Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (132)

Search Parameters:
Keywords = energy balance of hydrogen production

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3086 KiB  
Article
Design and Optimization Strategy of a Net-Zero City Based on a Small Modular Reactor and Renewable Energy
by Jungin Choi and Junhee Hong
Energies 2025, 18(15), 4128; https://doi.org/10.3390/en18154128 - 4 Aug 2025
Viewed by 175
Abstract
This study proposes the SMR Smart Net-Zero City (SSNC) framework—a scalable model for achieving carbon neutrality by integrating Small Modular Reactors (SMRs), renewable energy sources, and sector coupling within a microgrid architecture. As deploying renewables alone would require economically and technically impractical energy [...] Read more.
This study proposes the SMR Smart Net-Zero City (SSNC) framework—a scalable model for achieving carbon neutrality by integrating Small Modular Reactors (SMRs), renewable energy sources, and sector coupling within a microgrid architecture. As deploying renewables alone would require economically and technically impractical energy storage systems, SMRs provide a reliable and flexible baseload power source. Sector coupling systems—such as hydrogen production and heat generation—enhance grid stability by absorbing surplus energy and supporting the decarbonization of non-electric sectors. The core contribution of this study lies in its real-time data emulation framework, which overcomes a critical limitation in the current energy landscape: the absence of operational data for future technologies such as SMRs and their coupled hydrogen production systems. As these technologies are still in the pre-commercial stage, direct physical integration and validation are not yet feasible. To address this, the researchers leveraged real-time data from an existing commercial microgrid, specifically focusing on the import of grid electricity during energy shortfalls and export during solar surpluses. These patterns were repurposed to simulate the real-time operational behavior of future SMRs (ProxySMR) and sector coupling loads. This physically grounded simulation approach enables high-fidelity approximation of unavailable technologies and introduces a novel methodology to characterize their dynamic response within operational contexts. A key element of the SSNC control logic is a day–night strategy: maximum SMR output and minimal hydrogen production at night, and minimal SMR output with maximum hydrogen production during the day—balancing supply and demand while maintaining high SMR utilization for economic efficiency. The SSNC testbed was validated through a seven-day continuous operation in Busan, demonstrating stable performance and approximately 75% SMR utilization, thereby supporting the feasibility of this proxy-based method. Importantly, to the best of our knowledge, this study represents the first publicly reported attempt to emulate the real-time dynamics of a net-zero city concept based on not-yet-commercial SMRs and sector coupling systems using live operational data. This simulation-based framework offers a forward-looking, data-driven pathway to inform the development and control of next-generation carbon-neutral energy systems. Full article
(This article belongs to the Section B4: Nuclear Energy)
Show Figures

Figure 1

21 pages, 1353 KiB  
Article
Hydrogen Cost and Carbon Analysis in Hollow Glass Manufacturing
by Dario Atzori, Claudia Bassano, Edoardo Rossi, Simone Tiozzo, Sandra Corasaniti and Angelo Spena
Energies 2025, 18(15), 4105; https://doi.org/10.3390/en18154105 - 2 Aug 2025
Viewed by 198
Abstract
The European Union promotes decarbonization in energy-intensive industries like glass manufacturing. Collaboration between industry and researchers focuses on reducing CO2 emissions through hydrogen (H2) integration as a natural gas substitute. However, to the best of the authors’ knowledge, no updated [...] Read more.
The European Union promotes decarbonization in energy-intensive industries like glass manufacturing. Collaboration between industry and researchers focuses on reducing CO2 emissions through hydrogen (H2) integration as a natural gas substitute. However, to the best of the authors’ knowledge, no updated real-world case studies are available in the literature that consider the on-site implementation of an electrolyzer for autonomous hydrogen production capable of meeting the needs of a glass manufacturing plant within current technological constraints. This study examines a representative hollow glass plant and develops various decarbonization scenarios through detailed process simulations in Aspen Plus. The models provide consistent mass and energy balances, enabling the quantification of energy demand and key cost drivers associated with H2 integration. These results form the basis for a scenario-specific techno-economic assessment, including both on-grid and off-grid configurations. Subsequently, the analysis estimates the levelized costs of hydrogen (LCOH) for each scenario and compares them to current and projected benchmarks. The study also highlights ongoing research projects and technological advancements in the transition from natural gas to H2 in the glass sector. Finally, potential barriers to large-scale implementation are discussed, along with policy and infrastructure recommendations to foster industrial adoption. These findings suggest that hybrid configurations represent the most promising path toward industrial H2 adoption in glass manufacturing. Full article
(This article belongs to the Special Issue Techno-Economic Evaluation of Hydrogen Energy)
Show Figures

