Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (274)

Search Parameters:
Keywords = energy audits

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 1062 KiB  
Article
Sustainability Audit of University Websites in Poland: Analysing Carbon Footprint and Sustainable Design Conformity
by Karol Król
Appl. Sci. 2025, 15(15), 8666; https://doi.org/10.3390/app15158666 (registering DOI) - 5 Aug 2025
Abstract
With the advance of digital transformation, the assessment of the environmental impact of digital tools and technologies grows more relevant. Considering the inflated expectations of environmental responsibility in higher education, this study analyses how websites of Polish universities conform to sustainable web design [...] Read more.
With the advance of digital transformation, the assessment of the environmental impact of digital tools and technologies grows more relevant. Considering the inflated expectations of environmental responsibility in higher education, this study analyses how websites of Polish universities conform to sustainable web design criteria. The sustainability audit employed a methodology encompassing carbon emissions measurement, technical website analysis, and SEO evaluation. The author analysed 63 websites of public universities in Poland using seven independent audit tools, including an original AI Custom GPT agent preconfigured in the ChatGPT ecosystem. The results revealed a substantial differentiation in CO2 emissions and website optimisation, with an average EcoImpact Score of 66.41/100. Nearly every fourth website exhibited a significant carbon footprint and excessive component sizes, which indicates poor asset optimisation and energy-intensive design techniques. The measurements exposed considerable variability in emission intensities and resource intensity among the university websites, suggesting the need for standardised digital sustainability practices. Regulations on the carbon footprint of public institutions’ websites and mobile applications could become vital strategic components for digital climate neutrality. Promoting green hosting, “Green SEO” practices, and sustainability audits could help mitigate the environmental impact of digital technologies and advance sustainable design standards for the public sector. The proposed auditing methodology can effectively support the institutional transition towards sustainable management of digital infrastructure by integrating technical, sustainability, and organisational aspects. Full article
(This article belongs to the Section Computing and Artificial Intelligence)
Show Figures

Figure 1

28 pages, 2448 KiB  
Article
ATENEA4SME: Industrial SME Self-Evaluation of Energy Efficiency
by Antonio Ferraro, Giacomo Bruni, Marcello Salvio, Milena Marroccoli, Antonio Telesca, Chiara Martini, Federico Alberto Tocchetti and Antonio D’Angola
Energies 2025, 18(15), 4094; https://doi.org/10.3390/en18154094 - 1 Aug 2025
Viewed by 117
Abstract
Promoting energy efficiency in the Italian production sector is significantly hampered by the lack of knowledge, the scarcity and the limited distribution of tools for supporting energy audits in small and medium-sized enterprises (SMEs) in a wide range of Italian economic sectors (industry, [...] Read more.
Promoting energy efficiency in the Italian production sector is significantly hampered by the lack of knowledge, the scarcity and the limited distribution of tools for supporting energy audits in small and medium-sized enterprises (SMEs) in a wide range of Italian economic sectors (industry, tertiary sector, transport). The Advanced Tool for ENErgy Audit for SMEs, ATENEA4SME, is intended to help SMEs promote energy-efficiency projects, supports energy audits and self-evaluation of energy consumption. The tool uses an original mathematical model that takes into account the results of questionnaires and a multi-criteria analysis to generate recommendations for energy efficiency investments. This article will give a thorough explanation of the tool, emphasizing and outlining the sections as well as the procedures to get the ultimate summary of the energy usage of the enterprises under investigation and the potential for energy saving. From a technological and financial perspective, the tool helps to remove obstacles to the development of energy-efficiency measures. In this article, the IT and methodological structure of the tool will therefore be extensively described, and its operation for the context of SMEs will be illustrated, with application cases. Ample space will be allocated to the dissemination campaign and the replicability of the tool for all economic sectors of the industrial and tertiary sectors. Full article
Show Figures

