Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,845)

Search Parameters:
Keywords = energy modeling of buildings

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
35 pages, 6795 KiB  
Article
Thermal Analysis of Energy Efficiency Performance and Indoor Comfort in a LEED-Certified Campus Building in the United Arab Emirates
by Khushbu Mankani, Mutasim Nour and Hassam Nasarullah Chaudhry
Energies 2025, 18(15), 4155; https://doi.org/10.3390/en18154155 - 5 Aug 2025
Abstract
Enhancing the real-world performance of sustainably designed and certified green buildings remains a significant challenge, particularly in hot climates where efforts to improve thermal comfort often conflict with energy efficiency goals. In the United Arab Emirates (UAE), even newly constructed facilities with green [...] Read more.
Enhancing the real-world performance of sustainably designed and certified green buildings remains a significant challenge, particularly in hot climates where efforts to improve thermal comfort often conflict with energy efficiency goals. In the United Arab Emirates (UAE), even newly constructed facilities with green building certifications present opportunities for retrofitting and performance optimization. This study investigates the energy and thermal comfort performance of a LEED Gold-certified, mixed-use university campus in Dubai through a calibrated digital twin developed using IES thermal modelling software. The analysis evaluated existing sustainable design strategies alongside three retrofit energy conservation measures (ECMs): (1) improved building envelope U-values, (2) installation of additional daylight sensors, and (3) optimization of fan coil unit efficiency. Simulation results demonstrated that the three ECMs collectively achieved a total reduction of 15% in annual energy consumption. Thermal comfort was assessed using operative temperature distributions, Predicted Mean Vote (PMV), and Predicted Percentage of Dissatisfaction (PPD) metrics. While fan coil optimization yielded the highest energy savings, it led to less favorable comfort outcomes. In contrast, enhancing envelope U-values maintained indoor conditions consistently within ASHRAE-recommended comfort zones. To further support energy reduction and progress toward Net Zero targets, the study also evaluated the integration of a 228.87 kW rooftop solar photovoltaic (PV) system, which offset 8.09% of the campus’s annual energy demand. By applying data-driven thermal modelling to assess retrofit impacts on both energy performance and occupant comfort in a certified green building, this study addresses a critical gap in the literature and offers a replicable framework for advancing building performance in hot climate regions. Full article
(This article belongs to the Special Issue Energy Efficiency and Thermal Performance in Buildings)
Show Figures