Figure 1

18 pages, 6506 KiB  
Article
Realizing the Role of Hydrogen Energy in Ports: Evidence from Ningbo Zhoushan Port
by Xiaohui Zhong, Yuxin Li, Daogui Tang, Hamidreza Arasteh and Josep M. Guerrero
Energies 2025, 18(15), 4069; https://doi.org/10.3390/en18154069 - 31 Jul 2025
Viewed by 334
Abstract
The maritime sector’s transition to sustainable energy is critical for achieving global carbon neutrality, with container terminals representing a key focus due to their high energy consumption and emissions. This study explores the potential of hydrogen energy as a decarbonization solution for port [...] Read more.
The maritime sector’s transition to sustainable energy is critical for achieving global carbon neutrality, with container terminals representing a key focus due to their high energy consumption and emissions. This study explores the potential of hydrogen energy as a decarbonization solution for port operations, using the Chuanshan Port Area of Ningbo Zhoushan Port (CPANZP) as a case study. Through a comprehensive analysis of hydrogen production, storage, refueling, and consumption technologies, we demonstrate the feasibility and benefits of integrating hydrogen systems into port infrastructure. Our findings highlight the successful deployment of a hybrid “wind-solar-hydrogen-storage” energy system at CPANZP, which achieves 49.67% renewable energy contribution and an annual reduction of 22,000 tons in carbon emissions. Key advancements include alkaline water electrolysis with 64.48% efficiency, multi-tier hydrogen storage systems, and fuel cell applications for vehicles and power generation. Despite these achievements, challenges such as high production costs, infrastructure scalability, and data integration gaps persist. The study underscores the importance of policy support, technological innovation, and international collaboration to overcome these barriers and accelerate the adoption of hydrogen energy in ports worldwide. This research provides actionable insights for port operators and policymakers aiming to balance operational efficiency with sustainability goals. Full article
Show Figures

Figure 1

16 pages, 1188 KiB  
Article
Preparation and Performance Evaluation of Modified Amino-Silicone Supercritical CO2 Viscosity Enhancer for Shale Oil and Gas Reservoir Development
by Rongguo Yang, Lei Tang, Xuecheng Zheng, Yuanqian Zhu, Chuanjiang Zheng, Guoyu Liu and Nanjun Lai
Processes 2025, 13(8), 2337; https://doi.org/10.3390/pr13082337 - 23 Jul 2025
Viewed by 344
Abstract
Against the backdrop of global energy transition and strict environmental regulations, supercritical carbon dioxide (scCO2) fracturing and oil displacement technologies have emerged as pivotal green approaches in shale gas exploitation, offering the dual advantages of zero water consumption and carbon sequestration. [...] Read more.
Against the backdrop of global energy transition and strict environmental regulations, supercritical carbon dioxide (scCO2) fracturing and oil displacement technologies have emerged as pivotal green approaches in shale gas exploitation, offering the dual advantages of zero water consumption and carbon sequestration. However, the inherent low viscosity of scCO2 severely restricts its sand-carrying capacity, fracture propagation efficiency, and oil recovery rate, necessitating the urgent development of high-performance thickeners. The current research on scCO2 thickeners faces a critical trade-off: traditional fluorinated polymers exhibit excellent philicity CO2, but suffer from high costs and environmental hazards, while non-fluorinated systems often struggle to balance solubility and thickening performance. The development of new thickeners primarily involves two directions. On one hand, efforts focus on modifying non-fluorinated polymers, driven by environmental protection needs—traditional fluorinated thickeners may cause environmental pollution, and improving non-fluorinated polymers can maintain good thickening performance while reducing environmental impacts. On the other hand, there is a commitment to developing non-noble metal-catalyzed siloxane modification and synthesis processes, aiming to enhance the technical and economic feasibility of scCO2 thickeners. Compared with noble metal catalysts like platinum, non-noble metal catalysts can reduce production costs, making the synthesis process more economically viable for large-scale industrial applications. These studies are crucial for promoting the practical application of scCO2 technology in unconventional oil and gas development, including improving fracturing efficiency and oil displacement efficiency, and providing new technical support for the sustainable development of the energy industry. This study innovatively designed an amphiphilic modified amino silicone oil polymer (MA-co-MPEGA-AS) by combining maleic anhydride (MA), methoxy polyethylene glycol acrylate (MPEGA), and amino silicone oil (AS) through a molecular bridge strategy. The synthesis process involved three key steps: radical polymerization of MA and MPEGA, amidation with AS, and in situ network formation. Fourier transform infrared spectroscopy (FT-IR) confirmed the successful introduction of ether-based CO2-philic groups. Rheological tests conducted under scCO2 conditions demonstrated a 114-fold increase in viscosity for MA-co-MPEGA-AS. Mechanistic studies revealed that the ether oxygen atoms (Lewis base) in MPEGA formed dipole–quadrupole interactions with CO2 (Lewis acid), enhancing solubility by 47%. Simultaneously, the self-assembly of siloxane chains into a three-dimensional network suppressed interlayer sliding in scCO2 and maintained over 90% viscosity retention at 80 °C. This fluorine-free design eliminates the need for platinum-based catalysts and reduces production costs compared to fluorinated polymers. The hierarchical interactions (coordination bonds and hydrogen bonds) within the system provide a novel synthetic paradigm for scCO2 thickeners. This research lays the foundation for green CO2-based energy extraction technologies. Full article
Show Figures

