exchange and maritime commerce. One out of many submerged archaeological sites is the Roman shipwreck that was discovered in 2006 off the coast of Santo Stefano al Mare, in the Ligurian Sea, Italy. The wreck was dated to the 1st century B.C. and consists of a well-preserved cargo ship of Roman amphorae that were likely used for transporting wine. In this study, we present the results of the first underwater survey of the wreck using an Autonomous Underwater Vehicle (AUV) industrialized by Graal Tech. The AUV was equipped with a NORBIT WBMS multibeam sonar, a 450 kHz side-scan sonar, and inertial navigation systems. The AUV conducted multiple high-resolution surveys on the wreck site and the collected data were processed using geospatial analysis methods to highlight local anomalies directly related to the presence of the Roman shipwreck. The main feature was an accumulation of amphorae, covering an area of approximately 10 × 7 m with a maximum height of 1 m above the seabed. The results of this interdisciplinary work demonstrated the effectiveness of integrating AUV technologies with spatial analysis techniques for underwater archaeological applications. Furthermore, the success of this mission highlighted the potential for broader applications of AUVs in the study of the seafloor, such as monitoring seabed movements related to offshore underground energy storage or the identification of objects lying on the seabed, such as cables or pipelines. Full article
Show Figures

Figure 1

11 pages, 703 KB  
Article
A Novel Approach to Day-Ahead Forecasting of Battery Discharge Profiles in Grid Applications Using Historical Daily
by Marek Bobček, Róbert Štefko, Július Šimčák and Zsolt Čonka
Batteries 2025, 11(10), 370; https://doi.org/10.3390/batteries11100370 - 6 Oct 2025
Abstract
This paper presents a day-ahead forecasting approach for discharge profiles of a 0.5 MW battery energy storage system connected to the power grid, utilizing historical daily discharge profiles collected over one year to capture key operational patterns and variability. Two forecasting techniques are [...] Read more.
This paper presents a day-ahead forecasting approach for discharge profiles of a 0.5 MW battery energy storage system connected to the power grid, utilizing historical daily discharge profiles collected over one year to capture key operational patterns and variability. Two forecasting techniques are employed: a Kalman filter for dynamic state estimation and Holt’s exponential smoothing method enhanced with adaptive alpha to capture trend changes more responsively. These methods are applied to generate next-day discharge forecasts, aiming to support better battery scheduling, improve grid interaction, and enhance overall energy management. The accuracy and robustness of the forecasts are evaluated against real operational data. The results confirm that combining model-based and statistical techniques offers a reliable and flexible solution for short-term battery discharge prediction in real-world grid applications. Full article
(This article belongs to the Special Issue Towards a Smarter Battery Management System: 3rd Edition)
60 pages, 2685 KB  
Review
Cellulose-Based Ion Exchange Membranes for Electrochemical Energy Systems: A Review
by Nur Syahirah Faiha Shawalludin, Saidatul Sophia Sha’rani, Mohamed Azlan Suhot, Shamsul Sarip and Mohamed Mahmoud Nasef
Membranes 2025, 15(10), 304; https://doi.org/10.3390/membranes15100304 - 6 Oct 2025
Abstract
Cellulose, the most abundant polysaccharide on earth, possesses desirable properties such as biodegradability, low cost, and low toxicity, making it suitable for a wide range of applications. Being a non-conductive material, the structure of the nanocellulose can be modified or incorporated with conductive [...] Read more.
Cellulose, the most abundant polysaccharide on earth, possesses desirable properties such as biodegradability, low cost, and low toxicity, making it suitable for a wide range of applications. Being a non-conductive material, the structure of the nanocellulose can be modified or incorporated with conductive filler to facilitate charge transport between the polymer matrix and conductive components. Recently, cellulose-based ion exchange membranes (IEMs) have gained strong attention as alternatives to environmentally burdening synthetic polymers in electrochemical energy systems, owing to their renewable nature and versatile chemical structure. This article provides a comprehensive review of the structures, fabrication aspects and properties of various cellulose-based membranes for fuel cells and water electrolyzers, batteries, supercapacitors, and reverse electrodialysis (RED) applications. The scope includes an overview of various cellulose-based membrane fabrication methods, different forms of cellulose, and their applications in energy conversion and energy storage systems. The review also discusses the fundamentals of electrochemical energy systems, the role of IEMs, and recent advancements in the cellulose-based membranes’ research and development. Finally, it highlights current challenges to their performance and sustainability, along with recommendations for future research directions. Full article
(This article belongs to the Section Membrane Applications for Energy)
18 pages, 5476 KB  
Article
Enhancement of Photocatalytic and Anticancer Properties in Y2O3 Nanocomposites Embedded in Reduced Graphene Oxide and Carbon Nanotubes
by ZabnAllah M. Alaizeri, Syed Mansoor Ali and Hisham A. Alhadlaq
Catalysts 2025, 15(10), 960; https://doi.org/10.3390/catal15100960 - 6 Oct 2025
Viewed by 122
Abstract
Due to their excellent physicochemical properties, the nanoparticles (NPs) have been utilized in various potential applications, including environmental remediation, energy storage, and nanomedicine. In this work, the ultrasonic and manual stirring approaches were used to integrate yttrium oxide (Y2O3) [...] Read more.
Due to their excellent physicochemical properties, the nanoparticles (NPs) have been utilized in various potential applications, including environmental remediation, energy storage, and nanomedicine. In this work, the ultrasonic and manual stirring approaches were used to integrate yttrium oxide (Y2O3) nanoparticles (NPs) into reduced graphene oxide (RGO) and carbon nanotubes (CNTs) to enhance their photocatalytic and anticancer properties. Pure Y2O3NPs, Y2O3/RGO NCs, and Y2O3/CNTs NCs were characterized using different analytical techniques, such as XRD, SEM, EDX with Elemental Mapping, FTIR, UV-Vis, PL, and DLS to investigate their improved structural, surface morphological, chemical bonding, optical, and surface charge properties. XRD data confirmed the successful integration of Y2O3into RGO and CNTs, with minor changes in crystallite sizes. SEM images with EDX analysis revealed that Y2O3NPs were uniformly distributed on RGO and CNTs, reducing aggregation. Chemical bonding and interactions between Y2O3and carbon materials were investigated using Fourier Transform Infrared (FTIR) analysis. UV and PL results suggest that the optical studies showed a shift in absorption peaks upon integration with RGO and CNTs. This indicates enhanced light absorption and modifications to the band gap between (3.79–4.40 eV) for the obtained samples. In the photocatalytic experiment, the degradation efficiency of bromophenol blue (BPB) dye for Y2O3RGO NCs was up to 87.3%, outperforming pure Y2O3NPs (45.83%) and Y2O3/CNTs NCs (66.78%) after 120 min of UV irradiation. Additionally, the MTT assay demonstrated that Y2O3/RGO NCs exhibited the highest anticancer activity against MG-63 bone cancer cells with an IC50 value of 45.7 µg/mL compared to Y2O3CNTs NCs and pure Y2O3NPs. This work highlights that Y2O3/RGO NCs could be used in significant applications, including environmental remediation and in vivo cancer therapy studies. Full article
Show Figures

