Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (8,409)

Search Parameters:
Keywords = energy simulation analysis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 6473 KB  
Article
Three-Dimensional Modeling of Natural Convection During Postharvest Storage of Corn and Wheat in Metal Silos in the Bajío Region of Mexico
by Fernando Iván Molina-Herrera, Luis Isai Quemada-Villagómez, Mario Calderón-Ramírez, Gloria María Martínez-González and Hugo Jiménez-Islas
Eng 2025, 6(9), 224; https://doi.org/10.3390/eng6090224 - 3 Sep 2025
Abstract
This study presents a three-dimensional numerical analysis of natural convection during the postharvest storage of corn and wheat in a galvanized steel silo with a conical roof and floor, measuring 3 m in radius and 18.7 m in height, located in the Bajío [...] Read more.
This study presents a three-dimensional numerical analysis of natural convection during the postharvest storage of corn and wheat in a galvanized steel silo with a conical roof and floor, measuring 3 m in radius and 18.7 m in height, located in the Bajío region of Mexico. Simulations were carried out specifically for December, a period characterized by cold ambient temperatures (10–20 °C) and comparatively lower solar radiation than in warmer months, yet still sufficient to induce significant heating of the silo’s metallic surfaces. The governing conservation equations of mass, momentum, energy, and species were solved using the finite volume method under the Boussinesq approximation. The model included grain–air sorption equilibrium via sorption isotherms, as well as metabolic heat generation: for wheat, a constant respiration rate was assumed due to limited biochemical data, whereas for corn, respiration heat was modeled as a function of grain temperature and moisture, thereby more realistically representing metabolic activity. The results, obtained for December storage conditions, reveal distinct thermal and hygroscopic responses between the two grains. Corn, with higher thermal diffusivity, developed a central thermal core reaching 32 °C, whereas wheat, with lower diffusivity, retained heat in the upper region, peaking at 29 °C. Radial temperature profiles showed progressive transitions: the silo core exhibited a delayed response relative to ambient temperature fluctuations, reflecting the insulating effect of grain. In contrast, grain at 1 m from the wall displayed intermediate amplitudes. In contrast, zones adjacent to the wall reached 40–41 °C during solar exposure. In comparison, shaded regions exhibited minimum temperatures close to 15 °C, confirming that wall heating is governed primarily by solar radiation and metal conductivity. Axial gradients further emphasized critical zones, as roof-adjacent grain heated rapidly to 38–40 °C during midday before cooling sharply at night. Relative humidity levels exceeded 70% along roof and wall surfaces, leading to condensation risks, while core moisture remained stable (~14.0% for corn and ~13.9% for wheat). Despite the cold ambient temperatures typical of December, neither temperature nor relative humidity remained within recommended safe storage ranges (10–15 °C; 65–75%). These findings demonstrate that external climatic conditions and solar radiation, even at reduced levels in December, dominate the thermal and hygroscopic behavior of the silo, independent of grain type. The identification of unstable zones near the roof and walls underscores the need for passive conservation strategies, such as grain redistribution and selective ventilation, to mitigate fungal proliferation and storage losses under non-aerated conditions. Full article
(This article belongs to the Section Chemical, Civil and Environmental Engineering)
Show Figures