Figure 1

15 pages, 521 KiB  
Article
A Binary Discounting Method for Economic Evaluation of Hydrogen Projects: Applicability Study Based on Levelized Cost of Hydrogen (LCOH)
by Sergey Galevskiy and Haidong Qian
Energies 2025, 18(14), 3839; https://doi.org/10.3390/en18143839 - 19 Jul 2025
Viewed by 354
Abstract
Hydrogen is increasingly recognized as a key element of the transition to a low-carbon energy system, leading to a growing interest in accurate and sustainable assessment of its economic viability. Levelized Cost of Hydrogen (LCOH) is one of the most widely used metrics [...] Read more.
Hydrogen is increasingly recognized as a key element of the transition to a low-carbon energy system, leading to a growing interest in accurate and sustainable assessment of its economic viability. Levelized Cost of Hydrogen (LCOH) is one of the most widely used metrics for comparing hydrogen production technologies and informing investment decisions. However, traditional LCOH calculation methods apply a single discount rate to all cash flows without distinguishing between the risks associated with outflows and inflows. This approach may yield a systematic overestimation of costs, especially in capital-intensive projects. In this study, we adapt a binary cash flow discounting model, previously proposed in the finance literature, for hydrogen energy systems. The model employs two distinct discount rates, one for costs and one for revenues, with a rate structure based on the required return and the risk-free rate, thereby ensuring that arbitrage conditions are not present. Our approach allows the range of possible LCOH values to be determined, eliminating the methodological errors inherent in traditional formulas. A numerical analysis is performed to assess the impact of a change in the general rate of return on the final LCOH value. The method is tested on five typical hydrogen production technologies with fixed productivity and cost parameters. The results show that the traditional approach consistently overestimates costs, whereas the binary model provides a more balanced and risk-adjusted representation of costs, particularly for projects with high capital expenditures. These findings may be useful for investors, policymakers, and researchers developing tools to support and evaluate hydrogen energy projects. Full article
(This article belongs to the Topic Energy Economics and Sustainable Development)
Show Figures