Figure 1

24 pages, 13326 KB  
Review
Applications of Heat Pipes in Thermal Management
by Milan Malcho, Jozef Jandačka, Richard Lenhard, Katarína Kaduchová and Patrik Nemec
Energies 2025, 18(19), 5282; https://doi.org/10.3390/en18195282 - 5 Oct 2025
Viewed by 208
Abstract
The paper explores the application of heat pipes in thermal management for efficient heat dissipation, particularly in electrical equipment with high heat loads. Heat pipes are devices that transfer heat with high efficiency through the phase transition of the working medium (e.g., water, [...] Read more.
The paper explores the application of heat pipes in thermal management for efficient heat dissipation, particularly in electrical equipment with high heat loads. Heat pipes are devices that transfer heat with high efficiency through the phase transition of the working medium (e.g., water, alcohol, ammonia) between the evaporator and the condenser, while they have no moving parts and are distinguished by their simplicity of construction. Different types of heat pipes—gravity, capillary, and closed loop (thermosiphon loop)—are suitable according to specific applications and requirements for the working position, temperature range, and condensate return transport. An example of an effective application is the removal of heat from the internal winding of a static energy converter transformer, where the use of a gravity heat pipe has enabled effective cooling even through epoxy insulation and kept the winding temperature below 80 °C. Other applications include the cooling of mounting plates, power transistors, and airtight cooling of electrical enclosures with the ability to dissipate lost thermal power in the order of 102 to 103 W. A significant advantage of heat pipes is also the ability to dust-tightly seal equipment and prevent the build-up of dirt, thereby increasing the reliability of the electronics. In the field of environmental technology, systems have been designed to reduce the radiant power of fireplace inserts by up to 40%, or to divert their heat output of up to about 3 kW into hot water storage tanks, thus optimising the use of the heat produced and preventing overheating of the living space. The use of nanoparticles in the working substances (e.g., Al2O3 in water) makes it possible to intensify the boiling process and thus increase the heat transfer intensity by up to 30% compared to pure water. The results of the presented research confirm the versatility and high efficiency of the use of heat pipes for modern cooling requirements in electronics and environmental engineering. Full article
(This article belongs to the Special Issue Advances in Numerical and Experimental Heat Transfer)
Show Figures