Figure 1

21 pages, 727 KiB  
Article
Cost-Effective Energy Retrofit Pathways for Buildings: A Case Study in Greece
by Charikleia Karakosta and Isaak Vryzidis
Energies 2025, 18(15), 4014; https://doi.org/10.3390/en18154014 - 28 Jul 2025
Viewed by 191
Abstract
Urban areas are responsible for most of Europe’s energy demand and emissions and urgently require building retrofits to meet climate neutrality goals. This study evaluates the energy efficiency potential of three public school buildings in western Macedonia, Greece—a cold-climate region with high heating [...] Read more.
Urban areas are responsible for most of Europe’s energy demand and emissions and urgently require building retrofits to meet climate neutrality goals. This study evaluates the energy efficiency potential of three public school buildings in western Macedonia, Greece—a cold-climate region with high heating needs. The buildings, constructed between 1986 and 2003, exhibited poor insulation, outdated electromechanical systems, and inefficient lighting, resulting in high oil consumption and low energy ratings. A robust methodology is applied, combining detailed on-site energy audits, thermophysical diagnostics based on U-value calculations, and a techno-economic assessment utilizing Net Present Value (NPV), Internal Rate of Return (IRR), and SWOT analysis. The study evaluates a series of retrofit measures, including ceiling insulation, high-efficiency lighting replacements, and boiler modernization, against both technical performance criteria and financial viability. Results indicate that ceiling insulation and lighting system upgrades yield positive economic returns, while wall and floor insulation measures remain financially unattractive without external subsidies. The findings are further validated through sensitivity analysis and policy scenario modeling, revealing how targeted investments, especially when supported by public funding schemes, can maximize energy savings and emissions reductions. The study concludes that selective implementation of cost-effective measures, supported by public grants, can achieve energy targets, improve indoor environments, and serve as a replicable model of targeted retrofits across the region, though reliance on external funding and high upfront costs pose challenges. Full article
Show Figures

Figure 1

19 pages, 551 KiB  
Article
Open Energy Data in Spain and Its Contribution to Sustainability: Content and Reuse Potential
by Ricardo Curto-Rodríguez, Rafael Marcos-Sánchez, Alicia Zaragoza-Benzal and Daniel Ferrández
Sustainability 2025, 17(15), 6731; https://doi.org/10.3390/su17156731 - 24 Jul 2025
Viewed by 364
Abstract
This paper presents a study on open energy data in Spain and its contribution to sustainability, analyzing its content and its reuse potential. Since energy plays an important role in the sustainability and economic development of a country or region, energy strategies must [...] Read more.
This paper presents a study on open energy data in Spain and its contribution to sustainability, analyzing its content and its reuse potential. Since energy plays an important role in the sustainability and economic development of a country or region, energy strategies must be managed through public policies that promote the development of this sector. In this sense, open data is relevant for decision-making in the energy sector, especially in areas such as energy consumption and renewable energy policies. Our research aims to analyze the work of Spain’s autonomous communities in the field of energy information by conducting a population analysis of all datasets tagged in the energy category. After compiling the information and eliminating irrelevant datasets (those that are mislabeled, obsolete, or have a scope less than the level of the autonomous community), it can be seen that the supply is very scarce and that this category is one of the least populated among all existing categories. The typological analysis indicates that information on consumption is the one offering the most datasets, followed, at a short distance, by heterogeneous and difficult-to-classify information and by the set related to energy certificates or audits (the most recurrent, as it is offered only once by the autonomous communities). One of the main findings of the research is the heterogeneity of the initiatives and the significant differences in scores on an indicator created for this purpose. The ranking has taken into account both the existence of information and the quality of reuse, with Catalonia, the Basque Country, and Cantabria being the leaders (with Castilla y León, the performance reaches 60%, so the three remaining communities do not reach 40%). The research concludes with recommendations based on the gaps detected: more data should be published that can drive economic development and environmental sustainability, reduce heterogeneity, and facilitate the use of these data for greater applicability, which will increase the chances that open energy data can contribute more to sustainability. Full article
(This article belongs to the Special Issue Energy Storage, Conversion and Sustainable Management)
Show Figures