Figure 1

16 pages, 1713 KiB  
Article
Mass and Heat Balance Model and Its Engineering Application for the Oxygen Blast Furnace Smelting Process of Vanadium–Titanium Magnetite
by Yun Huang, Mansheng Chu, Xian Gan, Shushi Zhang, Zhenyang Wang and Jianliang Zhang
Metals 2025, 15(7), 805; https://doi.org/10.3390/met15070805 - 18 Jul 2025
Viewed by 312
Abstract
The oxygen blast furnace (OBF) process presents a promising low-carbon pathway for the smelting of vanadium–titanium magnetite (VTM). This study develops an innovative mathematical model based on mass and heat balance principles, specifically tailored to the OBF smelting of VTM. The model systematically [...] Read more.
The oxygen blast furnace (OBF) process presents a promising low-carbon pathway for the smelting of vanadium–titanium magnetite (VTM). This study develops an innovative mathematical model based on mass and heat balance principles, specifically tailored to the OBF smelting of VTM. The model systematically investigates the effects of key parameters—including pulverized coal injection ratio, recycling gas volume, hydrogen content in the recycling gas, and charge composition—on furnace productivity, hearth activity, and the tuyere raceway zone. The results show that increasing the pulverized coal injection ratio slightly reduces productivity and theoretical flame temperature: for every 25 kg/tHM increase in the coal ratio, the theoretical flame temperature decreases by 21.95 °C; moreover, indirect reduction is enhanced and the heat distribution within the furnace is significantly improved. A higher recycling gas volume markedly increases productivity and optimizes hearth thermal conditions, accompanied by enhanced blast kinetic energy and an expanded tuyere raceway zone, albeit with a notable drop in combustion temperature. Increased hydrogen content in the recycling gas promotes productivity, but may weaken blast kinetic energy and reduce the stability of the raceway zone. Furthermore, a higher titanium content in the charge increases the difficulty of iron oxide reduction, resulting in lower CO utilization and reduced productivity. Full article
(This article belongs to the Special Issue Innovation in Efficient and Sustainable Blast Furnace Ironmaking)
Show Figures

Figure 1

16 pages, 2188 KiB  
Article
Tartary Buckwheat Peptides Prevent Oxidative Damage in Differentiated SOL8 Cells via a Mitochondria-Mediated Apoptosis Pathway
by Yifan Xu, Yawen Wang, Min Yang, Pengxiang Yuan, Weikang Xu, Tong Jiang and Jian Huang
Nutrients 2025, 17(13), 2204; https://doi.org/10.3390/nu17132204 - 2 Jul 2025
Viewed by 481
Abstract
Background: Under oxidative stress conditions, the increased levels of reactive oxygen species (ROS) within cells disrupt the intracellular homeostasis. Tartary buckwheat peptides exert their effects by scavenging oxidative free radicals, such as superoxide anion and hydrogen peroxide, thereby reducing oxidative damage within cells. [...] Read more.
Background: Under oxidative stress conditions, the increased levels of reactive oxygen species (ROS) within cells disrupt the intracellular homeostasis. Tartary buckwheat peptides exert their effects by scavenging oxidative free radicals, such as superoxide anion and hydrogen peroxide, thereby reducing oxidative damage within cells. Meanwhile, these peptides safeguard mitochondria by maintaining the mitochondrial membrane potential, decreasing the production of mitochondrial oxygen free radicals, and regulating mitochondrial biogenesis and autophagy to preserve mitochondrial homeostasis. Through these mechanisms, Tartary buckwheat peptides restore the intracellular redox balance, sustain cellular energy metabolism and biosynthesis, and ensure normal cellular physiological functions, which is of great significance for cell survival and adaptation under oxidative stress conditions. Objectives: In this experiment, a classical cellular oxidative stress model was established. Indicators related to antioxidant capacity and mitochondrial membrane potential changes, as well as pathways associated with oxidative stress, were selected for detection. The aim was to elucidate the effects of Tartary buckwheat oligopeptides on the metabolism of cells in response to oxidative stress. Methods: In this study, we established an oxidative damage model of mouse skeletal muscle myoblast (SOL8) cells using hydrogen peroxide (H2O2), investigated the pre-protective effects of Tartary buckwheat oligopeptides on H2O2-induced oxidative stress damage in SOL8 cells at the cellular level, and explored the possible mechanisms. The CCK-8 method is a colorimetric assay based on WST-8-[2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, monosodiumsalt], which is used to detect cell proliferation and cytotoxicity. Results: The value of CCK-8 showed that, when the cells were exposed to 0.01 mmol/L H2O2 for 1 h and 10 mg/mL Tartary buckwheat oligopeptides intervention for 48 h, these were the optimal conditions. Compared with the H2O2 group, the intervention group (KB/H2O2 group) showed that the production of ROS was significantly reduced (p < 0.001), the malondialdehyde (MDA) content was significantly decreased (p < 0.05), and the activity of catalase (CAT) was significantly increased (p < 0.01); the mitochondrial membrane potential in the KB/H2O2 group tended to return to the level of the control group, and they all showed dose-dependent effects. Compared with the H2O2 group, the mRNA expression of KEAP1 in the KB/H2O2 group decreased, while the mRNA expression of NRF2α, HO-1, nrf1, PGC-1, P62, and PINK increased. Conclusions: Therefore, Tartary buckwheat oligopeptides have a significant pre-protective effect on H2O2-induced SOL8 cells, possibly by enhancing the activity of superoxide dismutase, reducing ROS attack, balancing mitochondrial membrane potential, and maintaining intracellular homeostasis. Full article
Show Figures