Figure 1

36 pages, 6758 KB  
Article
Integrative In Silico and Experimental Characterization of Endolysin LysPALS22: Structural Diversity, Ligand Binding Affinity, and Heterologous Expression
by Nida Nawaz, Shiza Nawaz, Athar Hussain, Maryam Anayat, Sai Wen and Fenghuan Wang
Int. J. Mol. Sci. 2025, 26(17), 8579; https://doi.org/10.3390/ijms26178579 (registering DOI) - 3 Sep 2025
Abstract
Endolysins, phage-derived enzymes capable of lysing bacterial cell walls, hold significant promise as novel antimicrobials against resistant Gram-positive and Gram-negative pathogens. In this study, we undertook an integrative approach combining extensive in silico analyses and experimental validation to characterize the novel endolysin LysPALS22. [...] Read more.
Endolysins, phage-derived enzymes capable of lysing bacterial cell walls, hold significant promise as novel antimicrobials against resistant Gram-positive and Gram-negative pathogens. In this study, we undertook an integrative approach combining extensive in silico analyses and experimental validation to characterize the novel endolysin LysPALS22. Initially, sixteen endolysin sequences were selected based on documented lytic activity and enzymatic diversity, and subjected to multiple sequence alignment and phylogenetic analysis, which revealed highly conserved catalytic and binding domains, particularly localized to the N-terminal region, underscoring their functional importance. Building upon these sequence insights, we generated three-dimensional structural models using Swiss-Model, EBI-EMBL, and AlphaFold Colab, where comparative evaluation via Ramachandran plots and ERRAT scores identified the Swiss-Model prediction as the highest quality structure, featuring over 90% residues in favored conformations and superior atomic interaction profiles. Leveraging this validated model, molecular docking studies were conducted in PyRx with AutoDock Vina, performing blind docking of key peptidoglycan-derived ligands such as N-Acetylmuramic Acid-L-Alanine, which exhibited the strongest binding affinity (−7.3 kcal/mol), with stable hydrogen bonding to catalytic residues ASP46 and TYR61, indicating precise substrate recognition. Visualization of docking poses using Discovery Studio further confirmed critical hydrophobic and polar interactions stabilizing ligand binding. Subsequent molecular dynamics simulations validated the stability of the LysPALS22–NAM-LA complex, showing minimal structural fluctuations, persistent hydrogen bonding, and favorable interaction energies throughout the 100 ns trajectory. Parallel to computational analyses, LysPALS22 was heterologously expressed in Escherichia coli (E. coli) and Pichia pastoris (P. pastoris), where SDS-PAGE and bicinchoninic acid assays validated successful protein production; notably, the P. pastoris-expressed enzyme displayed an increased molecular weight (~45 kDa) consistent with glycosylation, and achieved higher volumetric yields (1.56 ± 0.31 mg/mL) compared to E. coli (1.31 ± 0.16 mg/mL), reflecting advantages of yeast expression for large-scale production. Collectively, these findings provide a robust structural and functional foundation for LysPALS22, highlighting its conserved enzymatic features, specific ligand interactions, and successful recombinant expression, thereby setting the stage for future in vivo antimicrobial efficacy studies and rational engineering efforts aimed at combating multidrug-resistant Gram-negative infections. Full article
(This article belongs to the Special Issue Antimicrobial Agents: Synthesis and Design)
Show Figures

Figure 1

23 pages, 7098 KB  
Article
Adaptive Thermal Comfort Assessment in Residential Buildings Under Current and Future Mediterranean Climate Scenarios
by Asmaa Tellache, Youcef Lazri, Abdelkader Laafer and Shady Attia
Buildings 2025, 15(17), 3171; https://doi.org/10.3390/buildings15173171 - 3 Sep 2025
Abstract
This article presents a comparative evaluation of three established thermal comfort models (ISSO 74, ASHRAE 55, and EN 16798-1) in the context of residential buildings in Algiers, under current and projected Mediterranean climate conditions. By combining field measurements, occupant interviews, and dynamic simulations [...] Read more.
This article presents a comparative evaluation of three established thermal comfort models (ISSO 74, ASHRAE 55, and EN 16798-1) in the context of residential buildings in Algiers, under current and projected Mediterranean climate conditions. By combining field measurements, occupant interviews, and dynamic simulations in DesignBuilder, this research analyzes thermal comfort responses using the RCP 8.5 climate scenario. The analysis demonstrates that ISSO 74 is more suitable for temperature adaptation, while EN 16798-1 offers better humidity tolerance in high-moisture environments. Results reveal that indoor thermal discomfort currently affects more than one-third of the annual hours, with summer discomfort projected to dominate by 2100. Bedrooms are identified as the most thermally vulnerable spaces during peak summer weeks. The article identifies a critical mismatch between existing comfort standards and local climatic realities, calling for the development of an adaptive thermal comfort model tailored to the socio-economic and hygrothermal characteristics of North African cities. Passive strategies and mixed-mode ventilation are recommended as essential for enhancing climate resilience and reducing energy demand. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