Graphical abstract

38 pages, 1997 KiB  
Article
Modeling the Evolutionary Mechanism of Multi-Stakeholder Decision-Making in the Green Renovation of Existing Residential Buildings in China
by Yuan Gao, Jinjian Liu, Jiashu Zhang and Hong Xie
Buildings 2025, 15(15), 2758; https://doi.org/10.3390/buildings15152758 - 5 Aug 2025
Abstract
The green renovation of existing residential buildings is a key way for the construction industry to achieve sustainable development and the dual carbon goals of China, which makes it urgent to make collaborative decisions among multiple stakeholders. However, because of divergent interests and [...] Read more.
The green renovation of existing residential buildings is a key way for the construction industry to achieve sustainable development and the dual carbon goals of China, which makes it urgent to make collaborative decisions among multiple stakeholders. However, because of divergent interests and risk perceptions among governments, energy service companies (ESCOs), and owners, the implementation of green renovation is hindered by numerous obstacles. In this study, we integrated prospect theory and evolutionary game theory by incorporating core prospect-theory parameters such as loss aversion and perceived value sensitivity, and developed a psychologically informed tripartite evolutionary game model. The objective was to provide a theoretical foundation and analytical framework for collaborative governance among stakeholders. Numerical simulations were conducted to validate the model’s effectiveness and explore how government regulation intensity, subsidy policies, market competition, and individual psychological factors influence the system’s evolutionary dynamics. The findings indicate that (1) government regulation and subsidy policies play central guiding roles in the early stages of green renovation, but the effectiveness has clear limitations; (2) ESCOs are most sensitive to policy incentives and market competition, and moderately increasing their risk costs can effectively deter opportunistic behavior associated with low-quality renovation; (3) owners’ willingness to participate is primarily influenced by expected returns and perceived renovation risks, while economic incentives alone have limited impact; and (4) the evolutionary outcomes are highly sensitive to parameters from prospect theory, The system’s evolutionary outcomes are highly sensitive to prospect theory parameters. High levels of loss aversion (λ) and loss sensitivity (β) tend to drive the system into a suboptimal equilibrium characterized by insufficient demand, while high gain sensitivity (α) serves as a key driving force for the system’s evolution toward the ideal equilibrium. This study offers theoretical support for optimizing green renovation policies for existing residential buildings in China and provides practical recommendations for improving market competition mechanisms, thereby promoting the healthy development of the green renovation market. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
24 pages, 1464 KiB  
Review
An Overview of the Italian Roadmap for the Implementation of Circular Economy in the Energy Transition of Buildings
by Marilena De Simone and Daniele Campagna
Buildings 2025, 15(15), 2755; https://doi.org/10.3390/buildings15152755 - 5 Aug 2025
Abstract
An important task for the European Union is to transpose agreements and international standards in regulation and directives that are binding on member states. The resultant European action plans and directives identify priority areas in the building and energy sectors where circular economy [...] Read more.
An important task for the European Union is to transpose agreements and international standards in regulation and directives that are binding on member states. The resultant European action plans and directives identify priority areas in the building and energy sectors where circular economy principles can be applied. Italy records a general circular materials rate of 20.8%, surpassing the mean European value. But low recycling rates are still registered in the construction sector. This paper aims to assess the position of Italy with respect to the European regulatory framework on circularity in the energy transition of buildings. Firstly, the government’s initiatives and technical standards are introduced and commented upon. Secondly, the study illustrates the current Italian platforms, networks, and public and private initiatives highlighting opportunities and obstacles that the energy sector has to overcome in the area of circularity. It emerges that Italian policies still use voluntary tools that are not sufficiently in line with an effective circular economy model. Moreover, data collection plays a crucial role in accelerating the implementation of future actions. Italy should consider the foundation of a National Observatory for the Circular Economy to elaborate European directives, harmonize regional policies, and promote the implementation of effective practices. Full article
(This article belongs to the Special Issue Research on Sustainable Energy Performance of Green Buildings)
Show Figures

Figure 1

22 pages, 6187 KiB  
Article
Device Modeling Method for the Entire Process of Energy-Saving Retrofit of a Refrigeration Plant
by Xuanru Xu, Lun Zhang, Jun Chen, Qingbin Lin and Junjie Chen
Energies 2025, 18(15), 4147; https://doi.org/10.3390/en18154147 - 5 Aug 2025
Abstract
With the increasing awareness of energy consumption issues, there has been a growing emphasis on energy-saving retrofits for central air-conditioning systems that constitute a significant proportion of energy consumption in buildings. Efficient energy utilization can be achieved by optimizing the modeling of the [...] Read more.
With the increasing awareness of energy consumption issues, there has been a growing emphasis on energy-saving retrofits for central air-conditioning systems that constitute a significant proportion of energy consumption in buildings. Efficient energy utilization can be achieved by optimizing the modeling of the equipment within the chiller plants of central air-conditioning systems. Traditional modeling approaches have been static and have focused on modeling within narrow time frames when a certain amount of equipment operating data has accumulated, thus prioritizing the precision of the model itself while overlooking the fact that energy-saving retrofits are a long-term process. This study proposes a modeling scheme for the equipment within chiller plants throughout the energy-saving retrofit process. Based on the differences in the amount of available operating data for the equipment and the progress of retrofit implementation, the retrofit process was divided into three stages, each employing different modeling techniques and ensuring smooth transitions between the stages. The equipment within the chiller plants is categorized into two types based on the clarity of their operating characteristics, and two modeling schemes are proposed accordingly. Based on the proposed modeling scheme, chillers and chilled-water pumps were selected to represent the two types of equipment. Real operating data from actual retrofit projects was used to model the equipment and evaluate the accuracy of the model predictions. The results indicate that the models established by the proposed modeling scheme exhibit good accuracy at each stage of the retrofit, with the coefficients of variation (CV) remaining below 6.88%. Furthermore, the prediction accuracy improved as the retrofitting process progressed. The modeling scheme performs better on equipment with simpler and clearer operating characteristics, with a CV as low as 0.67% during normal operation stages. This underscores the potential application of the proposed modeling scheme throughout the energy-saving retrofit process and provides a model foundation for the subsequent optimization of the refrigeration system. Full article
Show Figures

