Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,470)

Search Parameters:
Keywords = endothelial cell analysis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 1985 KiB  
Article
Photobiomodulation of 450 nm Blue Light on Human Keratinocytes, Fibroblasts, and Endothelial Cells: An In Vitro and Transcriptomic Study on Cells Involved in Wound Healing and Angiogenesis
by Jingbo Shao, Sophie Clément, Christoph Reissfelder, Patrick Téoule, Norbert Gretz, Feng Guo, Sabina Hajizada, Stefanie Uhlig, Katharina Mößinger, Carolina de la Torre, Carsten Sticht, Vugar Yagublu and Michael Keese
Biomedicines 2025, 13(8), 1876; https://doi.org/10.3390/biomedicines13081876 (registering DOI) - 1 Aug 2025
Abstract
Background: Blue light (BL) irradiation has been shown to induce photobiomodulation (PBM) in cells. Here, we investigate its influence on cell types involved in wound healing. Methods: Cellular responses of immortalized human keratinocytes (HaCaTs), normal human dermal fibroblasts (NHDFs), and human umbilical [...] Read more.
Background: Blue light (BL) irradiation has been shown to induce photobiomodulation (PBM) in cells. Here, we investigate its influence on cell types involved in wound healing. Methods: Cellular responses of immortalized human keratinocytes (HaCaTs), normal human dermal fibroblasts (NHDFs), and human umbilical vein endothelial cells (HUVECs) after light treatment at 450 nm were analyzed by kinetic assays on cell viability, proliferation, ATP quantification, migration assay, and apoptosis assay. Gene expression was evaluated by transcriptome analysis. Results: A biphasic effect was observed on HaCaTs, NHDFs, and HUVECs. Low-fluence (4.5 J/cm2) irradiation stimulated cell viability, proliferation, and migration. mRNA sequencing indicated involvement of transforming growth factor beta (TGF-β), ErbB, and vascular endothelial growth factor (VEGF) pathways. High-fluence (18 J/cm2) irradiation inhibited these cellular activities by downregulating DNA replication, the cell cycle, and mismatch repair pathways. Conclusions: HaCaTs, NHDFs, and HUVECs exhibited a dose-dependent pattern after BL irradiation. These findings broaden the view of PBM following BL irradiation of these three cell types, thereby promoting their potential application in wound healing and angiogenesis. Our data on low-fluence BL at 450 nm indicates clinical potential for a novel modality in wound therapy. Full article
(This article belongs to the Section Cell Biology and Pathology)
13 pages, 1192 KiB  
Article
Serum Endocan Levels Correlate with Metabolic Syndrome Severity and Endothelial Dysfunction: A Cross-Sectional Study Using the MetS-Z Score
by Mehmet Vatansever, Selçuk Yaman, Ahmet Cimbek, Yılmaz Sezgin and Serap Ozer Yaman
Metabolites 2025, 15(8), 521; https://doi.org/10.3390/metabo15080521 (registering DOI) - 1 Aug 2025
Abstract
Background: Metabolic syndrome (MetS) is a complex clinical condition characterized by the coexistence of interrelated metabolic abnormalities that significantly increase the risk of cardiovascular diseases and type 2 diabetes mellitus. Endocan—an endothelial cell-specific molecule—is considered a biomarker of endothelial dysfunction and inflammation. This [...] Read more.
Background: Metabolic syndrome (MetS) is a complex clinical condition characterized by the coexistence of interrelated metabolic abnormalities that significantly increase the risk of cardiovascular diseases and type 2 diabetes mellitus. Endocan—an endothelial cell-specific molecule—is considered a biomarker of endothelial dysfunction and inflammation. This study aimed to evaluate the relationship between serum endocan levels and the severity of MetS, assessed using the MetS-Z score. Methods: This study included 120 patients with MetS and 50 healthy controls. MetS was diagnosed according to the NCEP-ATP III criteria. MetS-Z scores were calculated using the MetS Severity Calculator. Serum levels of endocan, sICAM-1, and sVCAM-1 were measured using the ELISA method. Results: Serum levels of endocan, sICAM-1, and sVCAM-1 were significantly higher in the MetS group compared to the control group (all p < 0.001). When the MetS group was divided into tertiles based on MetS-Z scores, stepwise and statistically significant increases were observed in the levels of endocan and other endothelial markers from the lowest to highest tertile (p < 0.0001). Correlation analysis revealed a strong positive association between the MetS-Z score and serum endocan levels (r = 0.584, p < 0.0001). ROC curve analysis showed that endocan has high diagnostic accuracy for identifying MetS (AUC = 0.967, p = 0.0001), with a cutoff value of >88.0 ng/L. Conclusions: Circulating levels of endocan were significantly increased in MetS and were associated with the severity of MetS, suggesting that endocan may play a role in the cellular response to endothelial dysfunction-related injury in patients with MetS. Full article
(This article belongs to the Special Issue Lipid Metabolism Disorders in Obesity)
Show Figures