Figure 1

20 pages, 3386 KiB  
Article
Evaluating Acoustic vs. AI-Based Satellite Leak Detection in Aging US Water Infrastructure: A Cost and Energy Savings Analysis
by Prashant Nagapurkar, Naushita Sharma, Susana Garcia and Sachin Nimbalkar
Smart Cities 2025, 8(4), 122; https://doi.org/10.3390/smartcities8040122 - 22 Jul 2025
Viewed by 438
Abstract
The aging water distribution system in the United States, constructed mainly during the 1970s with some pipes dating back 125 years, is experiencing significant deterioration leading to substantial water losses. Along with the potential for water loss savings, improvements in the distribution system [...] Read more.
The aging water distribution system in the United States, constructed mainly during the 1970s with some pipes dating back 125 years, is experiencing significant deterioration leading to substantial water losses. Along with the potential for water loss savings, improvements in the distribution system by using leak detection technologies can create net energy and cost savings. In this work, a new framework has been presented to calculate the economic level of leakage within water supply and distribution systems for two primary leak detection technologies (acoustic vs. satellite). In this work, a new framework is presented to calculate the economic level of leakage (ELL) within water supply and distribution systems to support smart infrastructure in smart cities. A case study focused using water audit data from Atlanta, Georgia, compared the costs of two leak mitigation technologies: conventional acoustic leak detection and artificial intelligence–assisted satellite leak detection technology, which employs machine learning algorithms to identify potential leak signatures from satellite imagery. The ELL results revealed that conducting one survey would be optimum for an acoustic survey, whereas the method suggested that it would be expensive to utilize satellite-based leak detection technology. However, results for cumulative financial analysis over a 3-year period for both technologies revealed both to be economically favorable with conventional acoustic leak detection technology generating higher net economic benefits of USD 2.4 million, surpassing satellite detection by 50%. A broader national analysis was conducted to explore the potential benefits of US water infrastructure mirroring the exemplary conditions of Germany and The Netherlands. Achieving similar infrastructure leakage index (ILI) values could result in annual cost savings of $4–$4.8 billion and primary energy savings of 1.6–1.9 TWh. These results demonstrate the value of combining economic modeling with advanced leak detection technologies to support sustainable, cost-efficient water infrastructure strategies in urban environments, contributing to more sustainable smart living outcomes. Full article
Show Figures

Figure 1

17 pages, 678 KiB  
Article
The Influence Mechanisms of Carbon Emissions for Prefabricated Buildings in the Context of China’s Urban Renewal
by Shuyan Zhao, Xinru Qu, Xiaojing Zhao and Yongwei Zhang
Buildings 2025, 15(14), 2508; https://doi.org/10.3390/buildings15142508 - 17 Jul 2025
Viewed by 334
Abstract
Prefabricated buildings, known for their energy efficiency, environmental benefits, and industrial advantages, play a crucial role in urban renewal. Previous studies on the carbon emissions of prefabricated buildings mainly concentrate on the assessment and auditing of carbon emissions at the materialization and construction [...] Read more.
Prefabricated buildings, known for their energy efficiency, environmental benefits, and industrial advantages, play a crucial role in urban renewal. Previous studies on the carbon emissions of prefabricated buildings mainly concentrate on the assessment and auditing of carbon emissions at the materialization and construction phase. Few of them have analyzed the carbon emissions at the operational phase or the influence mechanisms of prefabricated buildings on carbon emissions in urban renewal. Thus, this paper explored the factors and mechanisms that influence carbon emissions in prefabricated buildings in China’s urban renewal. Firstly, the factors that influence the carbon emissions of prefabricated buildings in China’s urban renewal were identified through meta-analysis. Secondly, the theoretical model was developed to illustrate the influence paths of prefabricated buildings on the carbon emissions of urban renewal. Finally, the structural equation model (SEM) was used to test the hypotheses in the theoretical model using data collected from questionnaires. The results show that the carbon emission reduction potential of prefabricated buildings is influenced by four aspects, namely, socioeconomic factors, policy regulations, building operation, and materialization. Policy regulations have the greatest impact on the carbon emissions of prefabricated buildings. They not only directly affect the carbon emissions of urban renewal but also influence carbon emissions indirectly through the social economy aspect. The direct impact of social economy on the carbon emissions of prefabricated buildings is insignificant, while it can indirectly affect the carbon emission reduction in prefabricated buildings by influencing building operations and the materialization stage. The findings could help provide strategies for prefabrication and enhance the reduction potential of urban renewal. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