Figure 1

37 pages, 1512 KiB  
Article
Presumptions for the Integration of Green Hydrogen and Biomethane Production in Wastewater Treatment Plants
by Ralfas Lukoševičius, Sigitas Rimkevičius and Raimondas Pabarčius
Appl. Sci. 2025, 15(13), 7417; https://doi.org/10.3390/app15137417 - 2 Jul 2025
Viewed by 574
Abstract
Achieving climate neutrality goals is inseparable from the sustainable development of modern cities. Municipal wastewater treatment plants (WWTP) are among the starting points when moving cities to Net-zero Greenhouse Gas (GHG) emissions and climate neutrality. This study focuses on the analysis of the [...] Read more.
Achieving climate neutrality goals is inseparable from the sustainable development of modern cities. Municipal wastewater treatment plants (WWTP) are among the starting points when moving cities to Net-zero Greenhouse Gas (GHG) emissions and climate neutrality. This study focuses on the analysis of the integration of green hydrogen (H2) and biomethane technologies in WWTPs, and on the impact of this integration on WWTPs’ energy neutrality. This study treats WWTP as an integrated energy system with certain inputs and outputs. Currently, such systems in most cases have a significantly negative energy balance, and, in addition, fossil fuel energy sources are used. Key findings highlight that the integration of green hydrogen production in WWTPs and the efficient utilization of electrolysis by-products can make such energy systems neutral or even positive. This study provides an analysis of the main technical presumptions for the successful integration of green hydrogen and biomethane production processes in WWTP. Furthermore, a case study of a real wastewater treatment plant is presented. Full article
(This article belongs to the Special Issue Advances in New Sources of Energy and Fuels)
Show Figures

Figure 1

18 pages, 302 KiB  
Article
The Financial Results of Energy Sector Companies in Europe and Their Involvement in Hydrogen Production
by Andrzej Chmiela, Adrian Gawęda, Beata Barszczowska, Natalia Howaniec, Adrian Pysz and Adam Smoliński
Energies 2025, 18(13), 3385; https://doi.org/10.3390/en18133385 - 27 Jun 2025
Viewed by 381
Abstract
In response to growing environmental concerns, hydrogen production has emerged as a critical element in the transition to a sustainable global economy. We evaluate the impact of hydrogen production on both the financial performance and market value of energy sector companies, using balanced [...] Read more.
In response to growing environmental concerns, hydrogen production has emerged as a critical element in the transition to a sustainable global economy. We evaluate the impact of hydrogen production on both the financial performance and market value of energy sector companies, using balanced panel data from 288 European-listed firms over the period of 2018 to 2022. The findings reveal a paradox. While hydrogen production imposes significant financial constraints, it is positively recognized by market participants. Despite short-term financial challenges, companies engaged in hydrogen production experience higher market value, as investors view these activities as a long-term growth opportunity aligned with global sustainability goals. We contribute to the literature by offering empirical evidence on the financial outcomes and market valuation of hydrogen engagement, distinguishing between production and storage activities, and further categorizing production into green, blue, and gray hydrogen. By examining these nuances, we highlight the complex relationship between financial market results. While hydrogen production may negatively impact short-term financial performance, its potential for long-term value creation, driven by decarbonization efforts and sustainability targets, makes it attractive to investors. Ultimately, this study provides valuable insights into how hydrogen engagement shapes corporate strategies within the evolving European energy landscape. Full article
Show Figures