Figure 1

19 pages, 4058 KiB  
Article
Antitumor Activity of Ruditapes philippinarum Polysaccharides Through Mitochondrial Apoptosis in Cellular and Zebrafish Models
by Mengyue Liu, Weixia Wang, Haoran Wang, Shuang Zhao, Dongli Yin, Haijun Zhang, Chunze Zou, Shengcan Zou, Jia Yu and Yuxi Wei
Mar. Drugs 2025, 23(8), 304; https://doi.org/10.3390/md23080304 - 29 Jul 2025
Viewed by 123
Abstract
Colorectal cancer (CRC) remains a predominant cause of global cancer-related mortality, highlighting the pressing demand for innovative therapeutic strategies. Natural polysaccharides have emerged as promising candidates in cancer research due to their multifaceted anticancer mechanisms and tumor-suppressive potential across diverse malignancies. In this [...] Read more.
Colorectal cancer (CRC) remains a predominant cause of global cancer-related mortality, highlighting the pressing demand for innovative therapeutic strategies. Natural polysaccharides have emerged as promising candidates in cancer research due to their multifaceted anticancer mechanisms and tumor-suppressive potential across diverse malignancies. In this study, we enzymatically extracted a polysaccharide, named ERPP, from Ruditapes philippinarum and comprehensively evaluated its anti-colorectal cancer activity. We conducted in vitro assays, including CCK-8 proliferation, clonogenic survival, scratch wound healing, and Annexin V-FITC/PI apoptosis staining, and the results demonstrated that ERPP significantly inhibited HT-29 cell proliferation, suppressed colony formation, impaired migratory capacity, and induced apoptosis. JC-1 fluorescence assays provided further evidence of mitochondrial membrane potential (MMP) depolarization, as manifested by a substantial reduction in the red/green fluorescence ratio (from 10.87 to 0.35). These antitumor effects were further validated in vivo using a zebrafish HT-29 xenograft model. Furthermore, ERPP treatment significantly attenuated tumor angiogenesis and downregulated the expression of the vascular endothelial growth factor A (Vegfaa) gene in the zebrafish xenograft model. Mechanistic investigations revealed that ERPP primarily activated the mitochondrial apoptosis pathway. RT-qPCR analysis showed an upregulation of the pro-apoptotic gene Bax and a downregulation of the anti-apoptotic gene Bcl-2, leading to cytochrome c (CYCS) release and caspase-3 (CASP-3) activation. Additionally, ERPP exhibited potent antioxidant capacity, achieving an 80.2% hydroxyl radical scavenging rate at 4 mg/mL. ERPP also decreased reactive oxygen species (ROS) levels within the tumor cells, thereby augmenting anticancer efficacy through its antioxidant activity. Collectively, these findings provide mechanistic insights into the properties of ERPP, underscoring its potential as a functional food component or adjuvant therapy for colorectal cancer management. Full article
Show Figures

