Thermal Performance of Concrete Containing Graphite at High Temperatures for the Application in a TES
Abstract
1. Introduction
2. Materials and Test Preparation
2.1. Materials
2.2. Mix Proportions
2.3. Fabrication of the Samples
2.4. Test Procedure
3. Results
3.1. Unit Weight
3.2. Compressive Strength
3.3. Splitting Tensile Strength
3.4. Thermal Conductivity
3.5. Specific Heat
3.6. Economic Impact of Graphite
4. Microstructural Characteristics
4.1. SEM Analysis
4.2. XRD Analysis
5. FEM Simulation
5.1. Experimental Data Collection of the Concrete Blocks
5.2. Numerical Simulation by FEM
6. Conclusions
- (1)
- The unit weight of the concrete specimens with graphite contents of 5%, 10%, and 15% was less than that of the concrete specimens including only OPC under room temperature, with reductions of 0.3%, 2%, and 2.6%, respectively. The lower density of graphite than OPC contributed to a greater decrease in the unit weight. The unit weight of the specimens was nearly constant after exposure to just one thermal cycle; these results indicated that the density characteristics of the concrete containing up to 15% graphite were similar to those of the OPC concrete.
- (2)
- The compressive strengths of samples G05, G10, and G15 were 8.8%, 18.4%, and 29.4% lower than those of the OPC specimens, and the splitting tensile strengths were 4.6%, 15.2%, and 19.4% lower, respectively. The depletion is caused by the absence of hydration components such as CaO and SiO2 in the graphite. However, after heat exposure, the decrease in the compressive strengths of samples G05, G10, and G15 (46.7%, 42.4%, and 38.3%, respectively) was less than that of the concrete containing OPC (51.9%). These results indicated that graphite provided improved thermal stability, possibly due to its inherent heat resistance.
- (3)
- The presence of graphite in the concrete mixture improved the thermal conductivity. The thermal conductivity of graphite concrete at both room temperature and high temperature was greater than that of OPC concrete as the graphite content increased; thus, the efficiency of graphite in the TES applications could be increased when the thermal conductivity is directly correlated with the thermal storage performance.
- (4)
- Microstructural analyses, such as SEM and XRD, further confirmed the role of graphite in terms of thermal resistance and structural integrity. The presence of graphite reduced portlandite formation, which slightly weakened the strength of the concrete. Moreover, the inclusion of graphite prevented excessive degradation in the thermal performance and thus compromised the loss of strength with improved thermal performance; these factors are essential for advanced applications.
- (5)
- The agreement between the experimental and numerical results confirmed the reliability of the FEM approach for predicting the thermal performance of graphite-incorporated concrete blocks. This validation could support the application of FEM simulations for optimizing concrete mixtures and designing TES systems, ensuring that experimental findings could be effectively reflected and analyzed under simulation conditions.
- (6)
- The study has presented the thermal performance of concrete containing graphite used for the TES system. From the results, future studies can expand the scope of application by adjusting the temperature range or quantity of graphite content in concrete samples. In addition, the number of thermal cycles, which is an important factor for a thermal storage system, can be considered in further studies. Moreover, other additives such as fly ash and slag could be considered to investigate the performance of TES concrete.