Figure 1

22 pages, 2031 KB  
Review
Compressive Sensing for Multimodal Biomedical Signal: A Systematic Mapping and Literature Review
by Anggunmeka Luhur Prasasti, Achmad Rizal, Bayu Erfianto and Said Ziani
Signals 2025, 6(4), 54; https://doi.org/10.3390/signals6040054 - 4 Oct 2025
Viewed by 350
Abstract
This study investigated the transformative potential of Compressive Sensing (CS) for optimizing multimodal biomedical signal fusion in Wireless Body Sensor Networks (WBSN), specifically targeting challenges in data storage, power consumption, and transmission bandwidth. Through a Systematic Mapping Study (SMS) and Systematic Literature Review [...] Read more.
This study investigated the transformative potential of Compressive Sensing (CS) for optimizing multimodal biomedical signal fusion in Wireless Body Sensor Networks (WBSN), specifically targeting challenges in data storage, power consumption, and transmission bandwidth. Through a Systematic Mapping Study (SMS) and Systematic Literature Review (SLR) following the PRISMA protocol, significant advancements in adaptive CS algorithms and multimodal fusion have been achieved. However, this research also identified crucial gaps in computational efficiency, hardware scalability (particularly concerning the complex and often costly adaptive sensing hardware required for dynamic CS applications), and noise robustness for one-dimensional biomedical signals (e.g., ECG, EEG, PPG, and SCG). The findings strongly emphasize the potential of integrating CS with deep reinforcement learning and edge computing to develop energy-efficient, real-time healthcare monitoring systems, paving the way for future innovations in Internet of Medical Things (IoMT) applications. Full article
Show Figures

Figure 1

28 pages, 4420 KB  
Article
Experimental Study of Aqueous Foam Use for Heat Transfer Enhancement in Liquid Piston Gas Compression at Various Initial Pressure Levels
by Barah Ahn, Macey Schmetzer and Paul I. Ro
Thermo 2025, 5(4), 39; https://doi.org/10.3390/thermo5040039 - 3 Oct 2025
Viewed by 198
Abstract
The acceleration of climate change and increasing weather-related disasters require more active utilization of renewable energy. To maximize the use of renewable energy, energy storage is an essential part. Liquid piston gas compressors have recently drawn attention because of their applicability to compressed [...] Read more.
The acceleration of climate change and increasing weather-related disasters require more active utilization of renewable energy. To maximize the use of renewable energy, energy storage is an essential part. Liquid piston gas compressors have recently drawn attention because of their applicability to compressed air-based energy storage. Aqueous foam can be used to enhance the efficiency of liquid piston gas compression by boosting heat transfer. To validate the effectiveness of the combination of liquid piston and aqueous foam in a multi-stage compression system, which can contribute to higher efficiency, the present work performed experimental study at various pressure levels. Compressions were performed with and without aqueous foam at three different initial pressure levels of 1, 2, and 3 bars. For each cycle of compression, a pressure ratio of 2 was used, and the impact of pressure levels on compression efficiency was measured. With the use of foam, isothermal efficiencies of 91.4, 88.2, and 86.6% were observed at 1, 2, and 3 bar(s), which improved by 2.2, 2.1, and 1.3% compared to the baseline compressions. To identify the cause of the effectiveness variations, the volume changes in the foam at the different pressure levels were visually compared. In higher-pressure tests, a significant reduction in the foam amount was observed, and this change may contribute to the decreased effectiveness of the technique. Full article
Show Figures