24 pages, 1936 KB  
Review
Artificial Intelligence in Chemical Dosing for Wastewater Purification and Treatment: Current Trends and Future Perspectives
by Jie Jin, Ming Liu, Boyu Chen, Xuanbei Wu, Ling Yao, Yan Wang, Xia Xiong, Luoyu Wei, Jiang Li, Qifeng Tan, Dingrui Fan, Yibo Du, Yunhui Lei and Nuan Yang
Separations 2025, 12(9), 237; https://doi.org/10.3390/separations12090237 - 3 Sep 2025
Abstract
Recent concerns regarding artificial intelligent (AI) technologies have spurred studies into improving wastewater treatment efficiency and identifying low-carbon processes. Treating one cubic meter of wastewater necessarily consumes a certain amount of chemicals and energy. Approximately 20% of the total chemical consumption is attributed [...] Read more.
Recent concerns regarding artificial intelligent (AI) technologies have spurred studies into improving wastewater treatment efficiency and identifying low-carbon processes. Treating one cubic meter of wastewater necessarily consumes a certain amount of chemicals and energy. Approximately 20% of the total chemical consumption is attributed to phosphorus and nitrogen removal, with the exact proportion varying based on treatment quality and facility size. To promote sustainability in wastewater treatment plants (WWTPs), there has been a shift from traditional control systems to AI-based strategies. Research in this area has demonstrated notable improvements in wastewater treatment efficiency. This review provides an extensive overview of the literature published over the past decades, aiming to advance the ongoing discourse on enhancing both the efficiency and sustainability of chemical dosing systems in WWTPs. It focuses on AI-based approaches utilizing algorithms such as neural networks and fuzzy logic. The review encompasses AI-based wastewater treatment processes: parameter analysis/forecasting, model development, and process optimization. Moreover, it summarizes six promising areas of AI-based chemical dosing, including acid–base regents, coagulants/flocculants, disinfectants/disinfection by-products (DBPs) management, external carbon sources, phosphorus removal regents, and adsorbents. Finally, the study concludes that significant challenges remain in deploying AI models beyond simulated environments to real-world applications. Full article
Show Figures

Figure 1

20 pages, 5622 KB  
Article
Thermal Performance of Concrete Containing Graphite at High Temperatures for the Application in a TES
by Seung-Tae Jeong, Ji-Hun Park, Tuan-Kiet Tran and In-Hwan Yang
Energies 2025, 18(17), 4685; https://doi.org/10.3390/en18174685 - 3 Sep 2025
Abstract
Thermal energy storage (TES) technology is pivotal for storing thermal energy and has numerous applications in buildings and industrial processes. Graphite is a potential additive for improving TES materials because of its high-temperature resistance and thermal conductivity. This study presents an examination of [...] Read more.
Thermal energy storage (TES) technology is pivotal for storing thermal energy and has numerous applications in buildings and industrial processes. Graphite is a potential additive for improving TES materials because of its high-temperature resistance and thermal conductivity. This study presents an examination of TES concrete with 5%, 10%, and 15% (by volume of binder) compared to concrete that contains only ordinary Portland cement (OPC). Notably, increasing graphite content reduced the unit weight by 0.3%, 2.0%, and 2.6%. Additionally, the graphite mixture exhibited less strength loss than the OPC mixture. Specifically, the G15 mixture achieved a 38.3% cut in compressive strength compared to 51.9% for OPC and a 51.8% cut in splitting tensile strength compared to 56.1% for OPC. Additionally, the thermal conductivity of graphite mixtures was greater than that of the OPC concrete under high-temperature conditions. Microstructural analysis through scanning electron microscopy (SEM) and X-ray diffraction (XRD) revealed reduced portlandite content and fewer voids in graphite-integrated samples, suggesting increased thermal stability and matrix densification. Thermogravimetric analysis (TGA) further confirmed the effect of graphite on thermal behavior, revealing distinct mass loss patterns at increased temperatures. Based on the findings, numerical simulations were conducted. The results confirm trends in thermal conductivity and heat propagation in the experiment, revealing the potential of graphite concrete in TES design by obtaining temperature distributions under thermal cycling. Overall, this study confirms the feasibility and efficiency of using graphite to improve the thermal properties of concrete for TES applications. Full article
(This article belongs to the Special Issue Advanced Technologies and Materials for Thermal Energy Storage)
Show Figures