Figure 1

23 pages, 4417 KiB  
Review
Underground Hydrogen Storage in Salt Cavern: A Review of Advantages, Challenges, and Prospects
by Xiaojun Qian, Shaohua You, Ruizhe Wang, Yunzhi Yue, Qinzhuo Liao, Jiacheng Dai, Shouceng Tian and Xu Liu
Sustainability 2025, 17(13), 5900; https://doi.org/10.3390/su17135900 - 26 Jun 2025
Cited by 1 | Viewed by 1139
Abstract
The transition to a sustainable energy future hinges on the development of reliable large-scale hydrogen storage solutions to balance the intermittency of renewable energy and decarbonize hard-to-abate industries. Underground hydrogen storage (UHS) in salt caverns emerged as a technically and economically viable strategy, [...] Read more.
The transition to a sustainable energy future hinges on the development of reliable large-scale hydrogen storage solutions to balance the intermittency of renewable energy and decarbonize hard-to-abate industries. Underground hydrogen storage (UHS) in salt caverns emerged as a technically and economically viable strategy, leveraging the unique geomechanical properties of salt formations—including low permeability, self-healing capabilities, and chemical inertness—to ensure safe and high-purity hydrogen storage under cyclic loading conditions. This review provides a comprehensive analysis of the advantages of salt cavern hydrogen storage, such as rapid injection and extraction capabilities, cost-effectiveness compared to other storage methods (e.g., hydrogen storage in depleted oil and gas reservoirs, aquifers, and aboveground tanks), and minimal environmental impact. It also addresses critical challenges, including hydrogen embrittlement, microbial activity, and regulatory fragmentation. Through global case studies, best operational practices for risk mitigation in real-world applications are highlighted, such as adaptive solution mining techniques and microbial monitoring. Focusing on China’s regional potential, this study evaluates the hydrogen storage feasibility of stratified salt areas such as Jiangsu Jintan, Hubei Yunying, and Henan Pingdingshan. By integrating technological innovation, policy coordination, and cross-sector collaboration, salt cavern hydrogen storage is poised to play a pivotal role in realizing a resilient hydrogen economy, bridging the gap between renewable energy production and industrial decarbonization. Full article
Show Figures

Figure 1

21 pages, 5354 KiB  
Article
Research on Power Stability of Wind-Solar-PEM Hydrogen Production System Based on Virtual Synchronous Machine Control
by Min Liu, Leiqi Zhang, Qiliang Wu, Kuan Zhang, Xian Li and Bo Zhao
Processes 2025, 13(6), 1733; https://doi.org/10.3390/pr13061733 - 1 Jun 2025
Cited by 1 | Viewed by 604
Abstract
In order to solve the problem of frequency and voltage stability degradation caused by high proportion of renewable energy grid connection, this paper proposes a multi-energy dynamic coordinated control framework, which integrates the inertia damping characteristics of virtual synchronous generator (VSG) and the [...] Read more.
In order to solve the problem of frequency and voltage stability degradation caused by high proportion of renewable energy grid connection, this paper proposes a multi-energy dynamic coordinated control framework, which integrates the inertia damping characteristics of virtual synchronous generator (VSG) and the flexible load regulation capability of virtual synchronous motor (VSM) to build a two-way interactive mechanism. For the first time, a virtual inertia dynamic compensation algorithm based on VSG is proposed. By introducing the frequency change rate adaptive inertia coefficient adjustment mechanism, the system’s active support capability for wind and solar power fluctuations is improved by 32% compared with the traditional fixed inertia strategy; a breakthrough design of the VSM-driven hydrogen production system dynamic matching control strategy is made, and an electrolyzer efficiency-power dual variable coupling model is established to achieve optimal control of hydrogen production efficiency fluctuation rate ≤ ±2.1% within a wide power range of 10–95%; an innovative mixed integer quadratic programming real-time optimization model considering battery SOC safety constraints is constructed, and the wind and solar consumption efficiency is improved by 28.6% compared with the single energy storage mode through energy storage-hydrogen production complementary scheduling. A simulation platform was built based on Simulink to verify the system performance under three conditions: load mutation, source-grid fluctuation, and simultaneous source-load change. The simulation results show that under different working conditions, the fluctuation range of the system frequency can be stabilized within ±0.15Hz, and the voltage deviation is less than 2%; through the coordinated scheduling of the battery and the hydrogen production system, the battery charge state is always maintained in a safe range of 15–85%, and the hydrogen production power regulation rate reaches 1.5 kW/s. The study shows that the proposed control strategy can significantly enhance the inertia response capability of the system, achieve dynamic power balance and power quality optimization under multiple working conditions, and provide a feasible technical path for the high proportion of renewable energy grid connection and efficient preparation of green hydrogen. Full article
(This article belongs to the Special Issue Applications of Smart Microgrids in Renewable Energy Development)
Show Figures