19 pages, 566 KiB  
Article
Energy Audits and Energy Efficiency of Urban Wastewater Systems, Following UWWTP Directive 2024/3019
by Andrea G. Capodaglio
Water 2025, 17(14), 2049; https://doi.org/10.3390/w17142049 - 8 Jul 2025
Viewed by 445
Abstract
The recent Directive EU/2024/3019, a recast of the previous 1991 Directive 91/271/EEC concerning urban wastewater treatment, introduces new obligations concerning effluents requirements and overall energy management in urban wastewater systems. In addition to increased levels of treatment (including extended tertiary and quaternary pollutants [...] Read more.
The recent Directive EU/2024/3019, a recast of the previous 1991 Directive 91/271/EEC concerning urban wastewater treatment, introduces new obligations concerning effluents requirements and overall energy management in urban wastewater systems. In addition to increased levels of treatment (including extended tertiary and quaternary pollutants removal), the Directive introduces the obligation for treatment facilities to become “energy neutral” at the national sectoral level, increasing reliance on energy optimization and recovery from internal processes and external renewable energy sources. In order to achieve this objective, an obligation to periodically conduct energy audits is introduced; however, while this practice is commonly carried out in residential and industrial buildings, guidelines for its implementation in treatment facilities are currently not precisely defined. The paper summarizes current issues on wastewater sector energy audits, discussing the current state-of-the-art and the expected requirements to conduct such audits. It then discusses the causes of possible facility inefficiencies and their possible solutions from both permanent and transient perspectives. Finally, it addresses the issue of energy neutrality requirement, and the role of renewable energy sources contribution, both natural and internal (process-related) to the sector’s energy efficiency. Full article
(This article belongs to the Special Issue Urban Water Pollution Control: Theory and Technology)
Show Figures

Figure 1

13 pages, 2372 KiB  
Article
Sustainable Healthcare Infrastructure: Design-Phase Evaluation of LEED Certification and Energy Efficiency at Istanbul University’s Surgical Sciences Building
by Cemil Akçay and Mahmut Sarı
Buildings 2025, 15(14), 2385; https://doi.org/10.3390/buildings15142385 - 8 Jul 2025
Viewed by 308
Abstract
The rapid growth of the global population and associated increases in resource consumption have accelerated environmental degradation, making sustainable design and construction processes increasingly essential. The construction sector holds significant potential for reducing environmental impacts, especially through sustainability-focused certification systems such as LEED. [...] Read more.
The rapid growth of the global population and associated increases in resource consumption have accelerated environmental degradation, making sustainable design and construction processes increasingly essential. The construction sector holds significant potential for reducing environmental impacts, especially through sustainability-focused certification systems such as LEED. This study evaluates the projected energy efficiency and sustainability performance of the Surgical Sciences Building at Istanbul University’s Çapa Campus, which was designed with the goal of achieving LEED Gold certification. The assessment is based on design-phase data and conducted prior to construction. Energy performance analyses were carried out using DesignBuilder software, supported by the LEED Assessment Report and Energy Audit Report. According to simulation results, approximately 30% savings in energy consumption and water usage are expected. In addition, the process-oriented LEED approach is expected to result in a total CO2 emission savings of approximately 570 tonnes, while renewable energy systems are expected to meet approximately 13% of the building’s primary energy demand and reduce CO2 emissions by approximately 151 tonnes per year. Waste management strategies developed for both the construction and operational phases are aligned with LEED criteria and aim to achieve up to 80% recycling rates. The findings demonstrate that LEED certification, when employed as a process-oriented design and decision-making tool rather than a result-oriented label, can enable sustainable strategies to be integrated from the earliest stages of project development. Particularly for complex healthcare buildings, embedding LEED principles into the design process has strong potential to enhance environmental performance. Although based on a single case study, this research provides valuable insight into the broader applicability of LEED in diverse building types and geographic contexts. Full article
(This article belongs to the Special Issue Sustainability in Construction Project Management and Infrastructure)
Show Figures