Figure 1

7 pages, 202 KiB  
Article
Morphological Features in Eyes with Prominent Corneal Endothelial Cell Loss Associated with Primary Angle-Closure Disease
by Yumi Kusumi, Masashi Yamamoto, Masaki Fukui and Masakazu Yamada
J. Clin. Med. 2025, 14(15), 5364; https://doi.org/10.3390/jcm14155364 - 29 Jul 2025
Viewed by 198
Abstract
Background: Patients with primary angle-closure disease (PACD), those with no history of acute angle-closure glaucoma or laser iridotomy, rarely present with prominent corneal endothelial cell density (CECD) loss. To identify factors associated with decreased CECD in PACD, anterior segment parameters were compared in [...] Read more.
Background: Patients with primary angle-closure disease (PACD), those with no history of acute angle-closure glaucoma or laser iridotomy, rarely present with prominent corneal endothelial cell density (CECD) loss. To identify factors associated with decreased CECD in PACD, anterior segment parameters were compared in patients with PACD and normal CECD and patients with PACD and decreased CECD, using anterior segment optical coherence tomography (AS-OCT). Patients and Methods: Ten patients with PACD and CECD of less than 1500/mm2 without a history of cataract surgery, acute angle-closure glaucoma, or prior laser glaucoma procedures were identified at the Kyorin Eye Center from January 2018 to July 2023. Patients with an obvious corneal guttata or apparent corneal edema were also excluded. Seventeen patients with PACD and normal CECD (normal CECD group) were used as the control. Simultaneous biometry of all anterior segment structures, including the cornea, anterior chamber, and iris, were assessed using a swept-source AS-OCT system. Results: Corneal curvature radius was significantly larger in the decreased CECD group compared with the corneal refractive power in the normal CECD group (p = 0.022, Mann–Whitney test). However, no significant differences were detected in other anterior segment morphology parameters. Multiple regression analysis with CECD as the dependent variable revealed that a large corneal curvature radius was a significant explanatory variable associated with corneal endothelial loss. Conclusions: Flattened corneal curvature may be a risk factor for corneal endothelial loss in patients with PACD. Full article
(This article belongs to the Special Issue Advances in Anterior Segment Surgery: Second Edition)
18 pages, 4262 KiB  
Article
Platelet-Rich Fibrin Synthetic Bone Graft Enhances Bone Regeneration and Mechanical Strength in Rabbit Femoral Defects: Micro-CT and Biomechanical Study
by Yu-Kuan Lin, Hsuan-Wen Wang, Po-Kuei Wu and Chun-Li Lin
J. Funct. Biomater. 2025, 16(8), 273; https://doi.org/10.3390/jfb16080273 - 28 Jul 2025
Viewed by 275
Abstract
This study evaluated the bone regeneration effect and mechanical properties of “Sticky bone”, a mixture of platelet-rich fibrin (PRF) and synthetic bone grafts (SBGs), in the repair of large femoral bone defects in rabbits. Eighteen New Zealand white rabbits were included and randomly [...] Read more.
This study evaluated the bone regeneration effect and mechanical properties of “Sticky bone”, a mixture of platelet-rich fibrin (PRF) and synthetic bone grafts (SBGs), in the repair of large femoral bone defects in rabbits. Eighteen New Zealand white rabbits were included and randomly divided into a Sticky bone group and an SBG alone group. Bone graft samples were collected and analyzed at 4, 8, and 12 weeks after surgery. Micro- computed tomography (CT) analysis showed that the amount of the Sticky bone group in the grayscale ranges of 255–140 (highly mineralized tissue or unabsorbed bone powder) and 140–90 (representing new cancellous bone) was higher than that of the SBG group at each time point and decreased with the number of weeks. The compression strength test showed that the average compression strength of the Sticky bone group reached 5.17 MPa at the 12th week, which was 1.62 times that of the intact bone (3.19 MPa) and was significantly better than that of the SBG group (about 4.12 MPa). This study also confirmed for the first time that the use of a new polyethylene terephthalate (PET) blood collection tube to prepare PRF can stably release key growth factors such as platelet-derived growth factor-BB (PDGF-BB) and vascular endothelial growth factor (VEGF), which are conducive to early bone vascularization and cell proliferation. In summary, Sticky bone has the potential to promote bone formation, enhance tissue integration and mechanical stability, and can be used as an effective alternative material for repairing large-scale bone defects in clinical practice in the future. Full article
(This article belongs to the Special Issue State of the Art: Biomaterials in Bone Implant and Regeneration)
Show Figures