Author Contributions
Funding
Institutional Review Board statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sarbu, I.; Sebarchievici, C. A Comprehensive Review of Thermal Energy Storage. Sustainability 2018, 10, 191. [Google Scholar] [CrossRef]
- Dinçer, İ.; Rosen, M.A. Thermal Energy Storage; Wiley: Hoboken, NJ, USA, 2010; ISBN 9780470747063. [Google Scholar]
- Islam, M.P.; Morimoto, T. Advances in Low to Medium Temperature Non-Concentrating Solar Thermal Technology. Renew. Sustain. Energy Rev. 2018, 82, 2066–2093. [Google Scholar] [CrossRef]
- Kuravi, S.; Trahan, J.; Goswami, D.Y.; Rahman, M.M.; Stefanakos, E.K. Thermal Energy Storage Technologies and Systems for Concentrating Solar Power Plants. Prog. Energy Combust. Sci. 2013, 39, 285–319. [Google Scholar] [CrossRef]
- Wang, S.; Abdulridha, A.; Bravo, J.; Naito, C.; Quiel, S.; Suleiman, M.; Romero, C.; Neti, S.; Oztekin, A. Thermal Energy Storage in Concrete: Review, Testing, and Simulation of Thermal Properties at Relevant Ranges of Elevated Temperature. Cem. Concr. Res. 2023, 166, 107096. [Google Scholar] [CrossRef]
- Alonso, M.C.; Vera-Agullo, J.; Guerreiro, L.; Flor-Laguna, V.; Sanchez, M.; Collares-Pereira, M. Calcium Aluminate Based Cement for Concrete to Be Used as Thermal Energy Storage in Solar Thermal Electricity Plants. Cem. Concr. Res. 2016, 82, 74–86. [Google Scholar] [CrossRef]
- Cao, V.D.; Pilehvar, S.; Salas-Bringas, C.; Szczotok, A.M.; Rodriguez, J.F.; Carmona, M.; Al-Manasir, N.; Kjøniksen, A.-L. Microencapsulated Phase Change Materials for Enhancing the Thermal Performance of Portland Cement Concrete and Geopolymer Concrete for Passive Building Applications. Energy Convers. Manag. 2017, 133, 56–66. [Google Scholar] [CrossRef]
- John, E.; Hale, M.; Selvam, P. Concrete as a Thermal Energy Storage Medium for Thermocline Solar Energy Storage Systems. Solar Energy 2013, 96, 194–204. [Google Scholar] [CrossRef]
- Laing, D.; Bahl, C.; Bauer, T.; Fiss, M.; Breidenbach, N.; Hempel, M. High-Temperature Solid-Media Thermal Energy Storage for Solar Thermal Power Plants. Proc. IEEE 2012, 100, 516–524. [Google Scholar] [CrossRef]
- Buscemi, A.; Panno, D.; Ciulla, G.; Beccali, M.; Lo Brano, V. Concrete Thermal Energy Storage for Linear Fresnel Collectors: Exploiting the South Mediterranean’s Solar Potential for Agri-Food Processes. Energy Convers. Manag. 2018, 166, 719–734. [Google Scholar] [CrossRef]
- Bataineh, K.; Gharaibeh, A. Optimal Design for Sensible Thermal Energy Storage Tank Using Natural Solid Materials for a Parabolic Trough Power Plant. Solar Energy 2018, 171, 519–525. [Google Scholar] [CrossRef]
- Salomoni, V.A.; Majorana, C.E.; Giannuzzi, G.M.; Miliozzi, A.; Di Maggio, R.; Girardi, F.; Mele, D.; Lucentini, M. Thermal Storage of Sensible Heat Using Concrete Modules in Solar Power Plants. Solar Energy 2014, 103, 303–315. [Google Scholar] [CrossRef]
- Yang, I.-H.; Park, J. Mechanical and Thermal Properties of UHPC Exposed to High-Temperature Thermal Cycling. Adv. Mater. Sci. Eng. 2019, 2019, 9723693. [Google Scholar] [CrossRef]
- Hoivik, N.; Greiner, C.; Barragan, J.; Iniesta, A.C.; Skeie, G.; Bergan, P.; Blanco-Rodriguez, P.; Calvet, N. Long-Term Performance Results of Concrete-Based Modular Thermal Energy Storage System. J. Energy Storage 2019, 24, 100735. [Google Scholar] [CrossRef]
- Güler, O.; Er, Y.; Hekimoğlu, G.; Ustaoglu, A.; Sarı, A.; Subaşı, S.; Maraşlı, M.; Gencel, O. Production and Assessment of UV-Cured Resin Coated Stearyl Alcohol/Expanded Graphite as Novel Shape-Stable Composite Phase Change Material for Thermal Energy Storage. Appl. Therm. Eng. 2024, 247, 123105. [Google Scholar] [CrossRef]
- Dai, Z.; Zhang, G.; Xiao, Y.; Ding, Y.; Li, Y.; She, X.; Zhang, X.; Zhao, D. High-Directional Thermally Conductive Stearic Acid/Expanded Graphite—Graphene Films for Efficient Photothermal Energy Storage. Chem. Eng. J. 2024, 484, 149203. [Google Scholar] [CrossRef]