Figure 1

13 pages, 4039 KB  
Article
Electromagnetic and NVH Characteristic Analysis of Eccentric State for Surface-Mounted Permanent Magnet Synchronous Generators in Wave Power Applications
by Woo-Sung Jung, Yeon-Su Kim, Yeon-Tae Choi, Kyung-Hun Shin and Jang-Young Choi
Appl. Sci. 2025, 15(17), 9697; https://doi.org/10.3390/app15179697 (registering DOI) - 3 Sep 2025
Abstract
This study investigates the electromagnetic and NVH characteristics of an outer-rotor surface-mounted permanent magnet synchronous generator (SPMSG) for wave energy applications, focusing on the effect of rotor eccentricity. To reflect potential fault due to manufacturing or assembly defects, a 0.5 mm rotor eccentricity [...] Read more.
This study investigates the electromagnetic and NVH characteristics of an outer-rotor surface-mounted permanent magnet synchronous generator (SPMSG) for wave energy applications, focusing on the effect of rotor eccentricity. To reflect potential fault due to manufacturing or assembly defects, a 0.5 mm rotor eccentricity was introduced in finite element method (FEM) simulations. The torque ripple waveform was analyzed using fast Fourier transform (FFT) to identify dominant harmonic components that generate unbalanced electromagnetic forces and induce structural vibration. These harmonic components were further examined under variable marine operating conditions to evaluate their impact on acoustic radiation and vibration responses. Based on the simulation and analysis results, a design-stage methodology is proposed for predicting vibration and noise by targeting critical harmonic excitations, providing practical insights for marine generator design and improving long-term operational reliability in wave energy systems. Full article
(This article belongs to the Special Issue Nonlinear Dynamics and Vibration)
Show Figures

Figure 1

20 pages, 2145 KB  
Article
Structural Design of High-Coercivity Nd-Ce-Fe-B Magnets with Easy Axis Perpendicular Orientation and High-Abundance Ce Content Based on Micromagnetic Simulations
by Qian Zhao, Ying Yu, Chenlin Tang, Qingkang Hu, Suo Bai, Puyu Wang, Zhubai Li and Guoping Zhao
Nanomaterials 2025, 15(17), 1358; https://doi.org/10.3390/nano15171358 - 3 Sep 2025
Abstract
In recent years, replacing the scarce and expensive rare earth element Nd with the more abundant and lower cost Ce in the production of Nd-Ce-Fe-B permanent magnets has become a focus of both industrial and academic research. A critical challenge is how to [...] Read more.
In recent years, replacing the scarce and expensive rare earth element Nd with the more abundant and lower cost Ce in the production of Nd-Ce-Fe-B permanent magnets has become a focus of both industrial and academic research. A critical challenge is how to design the crystal structure of Nd-Ce-Fe-B magnets to compensate for the decline in magnetic performance caused by the Ce substitution. In this study, based on micromagnetic theory, Nd-Ce-Fe-B magnets with perpendicularly oriented easy axes—in which the two main phases, Nd2Fe14B and Ce2Fe14B, have a volume ratio of 1:1 but different spatial arrangements—are modeled and simulated using the MuMax3.11 software. The model is either cubic or spherical. The results from the demagnetization curve analysis indicate that the coercivity mechanism of all magnets is pinning. When the magnet volume is constant but the phase distribution differs, the Nd2Fe14B/Ce2Fe14B structure exhibits a higher coercivity and maximum energy product than the Ce2Fe14B/Nd2Fe14B structure. Furthermore, for both structural models with the same phase distribution, the coercivity and the maximum energy product decrease with the increasing volume of the main phase. Notably, the coercivity is similar when the magnet volume is very small and stabilizes after reaching a certain threshold. This qualitative conclusion was also observed in Nd-Dy-Fe-B magnets with the same structure and equal volume ratio of the two main phases. This general finding indicates that, in biphasic magnets with equal phase volumes, the phase with the larger anisotropy field located at the grain periphery can achieve a higher coercivity and maximum magnetic energy product. The analysis of the angular distribution reveals that the number of magnetic domains remains fixed at six in the Nd2Fe14B/Ce2Fe14B structure and two in the Ce2Fe14B/Nd2Fe14B structure. The in-plane magnetic moment analysis of the Ce2Fe14B/Nd2Fe14B magnet shows that the magnetic moments at the edges of the Ce2Fe14B begin to deflect first. Even at the pinning stage, the magnetic moments within the Nd2Fe14B remain unrotated. Nevertheless, the surface magnetic moments of Ce2Fe14B, through exchange coupling, drive the deflection of the interfacial and interior moments, completing the entire demagnetization process. These computational results provide theoretical guidance for related experimental studies and industrial applications. Full article
(This article belongs to the Special Issue Study on Magnetic Properties of Nanostructured Materials)
Show Figures