Figure 1

43 pages, 15235 KiB  
Review
The Present and Future of Production of Green Hydrogen, Green Ammonia, and Green E-Fuels for the Decarbonization of the Planet from the Magallanes Region, Chile
by Carlos Cacciuttolo, Ariana Huertas, Bryan Montoya and Deyvis Cano
Appl. Sci. 2025, 15(11), 6228; https://doi.org/10.3390/app15116228 - 1 Jun 2025
Viewed by 1336
Abstract
The Magallanes region, in southern Chile, is positioned as a strategic hub for the production of green hydrogen (GH2), green ammonia, and synthetic fuels, thanks to its exceptional wind potential and commitment to sustainability. This article analyzes the opportunities and challenges of these [...] Read more.
The Magallanes region, in southern Chile, is positioned as a strategic hub for the production of green hydrogen (GH2), green ammonia, and synthetic fuels, thanks to its exceptional wind potential and commitment to sustainability. This article analyzes the opportunities and challenges of these energy vectors in the context of global decarbonization, highlighting the key role of the Magallanes region in the energy transition. Green hydrogen production, through wind-powered electrolysis, takes advantage of the region’s constant, high-speed winds, enabling competitive, low-emission generation. In turn, green ammonia, derived from GH2, emerges as a sustainable alternative for the agricultural industry and maritime transport, while synthetic fuels (e-fuels) offer a solution for sectors that are difficult to electrify, such as aviation. The sustainability approach addresses not only emissions reduction but also the responsible use of water resources, the protection of biodiversity, and integration with local communities. The article presents the following structure: (i) introduction, (ii) wind resource potential, (iii) water resource potential, (iv) different forms of hydrogen and its derivatives production (green hydrogen, green ammonia, and synthetic fuels), (v) pilot-scale demonstration plant for Haru Oni GH2 production, (vi) future industrial-scale GH2 production projects, (vii) discussion, and (viii) conclusions. In addition, the article discusses public policies, economic incentives, and international collaborations that promote these projects, positioning Magallanes as a clean energy export hub. Finally, the article concludes that the region can lead the production of green fuels, contributing to global energy security and the fulfillment of the Sustainable Development Goals (SDGs). However, advances in infrastructure, regulation, and social acceptance are required to guarantee a balanced development between technological innovation and environmental conservation. Full article
(This article belongs to the Special Issue Advancements and Innovations in Hydrogen Energy)
Show Figures

Figure 1

19 pages, 2716 KiB  
Article
Control Strategy of a Multi-Source System Based on Batteries, Wind Turbines, and Electrolyzers for Hydrogen Production
by Ibrahima Touré, Alireza Payman, Mamadou Baïlo Camara and Brayima Dakyo
Energies 2025, 18(11), 2825; https://doi.org/10.3390/en18112825 - 29 May 2025
Cited by 1 | Viewed by 446
Abstract
Multi-source systems are gaining attention as an effective approach to seamlessly incorporate renewable energies within electrical networks. These systems offer greater flexibility and better energy management possibilities. The considered multi-source system is based on a 50 MW wind farm connected to battery energy [...] Read more.
Multi-source systems are gaining attention as an effective approach to seamlessly incorporate renewable energies within electrical networks. These systems offer greater flexibility and better energy management possibilities. The considered multi-source system is based on a 50 MW wind farm connected to battery energy storage and electrolyzers through modular multi-level DC/DC converters. Wind energy systems interface with the DC-bus via rectifier power electronics that regulate the DC-bus voltage and implement optimal power extraction algorithms for efficient wind turbine operation. However, integrating intermittent renewable energy sources with optimal microgrid management poses significant challenges. It is essential to mention that the studied multi-source system is connected to the DC loads (modular electrolyzers and local load). This work proposes a new regulation method designed specifically to improve the performance of the system. In this strategy, the excess wind farm energy is converted into hydrogen gas and may be stored in the batteries. On the other hand, when the wind speed is low or there is no excess of energy, electrolyzer operations are stopped. The battery energy management depends on the power balance between the DC load (modular electrolyzers and local load) requirements and the energy produced from the wind farm. This control should lead to eliminating the fluctuations in energy production and should have a high dynamic performance. This work presents a nonlinear control method using a backstepping concept to improve the performances of the system operations and to achieve the mentioned goals. To evaluate the developed control strategy, some simulations based on real meteorological wind speed data using Matlab are conducted. The simulation results show that the proposed backstepping control strategy is satisfactory. Indeed, by integrating this control strategy into the multi-source system, we offer a flexible solution for battery and electrolyzer applications, contributing to the transition to a cleaner, more resilient energy system. This methodology offers intelligent and efficient energy management. Full article
(This article belongs to the Section A1: Smart Grids and Microgrids)
Show Figures