Figure 1

24 pages, 4314 KiB  
Article
Hyperparameter Optimization of Neural Networks Using Grid Search for Predicting HVAC Heating Coil Performance
by Yosef Jaber, Pasidu Dharmasena, Adam Nassif and Nabil Nassif
Buildings 2025, 15(15), 2753; https://doi.org/10.3390/buildings15152753 - 5 Aug 2025
Abstract
Heating, Ventilation, and Air Conditioning (HVAC) systems represent a significant portion of global energy use, yet they are often operated without optimized control strategies. This study explores the application of deep learning to accurately model heating system behavior as a foundation for predictive [...] Read more.
Heating, Ventilation, and Air Conditioning (HVAC) systems represent a significant portion of global energy use, yet they are often operated without optimized control strategies. This study explores the application of deep learning to accurately model heating system behavior as a foundation for predictive control and energy-efficient HVAC operation. Experimental data were collected under controlled laboratory conditions, and 288 unique hyperparameter configurations were developed. Each configuration was tested three times, resulting in a total of 864 artificial neural network models. Five key hyperparameters were varied systematically: number of epochs, network size, network shape, learning rate, and optimizer. The best-performing model achieved a mean squared error of 0.469 and featured 17 hidden layers, a left-triangle architecture trained for 500 epochs with a learning rate of 5 × 10−5, and Adam as the optimizer. The results highlighted the importance of hyperparameter tuning in improving model accuracy. Future research should extend the analysis to incorporate cooling operation and real-world building operation data for broader applicability. Full article
Show Figures

Figure 1

27 pages, 14684 KiB  
Article
SDT4Solar: A Spatial Digital Twin Framework for Scalable Rooftop PV Planning in Urban Environments
by Athenee Teofilo, Qian (Chayn) Sun and Marco Amati
Smart Cities 2025, 8(4), 128; https://doi.org/10.3390/smartcities8040128 - 4 Aug 2025
Abstract
To sustainably power future urban communities, cities require advanced solar energy planning tools that overcome the limitations of traditional approaches, such as data fragmentation and siloed decision-making. SDTs present a transformative opportunity by enabling precision urban modelling, integrated simulations, and iterative decision support. [...] Read more.
To sustainably power future urban communities, cities require advanced solar energy planning tools that overcome the limitations of traditional approaches, such as data fragmentation and siloed decision-making. SDTs present a transformative opportunity by enabling precision urban modelling, integrated simulations, and iterative decision support. However, their application in solar energy planning remains underexplored. This study introduces SDT4Solar, a novel SDT-based framework designed to integrate city-scale rooftop solar planning through 3D building semantisation, solar modelling, and a unified geospatial database. By leveraging advanced spatial modelling and Internet of Things (IoT) technologies, SDT4Solar facilitates high-resolution 3D solar potential simulations, improving the accuracy and equity of solar infrastructure deployment. We demonstrate the framework through a proof-of-concept implementation in Ballarat East, Victoria, Australia, structured in four key stages: (a) spatial representation of the urban built environment, (b) integration of multi-source datasets into a unified geospatial database, (c) rooftop solar potential modelling using 3D simulation tools, and (d) dynamic visualization and analysis in a testbed environment. Results highlight SDT4Solar’s effectiveness in enabling data-driven, spatially explicit decision-making for rooftop PV deployment. This work advances the role of SDTs in urban energy transitions, demonstrating their potential to optimise efficiency in solar infrastructure planning. Full article
(This article belongs to the Topic Sustainable Building Development and Promotion)
Show Figures