Figure 1

18 pages, 2472 KB  
Article
Energy Consumption and Optimization Analysis of Gas Production System of Condensate Gas Reservoir-Type Gas Storage
by Hong Meng, Jingcheng Lv, Huan Yu, Shuzhen Sun, Limin Ma, Zhongli Ji and Cheng Chang
Energies 2025, 18(17), 4677; https://doi.org/10.3390/en18174677 - 3 Sep 2025
Abstract
This study investigates the energy consumption and losses associated with the gas production process in a condensate gas reservoir-type gas storage system. The energy consumption linked to each unit and key equipment was determined by HYSYS simulation, followed by a sensitivity analysis and [...] Read more.
This study investigates the energy consumption and losses associated with the gas production process in a condensate gas reservoir-type gas storage system. The energy consumption linked to each unit and key equipment was determined by HYSYS simulation, followed by a sensitivity analysis and exergy analysis. The findings reveal that the condensate oil stabilization tower is the primary energy-consuming equipment, responsible for 70.61% of the total energy consumption (3.82 × 105 kJ·h−1/1%). The temperature of the condensate reboiler is identified as the most significant influencing factor. Furthermore, the equipment exhibiting the highest exergy loss is the J-T valve (1.2 × 107 kJ·h−1), which contributes to 25.23% of the total loss. Consequently, to mitigate energy consumption in the gas production system, it is crucial to control the temperature of the condensate oil reboiler. Enhancing efficiency will rely on recovering the pressure energy loss associated with the J-T valve. The field gas gathering system lacks sub-unit energy consumption measurement and flow measurement for key process fluids. This study can provide methodological and data references for optimizing the operation of this condensate oil–gas reservoir-type storage facility. Full article
(This article belongs to the Special Issue Advances in Natural Gas Research and Energy Engineering)
Show Figures

Figure 1

16 pages, 9259 KB  
Article
Computational Analysis of Two Micro-Vortex Generator Configurations for Supersonic Boundary Layer Flow Control
by Yong Yang, Caixia Chen, Yonghua Yan and Mai Al Shaaban
Processes 2025, 13(9), 2818; https://doi.org/10.3390/pr13092818 - 3 Sep 2025
Abstract
The increasing demand for effective flow control in supersonic boundary layers, particularly for mitigating shock-wave boundary-layer interactions, underscores the need to explore optimized micro-vortex generator (MVG) configurations. This study investigates the aerodynamic performance of two different MVG configurations: a two-MVG setup with a [...] Read more.
The increasing demand for effective flow control in supersonic boundary layers, particularly for mitigating shock-wave boundary-layer interactions, underscores the need to explore optimized micro-vortex generator (MVG) configurations. This study investigates the aerodynamic performance of two different MVG configurations: a two-MVG setup with a pair of close parallel-positioned MVGs and a three-MVG arrangement that includes an additional upstream unit. Both are examined within a Mach 2.5 flow regime, aiming to improve mixing and energize the boundary layer. Large Eddy Simulations (LES) were performed using high-order numerical schemes. A newly developed vortex identification method was utilized to characterize vortex structures, while turbulent kinetic energy (TKE) metrics were integrated to quantify turbulence. Findings reveal that the two-MVG configuration produces regular, symmetric vortex pairs with limited interaction. This results in a steady increase in TKE and a thickened momentum boundary layer—indicative of notable energy loss. In contrast, the three-MVG setup generates more intricate and interactive vortex formations that significantly elevate TKE levels, rapidly expand the turbulent region, and reduce energy loss downstream. The peak TKE occurs before tapering slightly. Instantaneous flow analysis further highlights chaotic, hairpin-dominated vortex structures in the three-MVG case, compared to the more orderly ones observed in the two-MVG case. Overall, the three-MVG configuration demonstrates superior mixing and boundary-layer energization potential, albeit with greater structural complexity. Full article
(This article belongs to the Special Issue Transport Processes in Single- and Multi-Phase Flow Systems)
Show Figures