Figure 1

27 pages, 6612 KiB  
Article
Integrated Atmospheric Water Generators for Building Sustainability: A Simulation-Based Approach
by Lucia Cattani, Roberto Figoni, Paolo Cattani and Anna Magrini
Energies 2025, 18(7), 1839; https://doi.org/10.3390/en18071839 - 5 Apr 2025
Cited by 1 | Viewed by 1149
Abstract
This paper presents the first results of a broader study aimed at considering atmospheric water generation as a viable option within sustainable building design strategies. In particular, the focus is on integrated systems in which atmospheric water generator (AWG) machines, in addition to [...] Read more.
This paper presents the first results of a broader study aimed at considering atmospheric water generation as a viable option within sustainable building design strategies. In particular, the focus is on integrated systems in which atmospheric water generator (AWG) machines, in addition to producing water, support HVAC systems. The research focuses on the combined use of two different simulation tools: a commercial tool designed to study the energy balance of buildings and a custom-developed software for AWG modelling. This is the first step of a more complex procedure of software integration that is aimed to provide designers with a method to implement AWGs in the design process of buildings, both residential or industrial. This preliminary procedure is applied to a case study concerning the link between an advanced integrated AWG and a building housing inverters and transformers that belong to a photovoltaic field. The scope of the integration consists in enhancing the energy sustainability of atmospheric water intended for hydrogen production and panel washing by means of the dry and cold air flux that comes from the cycle of vapour condensation. The results highlight the potentialities of the integrated design, which includes AWGs, to enhance the final efficiency of sustainable housing. In particular, the joint action of the simulation tools used in this study provides insights about the possibility to reduce the size of traditional chiller that serve the building by an order of magnitude, and to achieve an energy saving of 29.8 MWh a year. Full article
Show Figures

Graphical abstract

33 pages, 5847 KiB  
Article
A Techno-Economic Assessment of Steam Methane Reforming and Alkaline Water Electrolysis for Hydrogen Production
by Ching Cheng Chu, Muhammad Danial Suhainin, Dk Nur Hayati Amali Pg Haji Omar Ali, Jia Yuan Lim, Poh Serng Swee, Jerick Yap Raymundo, Ryan Xin Han Tan, Mei Kei Yap, Hsin Fei Khoo, Hazwani Suhaimi and Pg Emeroylariffion Abas
Hydrogen 2025, 6(2), 23; https://doi.org/10.3390/hydrogen6020023 - 30 Mar 2025
Cited by 1 | Viewed by 2596
Abstract
This study explores hydrogen’s potential as a sustainable energy source for Brunei, given the nation’s reliance on fossil fuels and associated environmental concerns. Specifically, it evaluates two hydrogen production technologies; steam methane reforming (SMR) and alkaline water electrolysis (AWE), through a techno-economic framework [...] Read more.
This study explores hydrogen’s potential as a sustainable energy source for Brunei, given the nation’s reliance on fossil fuels and associated environmental concerns. Specifically, it evaluates two hydrogen production technologies; steam methane reforming (SMR) and alkaline water electrolysis (AWE), through a techno-economic framework that assesses life cycle cost (LCC), efficiency, scalability, and environmental impact. SMR, the most widely used technique, is cost-effective but carbon-intensive, producing considerable carbon dioxide emissions unless combined with carbon capture to yield “blue hydrogen”. On the other hand, AWE, particularly when powered by renewable energy, offers a cleaner alternative despite challenges in efficiency and cost. The assessment revealed that AWE has a significantly higher LCC than SMR, making AWE the more economically viable hydrogen production method in the long term. A sensitivity analysis was also conducted to determine the main cost factors affecting the LCC, providing insights into the long term viability of each technology from an operational and financial standpoint. AWE’s economic viability is mostly driven by the high electricity and feedstock costs, while SMR relies heavily on feedstock costs. However, Environmental Impact Analysis (EIA) indicates that AWE produces significantly higher carbon dioxide emissions than SMR, which emits approximately 9100 metric tons of carbon dioxide annually. Nevertheless, findings suggest that AWE remains the more sustainable option due to its higher LCC costs and compatibility with renewable energy, especially in regions with access to low-cost renewable electricity. Full article
Show Figures

Graphical abstract

Back to TopTop