Figure 1

22 pages, 4189 KiB  
Article
A Hierarchical Path Planning Framework of Plant Protection UAV Based on the Improved D3QN Algorithm and Remote Sensing Image
by Haitao Fu, Zheng Li, Jian Lu, Weijian Zhang, Yuxuan Feng, Li Zhu, He Liu and Jian Li
Remote Sens. 2025, 17(15), 2704; https://doi.org/10.3390/rs17152704 - 4 Aug 2025
Abstract
Traditional path planning algorithms often fail to simultaneously ensure operational efficiency, energy constraint compliance, and environmental adaptability in agricultural scenarios, thereby hindering the advancement of precision agriculture. To address these challenges, this study proposes a deep reinforcement learning algorithm, MoE-D3QN, which integrates a [...] Read more.
Traditional path planning algorithms often fail to simultaneously ensure operational efficiency, energy constraint compliance, and environmental adaptability in agricultural scenarios, thereby hindering the advancement of precision agriculture. To address these challenges, this study proposes a deep reinforcement learning algorithm, MoE-D3QN, which integrates a Mixture-of-Experts mechanism with a Bi-directional Long Short-Term Memory model. This design enhances the efficiency and robustness of UAV path planning in agricultural environments. Building upon this algorithm, a hierarchical coverage path planning framework is developed. Multi-level task maps are constructed using crop information extracted from Sentinel-2 remote sensing imagery. Additionally, a dynamic energy consumption model and a progressive composite reward function are incorporated to further optimize UAV path planning in complex farmland conditions. Simulation experiments reveal that in the two-level scenario, the MoE-D3QN algorithm achieves a coverage efficiency of 0.8378, representing an improvement of 37.84–63.38% over traditional algorithms and 19.19–63.38% over conventional reinforcement learning methods. The redundancy rate is reduced to 3.23%, which is 38.71–41.94% lower than traditional methods and 4.46–42.77% lower than reinforcement learning counterparts. In the three-level scenario, MoE-D3QN achieves a coverage efficiency of 0.8261, exceeding traditional algorithms by 52.13–71.45% and reinforcement learning approaches by 10.15–50.2%. The redundancy rate is further reduced to 5.26%, which is significantly lower than the 57.89–92.11% observed with traditional methods and the 15.57–18.98% reported for reinforcement learning algorithms. These findings demonstrate that the MoE-D3QN algorithm exhibits high-quality planning performance in complex farmland environments, indicating its strong potential for widespread application in precision agriculture. Full article
Show Figures