Figure 1

16 pages, 1007 KiB  
Article
Evaluation of the Electricity Consumption Index Based on a Level Two Energy Audit: A Case Study of University Facilities in Mexico
by Héctor A. Álvarez Macías, Rafael Peña Gallardo, José Ángel Pecina Sánchez, Carlos Soubervielle Montalvo, Aurelio Hernández Rodríguez and Juan Carlos Arellano González
Sustainability 2025, 17(13), 5892; https://doi.org/10.3390/su17135892 - 26 Jun 2025
Viewed by 270
Abstract
As global energy consumption continues to rise, it is essential to adopt measures that regulate electricity use while still meeting the demands of modern society. These efforts align with the United Nations Sustainable Development Goals and are supported by various organizations. This study [...] Read more.
As global energy consumption continues to rise, it is essential to adopt measures that regulate electricity use while still meeting the demands of modern society. These efforts align with the United Nations Sustainable Development Goals and are supported by various organizations. This study applies a methodology that combines the implementation of a Level 2 Energy Audit with the evaluation of the Electricity Consumption Index (ECI) at the Department of English of the Multidisciplinary Academic Unit of the Altiplano Region, Universidad Autónoma de San Luis Potosí. The study identifies strategies to reduce electricity consumption related to lighting systems and equipment operation throughout the department. Additionally, it assesses the percentage of users who promote and practice energy-saving habits. Key recommendations include transitioning the lighting system to LED technology, expected to reduce electricity consumption by 15, and implementing power factor correction measures, projected to yield an additional 6.17% in energy and cost savings. Together, these strategies could result in an estimated annual electricity savings of 21.17%, making them attractive to institutional decision-makers. Furthermore, by comparing the department’s ECI with a reference index established for educational institutions in temperate climate regions of Mexico, the study determines whether the proposed strategies should be implemented immediately or planned for the medium to long term. This decision-making framework represents the main contribution of the case study. Full article
(This article belongs to the Special Issue Sustainability in Cities and Campuses)
Show Figures