Figure 1

24 pages, 19145 KB  
Article
Marine Hydraulic Process Modelling Using SMC-Brasil on the Semi-Arid Brazilian Coast
by Thiago Cavalcante Lins Silva, Marco Túlio Mendonça Diniz, Paulo Victor do Nascimento Araújo and Bruno Ferreira
Geosciences 2025, 15(9), 344; https://doi.org/10.3390/geosciences15090344 - 3 Sep 2025
Abstract
Understanding coastal hydraulic processes is essential for sustainable coastal planning and management, especially in semi-arid regions where data scarcity represents a significant challenge. This study sought to apply the Brazilian Coastal Modelling System (SMC-Brasil) to analyse the coastal hydraulic processes present on the [...] Read more.
Understanding coastal hydraulic processes is essential for sustainable coastal planning and management, especially in semi-arid regions where data scarcity represents a significant challenge. This study sought to apply the Brazilian Coastal Modelling System (SMC-Brasil) to analyse the coastal hydraulic processes present on the Brazilian semi-arid coast in Rio Grande do Norte, seeking to understand its boundary conditions given the scarcity of data and limited monitoring network. The methodological procedures followed five main stages: data collection and processing, running the models, statistical analysis, and interpretation of the results. The simulations identified wave propagation and dissipation patterns influenced by local bathymetric features such as sandy banks and submarine canyons. The modelling indicated waves with an average Hs50% of 1.14 m, with dominant directions from ENE to ESE. Longitudinal flows ranged from 1 to 8 m3/h, with a predominance of east to west at medium and high tides. The modelling indicated spatial gradients of energy and sediment transport compatible with historical records and field observations. The results show that submerged relief irregularities play a central role in regional coastal dynamics, conditioning current flows and deposition. The application of SMC-Brasil has shown potential to fill monitoring gaps in regions with low infrastructure, offering affordable and effective technical support for adaptive coastal planning in the face of climate change impacts. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

29 pages, 4169 KB  
Article
Evaluation of Waveform Distortion in BESS-Integrated Fast-Charging Station
by Manav Giri and Sarah Rönnberg
World Electr. Veh. J. 2025, 16(9), 497; https://doi.org/10.3390/wevj16090497 - 2 Sep 2025
Abstract
This paper presents a detailed, measurement-based assessment of interharmonic, harmonic, and supraharmonic emissions from a Battery Energy Storage System (BESS) supporting electric vehicle (EV) fast charging. In contrast to prior literature, which is largely simulation-based and often neglects interharmonic and even harmonic components, [...] Read more.
This paper presents a detailed, measurement-based assessment of interharmonic, harmonic, and supraharmonic emissions from a Battery Energy Storage System (BESS) supporting electric vehicle (EV) fast charging. In contrast to prior literature, which is largely simulation-based and often neglects interharmonic and even harmonic components, this study provides real-world data under dynamic operating conditions. Emission limits are established in accordance with relevant international standards, with the observed deviations from standard practices highlighted in existing studies. The operation of the BESS-assisted fast-charging system is classified into five distinct operating stages, and the variations in spectral emissions across these stages are analyzed. A comparative evaluation with a grid-fed fast charger reveals the influence of BESS integration on power quality. Notably, the analysis shows a significant increase in even harmonics during EV charging events. This component is identified as the limiting factor in the network’s harmonic hosting capacity, underscoring the need to account for even harmonics in future grid compatibility assessments. These findings provide valuable insights for grid operators, EV infrastructure planners, and standardization bodies aiming to ensure compliance with power quality standards in evolving charging scenarios. Full article
(This article belongs to the Special Issue Fast-Charging Station for Electric Vehicles: Challenges and Issues)
Show Figures