Figure 1

19 pages, 2441 KiB  
Article
Simulation and Statistical Validation Method for Evaluating Daylighting Performance in Hot Climates
by Nivin Sherif, Ahmed Yehia and Walaa S. E. Ismaeel
Urban Sci. 2025, 9(8), 303; https://doi.org/10.3390/urbansci9080303 - 4 Aug 2025
Abstract
This study investigates the influence of façade-design parameters on daylighting performance in hot arid climates, with a particular focus on Egypt. A total of nine façade configurations of a residential building were modeled and simulated using Autodesk Revit and Insight 360, varying three [...] Read more.
This study investigates the influence of façade-design parameters on daylighting performance in hot arid climates, with a particular focus on Egypt. A total of nine façade configurations of a residential building were modeled and simulated using Autodesk Revit and Insight 360, varying three critical variables: glazing type (clear, blue, and dark), Window-to-Wall Ratio (WWR) of 15%, 50%, 75%, and indoor wall finish (light, moderate, dark) colors. These were compared to the Leadership in Energy and Environmental Design (LEED) daylighting quality thresholds. The results revealed that clear glazing paired with high WWR (75%) achieved the highest Spatial Daylight Autonomy (sDA), reaching up to 92% in living spaces. However, this also led to elevated Annual Sunlight Exposure (ASE), with peak values of 53%, exceeding the LEED discomfort threshold of 10%. Blue and dark glazing types successfully reduced ASE to as low as 0–13%, yet often resulted in underlit spaces, especially in private rooms such as bedrooms and bathrooms, with sDA values falling below 20%. A 50% WWR emerged as the optimal balance, providing consistent daylight distribution while maintaining ASE within acceptable limits (≤33%). Similarly, moderate color wall finishes delivered the most balanced lighting performance, enhancing sDA by up to 30% while controlling reflective glare. Statistical analysis using Pearson correlation revealed a strong positive relationship between sDA and ASE (r = 0.84) in highly glazed, clear glass scenarios. Sensitivity analysis further indicated that low WWR configurations of 15% were highly influenced by glazing and finishing types, leading to variability in daylight metrics reaching ±40%. The study concludes that moderate glazing (blue), medium WWR (50%), and moderate color indoor finishes provide the most robust daylighting performance across diverse room types. These findings support an evidence-based approach to façade design, promoting visual comfort, daylight quality, and sustainable building practices. Full article
(This article belongs to the Topic Application of Smart Technologies in Buildings)
Show Figures

Figure 1

19 pages, 10990 KiB  
Article
Geospatial Assessment and Economic Analysis of Rooftop Solar Photovoltaic Potential in Thailand
by Linux Farungsang, Alvin Christopher G. Varquez and Koji Tokimatsu
Sustainability 2025, 17(15), 7052; https://doi.org/10.3390/su17157052 - 4 Aug 2025
Abstract
Evaluating the renewable energy potential, such as that of solar photovoltaics (PV), is important for developing renewable energy policies. This study investigated rooftop solar PV potential in Thailand based on open-source geographic information system (GIS) building footprints, solar PV power output, and the [...] Read more.
Evaluating the renewable energy potential, such as that of solar photovoltaics (PV), is important for developing renewable energy policies. This study investigated rooftop solar PV potential in Thailand based on open-source geographic information system (GIS) building footprints, solar PV power output, and the most recent land use data (2022). GIS-based overlay analysis, buffering, fishnet modeling, and spatial join operations were applied to assess rooftop availability across various building types, taking into account PV module installation parameters and optimal panel orientation. Economic feasibility and sensitivity analyses were conducted using standard economic metrics, including net present value (NPV), internal rate of return (IRR), payback period, and benefit–cost ratio (BCR). The findings showed a total rooftop solar PV power generation potential of 50.32 TWh/year, equivalent to 25.5% of Thailand’s total electricity demand in 2022. The Central region contributed the highest potential (19.59 TWh/year, 38.94%), followed by the Northeastern (10.49 TWh/year, 20.84%), Eastern (8.16 TWh/year, 16.22%), Northern (8.09 TWh/year, 16.09%), and Southern regions (3.99 TWh/year, 7.92%). Both commercial and industrial sectors reflect the financial viability of rooftop PV installations and significantly contribute to the overall energy output. These results demonstrate the importance of incorporating rooftop solar PV in renewable energy policy development in regions with similar data infrastructure, particularly the availability of detailed and standardized land use data for building type classification. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