Figure 1

31 pages, 3123 KiB  
Review
A Review of the Potential of Drone-Based Approaches for Integrated Building Envelope Assessment
by Shayan Mirzabeigi, Ryan Razkenari and Paul Crovella
Buildings 2025, 15(13), 2230; https://doi.org/10.3390/buildings15132230 - 25 Jun 2025
Cited by 1 | Viewed by 724
Abstract
The urgent need for affordable and scalable building retrofit solutions has intensified due to stringent clean energy targets. Traditional building energy audits, which are essential in assessing energy performance, are often time-consuming and costly because of the extensive field analysis required. There has [...] Read more.
The urgent need for affordable and scalable building retrofit solutions has intensified due to stringent clean energy targets. Traditional building energy audits, which are essential in assessing energy performance, are often time-consuming and costly because of the extensive field analysis required. There has been a gradual shift towards the public use of drones, which present opportunities for effective remote procedures that could disrupt a variety of built environment disciplines. Drone-based approaches to data collection offer a great opportunity for the analysis and inspection of existing building stocks, enabling architects, engineers, energy auditors, and owners to document building performance, visualize heat transfer using infrared thermography, and create digital models using 3D photogrammetry. This study provides a review of the potential of a drone-based approach to integrated building envelope assessment, aiming to streamline the process. By evaluating various scanning techniques and their integration with drones, this research explores how drones can enhance data collection for defect identification, as well as digital model creation. A proposed drone-based workflow is tested through a case study in Syracuse, New York, demonstrating its feasibility and effectiveness in creating 3D models and conducting energy simulations. The study also discusses various challenges associated with drone-based approaches, including data accuracy, environmental conditions, operator training, and regulatory compliance, offering practical solutions and highlighting areas for further research. A discussion of the findings underscores the potential of drone technology to revolutionize building inspections, making them more efficient, accurate, and scalable, thus supporting the development of sustainable and energy-efficient buildings. Full article
Show Figures

Figure 1

19 pages, 443 KiB  
Article
The Impact of Audit Committee Oversight on Investor Rationality, Price Expectations, Human Capital, and Research and Development Expense
by Rebecca Abraham, Venkata Mrudula Bhimavarapu and Hani El-Chaarani
J. Risk Financial Manag. 2025, 18(6), 321; https://doi.org/10.3390/jrfm18060321 - 11 Jun 2025
Viewed by 731
Abstract
Audit committees monitor the actions of managers as they pursue the goal of shareholder wealth maximization. The purpose of this study is to measure the impact of audit committee oversight on novel aspects of firm performance, including investor rationality, price expectations, human capital, [...] Read more.
Audit committees monitor the actions of managers as they pursue the goal of shareholder wealth maximization. The purpose of this study is to measure the impact of audit committee oversight on novel aspects of firm performance, including investor rationality, price expectations, human capital, and research and development expenses. It extends the literature to non-financial outcomes of audit committee oversight. The literature thus far has focused on the financial effects of audit committee oversight, such as return on assets, return on equity, risk, debt capacity, and firm value. Data was collected from 588 publicly traded firms in the U.S. pharmaceutical industry and energy industry from 2010 to 2022. Audit oversight was measured by the novel measurement of the frequency of the term ‘audit committee’ in annual reports and Form 10Ks from the SeekEdgar database. COMPUSTAT provided the remainder of the data. Panel Data fixed-effects models were used to analyze the data. Audit committee oversight significantly increased investor rationality, significantly reduced price expectations, and significantly increased human capital investment. An inverted U-shaped relationship occurred for audit committee oversight and research and development expenses, with audit oversight first increasing research and development expenses, then decreasing them. The study makes several contributions. First, the study uses a novel measure of audit oversight. Second, the study predicts the effect of audit committee oversight on unexplored non-financial measures, such as human capital and research and development expense. Third, the study offers a current test of the Miller model, as the last tests were performed over 20 years ago. Fourth, the study examines the impact of auditing on market measures that have not been explored in the literature, such as investor rationality and short selling. Full article
(This article belongs to the Special Issue Emerging Trends and Innovations in Corporate Finance and Governance)
Show Figures