Figure 1

19 pages, 2645 KB  
Article
Sol–Gel Synthesis of Carbon-Containing Na3V2(PO4)3: Influence of the NASICON Crystal Structure on Cathode Material Properties
by Oleg O. Shichalin, Zlata E. Priimak, Alina Seroshtan, Polina A. Marmaza, Nikita P. Ivanov, Anton V. Shurygin, Danil K. Tsygankov, Roman I. Korneikov, Vadim V. Efremov, Alexey V. Ognev and Eugeniy K. Papynov
J. Compos. Sci. 2025, 9(10), 543; https://doi.org/10.3390/jcs9100543 - 3 Oct 2025
Viewed by 229
Abstract
With the rapid advancement of energy storage technologies, there is a growing demand for affordable, efficient, and environmentally benign battery systems. Sodium-ion batteries (SIBs) present a promising alternative to lithium-ion systems due to sodium’s high abundance and similar electrochemical properties. Particular attention is [...] Read more.
With the rapid advancement of energy storage technologies, there is a growing demand for affordable, efficient, and environmentally benign battery systems. Sodium-ion batteries (SIBs) present a promising alternative to lithium-ion systems due to sodium’s high abundance and similar electrochemical properties. Particular attention is given to developing NASICON -sodium (Na) super ionic conductor, type cathode materials, especially Na3V2(PO4)3, which exhibits high thermal and structural stability. This study focuses on the sol–gel synthesis of Na3V2(PO4)3 using citric acid and ethylene glycol, as well as investigating the effect of annealing temperature (400–1000 °C) on its structural and electrochemical properties. Phase composition, morphology, textural characteristics, and electrochemical performance were systematically analyzed. Above 700 °C, a highly crystalline NASICON phase free of secondary impurities was formed, as confirmed by X-ray diffraction (XRD). Microstructural evolution revealed a transition from a loose amorphous structure to a dense granular morphology, accompanied by changes in specific surface area and porosity. The highest surface area (67.40 m2/g) was achieved at 700 °C, while increasing the temperature to 1000 °C caused pore collapse due to sintering. X-ray photoelectron spectroscopy (XPS) confirmed the predominant presence of V3+ ions and the formation of V4+ at the highest temperature. The optimal balance of high crystallinity, uniform elemental distribution, and stable texture was achieved at 900 °C. Electrochemical testing in a Na/NVP half-cell configuration delivered an initial capacity of 70 mAh/g, which decayed to 55 mAh/g by the 100th cycle, attributed to solid-electrolyte interphase (SEI) formation and irreversible Na+ trapping. These results demonstrate that the proposed approach yields high-quality Na3V2(PO4)3 cathode materials with promising potential for sodium-ion battery applications. Full article
(This article belongs to the Special Issue Composite Materials for Energy Management, Storage or Transportation)
27 pages, 6716 KB  
Article
A Study on the Optimal Design of Subsurface Pumping Energy Storage Under Varying Reservoir Conditions
by Zhiwen Hu and Hanyi Wang
Energies 2025, 18(19), 5252; https://doi.org/10.3390/en18195252 - 3 Oct 2025
Viewed by 210
Abstract
To foster innovation in stored energy solutions and advance the development of green energy, this work presents a novel energy storage patented technology which involves storing energy in subsurface fractures through pumping. A new mechanical model was established to examine how variations in [...] Read more.
To foster innovation in stored energy solutions and advance the development of green energy, this work presents a novel energy storage patented technology which involves storing energy in subsurface fractures through pumping. A new mechanical model was established to examine how variations in fracture size and operating parameters (i.e., injection and flow-back rates) modulate the scale and efficiency of energy storage under various geological conditions, and an optimized design scheme is proposed. The study demonstrates that both the scale and efficiency of energy storage are influenced by geological conditions. Selecting reservoirs with greater fracture toughness or lower permeability can achieve higher efficiency. Additionally, increasing reservoir fracture toughness also significantly enhances the scale of energy storage. Variations in geological conditions have a small impact on the optimal design of fracture size and injection/flow-back rate. Whether dealing with shallow penny-shaped fractures or deep elliptical fractures, using a moderate injection/flow-back rate in larger fractures is the optimal approach. The model presented in this paper is essential for tackling design challenges and interpreting data in subsurface pumping energy storage field applications. Full article
(This article belongs to the Section D: Energy Storage and Application)
Show Figures

Figure 1

Back to TopTop