Figure 1

29 pages, 2570 KB  
Article
Governance Framework for Intelligent Digital Twin Systems in Battery Storage: Aligning Standards, Market Incentives, and Cybersecurity for Decision Support of Digital Twin in BESS
by April Lia Hananto and Ibham Veza
Computers 2025, 14(9), 365; https://doi.org/10.3390/computers14090365 - 2 Sep 2025
Abstract
Digital twins represent a transformative innovation for battery energy storage systems (BESS), offering real-time virtual replicas of physical batteries that enable accurate monitoring, predictive analytics, and advanced control strategies. These capabilities promise to significantly enhance system efficiency, reliability, and lifespan. Yet, despite the [...] Read more.
Digital twins represent a transformative innovation for battery energy storage systems (BESS), offering real-time virtual replicas of physical batteries that enable accurate monitoring, predictive analytics, and advanced control strategies. These capabilities promise to significantly enhance system efficiency, reliability, and lifespan. Yet, despite the clear technical potential, large-scale deployment of digital twin-enabled battery systems faces critical governance barriers. This study identifies three major challenges: fragmented standards and lack of interoperability, weak or misaligned market incentives, and insufficient cybersecurity safeguards for interconnected systems. The central contribution of this research is the development of a comprehensive governance framework that aligns these three pillars—standards, market and regulatory incentives, and cybersecurity—into an integrated model. Findings indicate that harmonized standards reduce integration costs and build trust across vendors and operators, while supportive regulatory and market mechanisms can explicitly reward the benefits of digital twins, including improved reliability, extended battery life, and enhanced participation in energy markets. For example, simulation-based evidence suggests that digital twin-guided thermal and operational strategies can extend usable battery capacity by up to five percent, providing both technical and economic benefits. At the same time, embedding robust cybersecurity practices ensures that the adoption of digital twins does not introduce vulnerabilities that could threaten grid stability. Beyond identifying governance gaps, this study proposes an actionable implementation roadmap categorized into short-, medium-, and long-term strategies rather than fixed calendar dates, ensuring adaptability across different jurisdictions. Short-term actions include establishing terminology standards and piloting incentive programs. Medium-term measures involve mandating interoperability protocols and embedding digital twin requirements in market rules, and long-term strategies focus on achieving global harmonization and universal plug-and-play interoperability. International examples from Europe, North America, and Asia–Pacific illustrate how coordinated governance can accelerate adoption while safeguarding energy infrastructure. By combining technical analysis with policy and governance insights, this study advances both the scholarly and practical understanding of digital twin deployment in BESSs. The findings provide policymakers, regulators, industry leaders, and system operators with a clear framework to close governance gaps, maximize the value of digital twins, and enable more secure, reliable, and sustainable integration of energy storage into future power systems. Full article
(This article belongs to the Section AI-Driven Innovations)
Show Figures

Figure 1

23 pages, 5320 KB  
Article
Low-Carbon Greening Strategies for Expressway Service Area: Optimizing Carbon Sink Design Across Diverse Climate Zones
by Liang Zhao, Xianglin Liu, Yahui Gao, Tianhao Shi, Wenyu Li, Meng Tang, Yunyi Huang and Tingzhen Ming
Buildings 2025, 15(17), 3149; https://doi.org/10.3390/buildings15173149 - 2 Sep 2025
Abstract
The increasing demand for sustainable development and carbon neutrality highlights the need to improve the energy efficiency of infrastructure, particularly in highway service areas. This study explores the application of green roofs as a low-carbon technology to reduce energy consumption across buildings located [...] Read more.
The increasing demand for sustainable development and carbon neutrality highlights the need to improve the energy efficiency of infrastructure, particularly in highway service areas. This study explores the application of green roofs as a low-carbon technology to reduce energy consumption across buildings located in different climate zones in China. A combination of theoretical modeling and simulation-based analysis was used to evaluate various green roof configurations in five representative cities: Harbin, Beijing, Wuhan, Guangzhou, and Kunming. The results show that green roofs can reduce annual building energy consumption by up to 2.02%, depending on climate and plant species. For example, fern roofs in Guangzhou reduced heating demand by 16.35%, while grass roofs in Wuhan lowered the daytime roof surface temperature by 31.82 °C. Furthermore, optimizing the building orientation to 60° led to energy savings of up to 7.73% in Kunming. These findings suggest that tailored greening strategies based on regional climate can effectively improve building energy performance and support the development of sustainable service infrastructure. Full article
Show Figures