11 pages, 317 KiB  
Article
Phenomenological Charged Extensions of the Quantum Oppenheimer–Snyder Collapse Model
by S. Habib Mazharimousavi
Universe 2025, 11(8), 257; https://doi.org/10.3390/universe11080257 - 4 Aug 2025
Abstract
This work presents a semi-classical, quantum-corrected model of gravitational collapse for a charged, spherically symmetric dust cloud, extending the classical Oppenheimer–Snyder (OS) framework through loop quantum gravity effects. Our goal is to study phenomenological quantum modifications to geometry, without necessarily embedding them within [...] Read more.
This work presents a semi-classical, quantum-corrected model of gravitational collapse for a charged, spherically symmetric dust cloud, extending the classical Oppenheimer–Snyder (OS) framework through loop quantum gravity effects. Our goal is to study phenomenological quantum modifications to geometry, without necessarily embedding them within full loop quantum gravity (LQG). Building upon the quantum Oppenheimer–Snyder (qOS) model, which replaces the classical singularity with a nonsingular bounce via a modified Friedmann equation, we introduce electric and magnetic charges concentrated on a massive thin shell at the boundary of the dust ball. The resulting exterior spacetime generalizes the Schwarzschild solution to a charged, regular black hole geometry akin to a quantum-corrected Reissner–Nordström metric. The Israel junction conditions are applied to match the interior APS (Ashtekar–Pawlowski–Singh) cosmological solution to the charged exterior, yielding constraints on the shell’s mass, pressure, and energy. Stability conditions are derived, including a minimum radius preventing full collapse and ensuring positivity of energy density. This study also examines the geodesic structure around the black hole, focusing on null circular orbits and effective potentials, with implications for the observational signatures of such quantum-corrected compact objects. Full article
Show Figures

Figure 1

25 pages, 6507 KiB  
Article
Sustainable Urban Heat Island Mitigation Through Machine Learning: Integrating Physical and Social Determinants for Evidence-Based Urban Policy
by Amatul Quadeer Syeda, Krystel K. Castillo-Villar and Adel Alaeddini
Sustainability 2025, 17(15), 7040; https://doi.org/10.3390/su17157040 - 3 Aug 2025
Viewed by 71
Abstract
Urban heat islands (UHIs) are a growing sustainability challenge impacting public health, energy use, and climate resilience, especially in hot, arid cities like San Antonio, Texas, where land surface temperatures reach up to 47.63 °C. This study advances a data-driven, interdisciplinary approach to [...] Read more.
Urban heat islands (UHIs) are a growing sustainability challenge impacting public health, energy use, and climate resilience, especially in hot, arid cities like San Antonio, Texas, where land surface temperatures reach up to 47.63 °C. This study advances a data-driven, interdisciplinary approach to UHI mitigation by integrating Machine Learning (ML) with physical and socio-demographic data for sustainable urban planning. Using high-resolution spatial data across five functional zones (residential, commercial, industrial, official, and downtown), we apply three ML models, Random Forest (RF), Support Vector Machine (SVM), and Gradient Boosting Machine (GBM), to predict land surface temperature (LST). The models incorporate both environmental variables, such as imperviousness, Normalized Difference Vegetation Index (NDVI), building area, and solar influx, and social determinants, such as population density, income, education, and age distribution. SVM achieved the highest R2 (0.870), while RF yielded the lowest RMSE (0.488 °C), confirming robust predictive performance. Key predictors of elevated LST included imperviousness, building area, solar influx, and NDVI. Our results underscore the need for zone-specific strategies like more greenery, less impervious cover, and improved building design. These findings offer actionable insights for urban planners and policymakers seeking to develop equitable and sustainable UHI mitigation strategies aligned with climate adaptation and environmental justice goals. Full article
Show Figures