Figure 1

26 pages, 833 KiB  
Article
Accelerating Green Growth: The Impact of Government Environmental Audits on Urban Green Economy
by Xinyu Li, Bingrui Dong, Shujuan Li, Bangsheng Xie and Luhua Xie
Sustainability 2025, 17(12), 5289; https://doi.org/10.3390/su17125289 - 7 Jun 2025
Viewed by 508
Abstract
Green growth, as a universal objective in the pursuit of sustainable development, represents a critical pathway for harmonizing economic expansion with sustainability. Within this context, government environmental auditing emerges as a pivotal mechanism for advancing the modernization of national governance systems and enhancing [...] Read more.
Green growth, as a universal objective in the pursuit of sustainable development, represents a critical pathway for harmonizing economic expansion with sustainability. Within this context, government environmental auditing emerges as a pivotal mechanism for advancing the modernization of national governance systems and enhancing regulatory capacity, thereby playing an indispensable role in accelerating green transformation. This study regards green economy as a proxy variable for green development. Using panel data of cities at prefecture level and above in China from 2012 to 2021, based on the performance audit of key energy-saving and environmental protection funds conducted by the National Audit Office in 18 provinces in 2017, adopts a quasi-natural experiment method, and uses the propensity score matching double difference method (PSM-DID) to examine the impact on green development. The findings indicate that such audits significantly enhance green economy levels in audited cities. This governance instrument fosters green innovation and facilitates industrial structural optimization, reinforcing its regulatory effectiveness. Furthermore, fiscal decentralization is found to moderate the relationship between environmental performance audits and urban green economic outcomes. Additional analysis reveals that the positive impact of government environmental auditing on green economy levels is more pronounced in cities characterized by lower fiscal transparency and stricter environmental regulations. By extending the research frontier of environmental auditing through the lens of fund performance evaluation, this study offers both theoretical insights and empirical evidence to support urban green development and promote sustainable economic transitions in both developing and developed economies. Full article
(This article belongs to the Section Sustainable Urban and Rural Development)
Show Figures

Figure 1

14 pages, 4648 KiB  
Article
The Use of Vacuum Plasma Surface Treatment to Improve Bone Healing and Regeneration in Socket Preservation and GBR: A Case Series with Histological Analysis
by Marco Tallarico, Michele Troia, Milena Pisano, Silvio Mario Meloni, Dario Melodia, Claudia Della Via, Dolaji Henin, Francesco Mattia Ceruso, Carlotta Cacciò and Aurea Immacolata Lumbau
Appl. Sci. 2025, 15(11), 6344; https://doi.org/10.3390/app15116344 - 5 Jun 2025
Viewed by 359
Abstract
Purpose: To evaluate the clinical and histological outcomes of patients that receive implant-supported crowns after vacuum plasma surface treatment (VPST) of biomaterials used in socket preservation (SP) and guided bone regeneration (GBR). Materials and methods: This study was designed as a case series. [...] Read more.
Purpose: To evaluate the clinical and histological outcomes of patients that receive implant-supported crowns after vacuum plasma surface treatment (VPST) of biomaterials used in socket preservation (SP) and guided bone regeneration (GBR). Materials and methods: This study was designed as a case series. Patients in need of tooth extraction and socket preservation or guided bone regeneration were enrolled. The socket preservation technique was performed after tooth extraction using a heterologous collagen bone graft and a collagen xenomatrix, both activated with vacuum plasma. Meanwhile, a two-stage horizontal ridge augmentation was performed using a customized titanium mesh and a mix of autologous (untreated) and heterologous (treated) bone grafts, along with a treated collagen membrane. ACTILINK Reborn with Universal Vortex Holder (Plasmapp Co., Ltd., Daejeon, Republic of Korea) was used to treat all biomaterials. The outcome measures were implant and prosthesis failures, complications, and histological examination. Soft and hard tissue samples were collected at the time of implant placement only in patients treated with SP. Results: A total of six patients were treated—three with socket preservation and delayed implant placement, and three with staged GBR. No implant or prosthesis failed. One customized titanium mesh broke after plasma treatment, requiring replacement with a pericardium membrane. No other complications occurred. Histological analysis at three months post-surgery revealed well-vascularized newly formed bone at different stages of maturation with integrated bone graft particles, while the soft tissue appeared to be physiologically structured. Conclusion: VPST may enhance the hydrophilicity of biomaterials, supporting favorable healing outcomes in SP and GBR. Further randomized controlled trials with appropriate sample size calculations are needed to confirm these preliminary results. Full article
(This article belongs to the Special Issue Current Advances in Dental Materials)
Show Figures