- Wei, C.; Li, Y.; Song, J.; Cheng, J.; Tang, Z. Supercooling Suppression and Thermal Conductivity Enhancement of Erythritol Using Graphite Foam with Ultrahigh Thermal Conductivity for Thermal Energy Storage. Int. Commun. Heat Mass Transf. 2024, 153, 107392. [Google Scholar] [CrossRef]
- Saglam, M.; Ceboglu, E.; Birinci, S.; Sarper, B.; Aydin, O. Thermal Cycling Performance of a Shell-and-Tube Latent Heat Thermal Energy Storage System with Paraffin/Graphite Matrix Composite. J. Energy Storage 2024, 83, 110697. [Google Scholar] [CrossRef]
- Chen, P.; Wang, C.; Bouazza, A.; Guo, Y.; Kong, G.; Ding, X. Assessment of Phase Change Material within Hollow Steel Balls Mixed with Graphite Powder-Enhanced Concrete for Underground Energy Structures. J. Energy Storage 2025, 120, 116489. [Google Scholar] [CrossRef]
- Chen, C.; Liu, X.; Liu, Z.; Shao, L.; Chang, H.; Liu, Q.; Miao, C.; Feng, P. Developing Heat-Conductive Concrete with Graphite-Modified Recycled Aggregates. Compos. B Eng. 2024, 284, 111721. [Google Scholar] [CrossRef]
- Li, S.; Yin, S.; Wang, Z.; Dai, Y. Effect of Carbon Fiber and Graphite on the Mechanical Properties of Conductive Fine-Grained Concrete in Textile Reinforced Concrete. Structures 2023, 56, 104929. [Google Scholar] [CrossRef]
- Rao, R.; Wang, H.; Wang, H.; Tuan, C.Y.; Ye, M. Models for Estimating the Thermal Properties of Electric Heating Concrete Containing Steel Fiber and Graphite. Compos. B Eng. 2019, 164, 116–120. [Google Scholar] [CrossRef]
- Han, C.-G.; Hwang, Y.-S.; Yang, S.-H.; Gowripalan, N. Performance of Spalling Resistance of High Performance Concrete with Polypropylene Fiber Contents and Lateral Confinement. Cem. Concr. Res. 2005, 35, 1747–1753. [Google Scholar] [CrossRef]
- ASTM D5334-00; Test Method for Determination of Thermal Conductivity of Soil and Rock by Thermal Needle Probe Procedure. ASTM: West Conshohocken, PA, USA, 2022.
- DIN EN ISO 22007-2:2015-12; Kunststoffe_-Bestimmung Der Wärmeleitfähigkeit Und Der Temperaturleitfähigkeit_-Teil_2: Transientes Flächenquellenverfahren (Hot-Disk-Verfahren) (ISO_22007-2:2015). European Standard: Brussels, Belgium, 2015.
- Liu, H.; Li, L. Graphitic Materials: Intrinsic Hydrophilicity and Its Implications. Extreme Mech. Lett. 2017, 14, 44–50. [Google Scholar] [CrossRef]
- Yuan, H.-W.; Lu, C.-H.; Xu, Z.-Z.; Ni, Y.-R.; Lan, X.-H. Mechanical and Thermal Properties of Cement Composite Graphite for Solar Thermal Storage Materials. Solar Energy 2012, 86, 3227–3233. [Google Scholar] [CrossRef]
- Dash, M.K.; Patro, S.K.; Acharya, P.K.; Dash, M. Impact of Elevated Temperature on Strength and Micro-Structural Properties of Concrete Containing Water-Cooled Ferrochrome Slag as Fine Aggregate. Constr. Build. Mater. 2022, 323, 126542. [Google Scholar] [CrossRef]
- Saleh, A.N.; Attar, A.A.; Ahmed, O.K.; Mustafa, S.S. Improving the Thermal Insulation and Mechanical Properties of Concrete Using Nano-SiO2. Results Eng. 2021, 12, 100303. [Google Scholar] [CrossRef]
- Coelho, N.P.F.; Nalon, G.H.; Mendes, J.F.; de Oliveira, T.J.P.; Mendes, R.F. Effects of Coffee Husk Biochar on the Properties of Concrete. Constr. Build. Mater. 2025, 491, 142680. [Google Scholar] [CrossRef]
- Ahmad, F.; Rawat, S.; Yang, R.; Zhang, L.; Zhang, Y.X. Fire Resistance and Thermal Performance of Hybrid Fibre-Reinforced Magnesium Oxychloride Cement-Based Composites. Constr. Build. Mater. 2025, 472, 140867. [Google Scholar] [CrossRef]
- Abhilash; Uma Maheswari, M.; Raghava Reddy, K.; Aminabhavi, T.M.; Aravindan, V.; Meshram, P. Recycling Strategies for Renewable Graphite and Other Carbon Nanomaterials from Used Batteries: A Review. J. Clean. Prod. 2025, 493, 144871. [Google Scholar] [CrossRef]
- EN 1991-1-2; Eurocode 1: Actions on Structures—Part 1–2: General Actions—Actions on Structures Exposed to Fire. The European Union: Brussels, Belgium, 2002.