Figure 1

23 pages, 3940 KiB  
Article
Recovery Strategies for Combined Optical Storage Systems Based on System Short-Circuit Ratio (SCR) Thresholds
by Qingji Yang, Baohong Li, Qin Jiang and Qiao Peng
Energies 2025, 18(15), 4112; https://doi.org/10.3390/en18154112 - 3 Aug 2025
Viewed by 179
Abstract
The penetration rate of variable energy sources in the current power grid is increasing, with the aim being to expand the use of these energy sources and to replace the traditional black start power supply. This study investigates the black start of a [...] Read more.
The penetration rate of variable energy sources in the current power grid is increasing, with the aim being to expand the use of these energy sources and to replace the traditional black start power supply. This study investigates the black start of a photovoltaic storage joint system based on the system’s short-circuit ratio threshold. Firstly, the principles and control modes of the photovoltaic (PV) system, energy storage system (ESS), and high-voltage direct current (DC) transmission system are studied separately to build an overall model; secondly, computational determinations of the short-circuit ratio under different scenarios are introduced to analyze the strength of the system, and the virtual inertia and virtual damping of the PV system are configured based on this; finally, the change trend of the storage system’s state of charge (SOC) is computed and observed, and the limits of what the system can support in each stage are determined. An electromagnetic transient simulation model of a black start system is constructed in PSCAD/EMTDC, and according to the proposed recovery strategy, the system frequency is maintained in the range of 49.4~50.6 Hz during the entire black start process; the fluctuation in maximum frequency after the recovery of the DC transmission system is no more than 0.1%; and the fluctuation in photovoltaic power at each stage is less than 3%. In addition, all the key indexes meet the requirements for black start technology, which verifies the validity of the strategy and provides theoretical support and a practical reference for the black start of a grid with variable energy sources. Full article
(This article belongs to the Special Issue Analysis and Control of Power System Stability)
Show Figures

Figure 1

14 pages, 2058 KiB  
Article
Integration of Daylight in Building Design as a Way to Improve the Energy Efficiency of Buildings
by Adrian Trząski and Joanna Rucińska
Energies 2025, 18(15), 4113; https://doi.org/10.3390/en18154113 - 2 Aug 2025
Viewed by 188
Abstract
According to the United Nations Environment Programme reports, buildings are responsible for nearly 40% of energy-related emissions; therefore, energy-optimized building design is crucial to reduce the reliance on non-renewable energy sources as well as greenhouse gas emissions. The OECD reports indicate the use [...] Read more.
According to the United Nations Environment Programme reports, buildings are responsible for nearly 40% of energy-related emissions; therefore, energy-optimized building design is crucial to reduce the reliance on non-renewable energy sources as well as greenhouse gas emissions. The OECD reports indicate the use of Building Information Modelling (BIM) as one of the effective strategies for decarbonization of buildings, since a 3D digital representation of both physical and functional characteristics of a building can help to design a more efficient infrastructure. An efficient integration of solar energy in building design can be vital for the enhancement of energy performance in terms of heating, cooling, and lighting demand. This paper presents results of an analysis of how factors related to the use of daylight, such as automatic control of artificial lighting, external shading, or the visual absorptance of internal surfaces, influence the energy efficiency within an example room in two different climatic zones. The simulation was conducted using Design Builder software, with predefined occupancy schedules and internal heat gains, and standard EPW weather files for Warsaw and Genua climate zones. The study indicates that for the examined room, when no automatic sunshades or a lighting control system is utilized, most of the final energy demand is for cooling purposes (45–54%), followed by lighting (42–43%), with only 3–12% for heating purposes. The introduction of sunshades and/or the use of daylight allowed for a reduction of the total demand by up to half. Moreover, it was pointed out that often neglected factors, like the colour of the internal surfaces, can have a significant effect on the final energy consumption. In variants with light interior, the total energy consumption was lower by about 3–4% of the baseline demand, compared to their corresponding ones with dark surfaces. These results are consistent with previous studies on daylighting strategies and highlight the importance of considering both visual and thermal impacts when evaluating energy performance. Similarly, possible side effects of certain actions were highlighted, such as an increase in heat demand resulting from a reduced need for artificial lighting. The results of the analysis highlight the potential of a simulation-based design approach in optimizing daylight use, contributing to the broader goals of building decarbonization. Full article
Show Figures