Figure 1

46 pages, 2891 KiB  
Article
Integrated Quality and Environmental Management in Healthcare: Impacts, Implementation, and Future Directions Toward Sustainability
by Dana-Gabriela Simion Ludușanu, Daniela-Ionela Fertu, Grigore Tinică and Maria Gavrilescu
Sustainability 2025, 17(11), 5156; https://doi.org/10.3390/su17115156 - 4 Jun 2025
Viewed by 1128
Abstract
Healthcare institutions are under increasing pressure to deliver high-quality, patient-centered care while reducing their environmental footprint. Integrating quality and environmental management systems (ISO 9001 and ISO 14001) into a unified integrated management system (IMS) offers a potential pathway to meet these dual imperatives. [...] Read more.
Healthcare institutions are under increasing pressure to deliver high-quality, patient-centered care while reducing their environmental footprint. Integrating quality and environmental management systems (ISO 9001 and ISO 14001) into a unified integrated management system (IMS) offers a potential pathway to meet these dual imperatives. This study investigates the effects of IMS implementation in three European hospitals through a comparative qualitative analysis of institutional reports, audit documentation, and performance indicators. The methodology combines a literature-informed conceptual framework with a multi-case analysis guided by four domains: environmental impact, care quality, process efficiency, and stakeholder engagement. The data were collected from institutional documentation over a six-year period (three years before and after IMS implementation), covering key indicators such as energy and water consumption, medical waste recycling, audit compliance, and patient satisfaction. The findings show that IMS adoption was associated with a 20–28% improvement in resource efficiency, increased recycling rates, and consistent gains in compliance and satisfaction metrics. These results were supported by strategic leadership, cross-functional training, and digital monitoring tools. The study concludes that IMS enhances institutional performance and sustainability while aligning healthcare operations with broader governance and policy goals. Further research is recommended to explore the long-term impacts and generalize the findings across healthcare systems. Full article
(This article belongs to the Section Health, Well-Being and Sustainability)
Show Figures

Figure 1

26 pages, 3551 KiB  
Review
The Environmental and Business Benefits of Implementing the ISO 50001 Energy Management System in Government Buildings: A Case Study of the Saudi Standards, Metrology and Quality Organization (SASO)
by Saleh Alotaibi, Hani Alogaili, Khaled Alawwad and Sulaiman Aljarallah
Sustainability 2025, 17(11), 5131; https://doi.org/10.3390/su17115131 - 3 Jun 2025
Viewed by 1350
Abstract
This study examines the implementation of an ISO 50001-compliant energy management system (EnMS) at the Saudi Standards, Metrology, and Quality Organization (SASO), a governmental organization in the Kingdom of Saudi Arabia, and the resulting environmental and business benefits. The methodologies used across three [...] Read more.
This study examines the implementation of an ISO 50001-compliant energy management system (EnMS) at the Saudi Standards, Metrology, and Quality Organization (SASO), a governmental organization in the Kingdom of Saudi Arabia, and the resulting environmental and business benefits. The methodologies used across three SASO sites (Riyadh, Jeddah, and Dammam), including energy audits, implementation procedures, and performance dashboards, are examined, supported by comprehensive data analysis and statistical regression, and the benefits in terms of energy reductions and cost savings are quantified. The obstacles to and drivers of implementation are also considered. The results show that, through strict adherence to ISO 50001 guidelines and the deployment of a range of energy efficiency measures, SASO has achieved a 39% reduction in electricity consumption since 2019, resulting in cost savings of approximately USD 3.6 million. The organization has also achieved a 38% reduction in CO2 emissions over the same period. This study demonstrates the pivotal role ISO 50001 plays in enhancing organizational sustainability and provides actionable insights into how it can be operationalized within the government sector to achieve significant environmental and economic benefits. Full article
Show Figures

Figure 1

Back to TopTop