- Buchanan, A.H.; Abu, A.K. Structural Design for Fire Safety; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2017; ISBN 9780470972892. [Google Scholar]
Chemical Composition | Contents (%) |
---|---|
CaO | 64.04 |
SiO2 | 17.83 |
Al2O3 | 4.97 |
SO3 | 4.19 |
MgO | 3.71 |
Fe2O3 | 3.12 |
K2O | 0.99 |
TiO2 | 0.33 |
Fe2O3 | 0.23 |
Na2O | 0.21 |
P2O5 | 0.20 |
MnO | 0.20 |
Chemical Composition | Contents (%) |
---|---|
C | 99.23 |
Ti | 0.67 |
Fe | 0.11 |
Mixture | W/B | Water (kg/m3) | OPC (kg/m3) | Graphite (kg/m3) | Replacement Ratio (%) | Fine Agg. (kg/m3) | P.P. Fiber (kg/m3) |
---|---|---|---|---|---|---|---|
OPC | 0.45 | 360 | 800 | 0 | 0 | 1000 | 2 |
G05 | 0.45 | 360 | 760 | 40 | 5 | 1000 | 2 |
G10 | 0.45 | 360 | 720 | 80 | 10 | 1000 | 2 |
G15 | 0.45 | 360 | 680 | 120 | 15 | 1000 | 2 |
High-Temperature Concrete | Compressive Strength (MPa) | Studies |
---|---|---|
Graphite concrete | 49.3–63.7 | This study |
Nano-silica concrete | Approximately 30–35 | [29] |
Coffee husk biochar concrete | 10.25–20.63 | [30] |
High-Temperature Concrete | Thermal Conductivity (W/m∙K) | Studies |
---|---|---|
Graphite concrete | 1.82–2.28 | This study |
Nano-silica concrete | 0.5–0.92 | [29] |
Coffee husk biochar concrete | 1.41–1.57 | [30] |
Magnesium oxychloride cement-based concrete | 1.16–1.3 | [31] |
Symbol | Component | Chemical Formula |
---|---|---|
Q | Quartz | SiO2 |
P | Portlandite | Ca(OH)2 |
C | Calcite | CaCO3 |
A | Albite | NaAlSi3O8 |
D | Dolomite | CaMg(CO3)2 |
Am | Amesite | Mg2Al(AlSiO5(OH)4 |
I | Illite | K0.65Al2[Al0.65Si3.35O10](OH)2 |
G | Gypsum | CaSO4·2H2O |
L | Larnite | Ca2SiO4 |
Pr | Preiswerkite | NaMg2Al(Al2Si2O10)(OH)2 |
E | Ettringite | Ca6Al2(SO4)3(OH)12·26H2O |
Domain | Thermal Conductivity (W/m∙K) | Specific Heat (J/kg∙K) | Density (kg/m3) |
---|---|---|---|
Concrete (G05) | 0.862 | 576 | 1876 |
Concrete (G10) | 1.052 | 590 | 1856 |
Concrete (G15) | 1.125 | 625 | 1834 |
Heat exchangers | 60.5 | 434 | 7845 |
Heat transfer fluid | 0.0261 | 1004 | 1.185 |
Insulation material | 0.06 | 1200 | 150 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeong, S.-T.; Park, J.-H.; Tran, T.-K.; Yang, I.-H. Thermal Performance of Concrete Containing Graphite at High Temperatures for the Application in a TES. Energies 2025, 18, 4685. https://doi.org/10.3390/en18174685
Jeong S-T, Park J-H, Tran T-K, Yang I-H. Thermal Performance of Concrete Containing Graphite at High Temperatures for the Application in a TES. Energies. 2025; 18(17):4685. https://doi.org/10.3390/en18174685
Chicago/Turabian StyleJeong, Seung-Tae, Ji-Hun Park, Tuan-Kiet Tran, and In-Hwan Yang. 2025. "Thermal Performance of Concrete Containing Graphite at High Temperatures for the Application in a TES" Energies 18, no. 17: 4685. https://doi.org/10.3390/en18174685
APA StyleJeong, S.-T., Park, J.-H., Tran, T.-K., & Yang, I.-H. (2025). Thermal Performance of Concrete Containing Graphite at High Temperatures for the Application in a TES. Energies, 18(17), 4685. https://doi.org/10.3390/en18174685