Figure 1

23 pages, 2663 KiB  
Article
How Nanofluids May Enhance Energy Efficiency and Carbon Footprint in Buildings?
by Sylwia Wciślik
Sustainability 2025, 17(15), 7035; https://doi.org/10.3390/su17157035 - 2 Aug 2025
Viewed by 215
Abstract
Nanofluids are an innovative working medium in solar hot water installations (DHWs), thanks to their increased thermal conductivity and heat transfer coefficient. The aim of this work was to assess the effect of Al2O3 nanofluids in a water–ethylene glycol base [...] Read more.
Nanofluids are an innovative working medium in solar hot water installations (DHWs), thanks to their increased thermal conductivity and heat transfer coefficient. The aim of this work was to assess the effect of Al2O3 nanofluids in a water–ethylene glycol base (40:60%) and with the addition of Tween 80 surfactant (0.2 wt%) on thermal efficiency (ε) and exergy (ηex) in a plate heat exchanger at DHW flows of 3 and 12 L/min. The numerical NTU–ε model was used with dynamic updating of thermophysical properties of nanofluids and the solution of the ODE system using the ode45 method, and the validation was carried out against the literature data. The results showed that the nanofluids achieved ε ≈ 0.85 (vs. ε ≈ 0.87 for the base fluid) and ηex ≈ 0.72 (vs. ηex ≈ 0.74), with higher entropy generation. The addition of Tween 80 reduced the viscosity by about 10–15%, resulting in a slight increase of Re and h-factor; however, the impact on ε and ηex was marginal. The environmental analysis with an annual demand of Q = 3000 kWh/year and an emission factor of 0.2 kg CO2/kWh showed that for ε < 0.87 the nanofluids increased the emissions by ≈16 kg CO2/year, while at ε ≈ 0.92, a reduction of ≈5% was possible. This paper highlights the need to optimize nanofluid viscosity and exchanger geometry to maximize energy and environmental benefits. Nowadays, due to the growing problems of global warming, the analysis of energy efficiency and carbon footprint related to the functioning of a building seems to be crucial. Full article
Show Figures

Figure 1

34 pages, 7297 KiB  
Article
Passive Design for Residential Buildings in Arid Desert Climates: Insights from the Solar Decathlon Middle East
by Esra Trepci and Edwin Rodriguez-Ubinas
Buildings 2025, 15(15), 2731; https://doi.org/10.3390/buildings15152731 - 2 Aug 2025
Viewed by 237
Abstract
This study investigates the effectiveness of passive design in low-rise residential buildings located in arid desert climates, using the Dubai Solar Decathlon Middle East (SDME) competition as a case study. This full-scale experiment offers a unique opportunity to evaluate design solutions under controlled, [...] Read more.
This study investigates the effectiveness of passive design in low-rise residential buildings located in arid desert climates, using the Dubai Solar Decathlon Middle East (SDME) competition as a case study. This full-scale experiment offers a unique opportunity to evaluate design solutions under controlled, realistic conditions; prescriptive, modeled performance; and monitored performance assessments. The prescriptive assessment reviews geometry, orientation, envelope thermal properties, and shading. Most houses adopt compact forms, with envelope-to-volume and envelope-to-floor area ratios averaging 1 and 3.7, respectively, and window-to-wall ratios of approximately 17%, favoring north-facing openings to optimize daylight while reducing heat gain. Shading is strategically applied, horizontal on south façades and vertical on east and west. The thermal properties significantly exceed the local code requirements, with wall performance up to 80% better than that mandated. The modeled assessment uses Building Energy Models (BEMs) to simulate the impact of prescriptive measures on energy performance. Three variations are applied: assigning minimum local code requirements to all the houses to isolate the geometry (baseline); removing shading; and applying actual envelope properties. Geometry alone accounts for up to 60% of the variation in cooling intensity; shading reduces loads by 6.5%, and enhanced envelopes lower demand by 14%. The monitored assessment uses contest-period data. Indoor temperatures remain stable (22–25 °C) despite outdoor fluctuations. Energy use confirms that houses with good designs and airtightness have lower cooling loads. Airtightness varies widely (avg. 14.5 m3/h/m2), with some well-designed houses underperforming due to construction flaws. These findings highlight the critical role of passive design as the first layer for improving the energy performance of the built environment and advancing toward net-zero targets, specifically in arid desert climates. Full article
(This article belongs to the Special Issue Climate-Responsive Architectural and Urban Design)
Show Figures

Figure 1

Back to TopTop