Figure 1

17 pages, 2594 KB  
Article
Calculation Method and Treatment Scheme for Critical Safety Rock Pillar Thickness Based on Catastrophe Theory
by Chao Yuan, Ruimin Wang, Rongjie Du, Xuanqi Huang and Shihai Shu
Appl. Sci. 2025, 15(17), 9650; https://doi.org/10.3390/app15179650 - 2 Sep 2025
Abstract
To investigate the safety risks associated with gas tunnel coal uncovering, a physical and mechanical model of the critical safety rock pillar is proposed through a combination of theoretical analysis, numerical simulation, and field testing. Based on the principles of energy conservation and [...] Read more.
To investigate the safety risks associated with gas tunnel coal uncovering, a physical and mechanical model of the critical safety rock pillar is proposed through a combination of theoretical analysis, numerical simulation, and field testing. Based on the principles of energy conservation and catastrophe theory, an expression for calculating the critical safety for rock pillar thickness is derived. The effects of tunnel radius, burial depth, axial stress, coal seam dip angle, and gas pressure on the critical thickness are systematically analyzed. The results indicate that the critical safety of rock pillar thickness increases with the tunnel radius, burial depth, gas pressure, and axial stress. Moreover, as the tunnel radius increases, the growth rate of the critical thickness also increases. Conversely, as the burial depth increases, the growth rate of the critical thickness decreases. For gas pressure and axial stress, the growth rate remains relatively constant. Using a tunnel project in Hunan as a case study, theoretical analysis yields a critical safety rock pillar thickness of 3.95 m. A corresponding numerical model is developed to simulate this scenario, and the simulation results align well with the theoretical predictions. Based on these findings, a combined treatment scheme of “advanced small-pipe grouting + gas drainage and pressure relief” is proposed for excavation upon reaching the critical rock pillar thickness. This scheme successfully ensures safe tunnel passage through the coal seam. Full article
(This article belongs to the Special Issue Innovations in Rock Mechanics and Mining Engineering)
Show Figures

Figure 1

29 pages, 38336 KB  
Article
Control and Design of a Quasi-Y-Source Inverter for Vehicle-to-Grid Applications in Virtual Power Plants
by Rafael Santos, Guilherme Gomes Leite and Flávio Alessandro Serrão Gonçalves
Processes 2025, 13(9), 2800; https://doi.org/10.3390/pr13092800 - 1 Sep 2025
Abstract
This paper proposes a design and control methodology for a Quasi-Y-Source impedance source inverter (QS-YSI) as a power electronics interface for Vehicle-to-Grid (V2G) and Grid-to-Vehicle (G2V) applications in the context of virtual power plants (VPPs). The work presents an analysis of bidirectional power [...] Read more.
This paper proposes a design and control methodology for a Quasi-Y-Source impedance source inverter (QS-YSI) as a power electronics interface for Vehicle-to-Grid (V2G) and Grid-to-Vehicle (G2V) applications in the context of virtual power plants (VPPs). The work presents an analysis of bidirectional power transfer using Electric Vehicles (EVs) to supply power to the utility grid, businesses, and homes, thereby acting as distributed energy resources. The proposed QS-YSI topology supports both V2G and G2V operation while providing reactive power compensation and enabling the decoupled tracking of active power (P) and reactive power (Q), demonstrating the capability of EVs to return energy to the grid and to provide ancillary services such as power factor correction. The key contributions are a detailed control design methodology that includes pulsating DC-link voltage regulation, inverter output current reference tracking in the synchronous dq reference frame considering DC-link voltage dynamics, and a modified Pulse Width Modulation (PWM) technique for effective decoupling of DC link and inverter output current control. Finally, the feasibility and validity of the proposed approach are demonstrated through simulations of the complete system under nominal conditions and experiments conducted considering a small-scale prototype. Full article
(This article belongs to the Special Issue Advances in Power Converters in Energy and Microgrid Systems)
Show Figures

Figure 1

Back to TopTop