Figure 1

19 pages, 4707 KiB  
Article
Secondary Metabolites from Rehmannia glutinosa Protect Mitochondrial Function in LPS-Injured Endothelial Cells
by Liwen Zhong, Mengkai Lu, Huiqi Fang, Chao Li, Hua Qu and Gang Ding
Pharmaceuticals 2025, 18(8), 1125; https://doi.org/10.3390/ph18081125 - 27 Jul 2025
Viewed by 200
Abstract
Background: Rehmannia glutinosa, a traditional Chinese herb, is commonly used to treat vascular-related disorders. Sepsis-associated vascular endothelial dysfunction is closely associated with mitochondrial damage. This study investigated the protective effects of secondary metabolites from R. glutinosa against LPS-induced mitochondrial dysfunction in [...] Read more.
Background: Rehmannia glutinosa, a traditional Chinese herb, is commonly used to treat vascular-related disorders. Sepsis-associated vascular endothelial dysfunction is closely associated with mitochondrial damage. This study investigated the protective effects of secondary metabolites from R. glutinosa against LPS-induced mitochondrial dysfunction in endothelial cells, providing potential therapeutic insights into sepsis-related vascular complications. Methods: Phytochemical profiling of fresh R. glutinosa roots was conducted, and the structures of new secondary metabolites (1 and 2) were elucidated through comprehensive spectroscopic analysis and ECD calculations. UPLC-Q-TOF-MS/MS characterized phenylethanoid glycosides. Mitochondrial function was assessed by measuring the membrane potential, ROS levels, and TOM20/DRP1 expression in LPS-injured HUVECs. Results: Two novel eremophilane-type sesquiterpenes, remophilanetriols J (1) and K (2), along with five known phenylethanoid glycosides (37), were isolated from the fresh roots of R. glutinosa. UPLC-Q-TOF-MS/MS analysis revealed unique fragmentation pathways for phenylethanoid glycosides (37). In LPS-injured HUVECs, all compounds collectively restored the mitochondrial membrane potential, attenuated ROS accumulation, and modulated TOM20/DRP1 expression. In particular, remophilanetriol K (2) exhibited potent protective effects at a low concentration (1.5625 μM). Conclusions: This study identifies R. glutinosa metabolites as potential therapeutics for sepsis-associated vascular dysfunction by preserving mitochondrial homeostasis. This study provides a mechanistic basis for the traditional use of R. glutinosa and offers valuable insights into the development of novel therapeutics targeting mitochondrial dysfunction in sepsis. Full article
Show Figures

Graphical abstract

16 pages, 2545 KiB  
Article
Combined Pharmacological Conditioning of Endothelial Cells for Improved Vascular Graft Endothelialization
by Zhiyao Lu, Xuqian Zhou, Xiaowen Liu, Chunyan Liu, Junfeng Zhang and Lei Dong
Int. J. Mol. Sci. 2025, 26(15), 7183; https://doi.org/10.3390/ijms26157183 - 25 Jul 2025
Viewed by 137
Abstract
The development of functional endothelial monolayers on synthetic vascular grafts remains challenging, particularly for small-diameter vessels (<6 mm) prone to thrombosis. Here, we present a pharmacological strategy combining 8-(4-chlorophenylthio) adenosine 3′,5′-cyclic monophosphate sodium salt (pCPT-cAMP, a tight junction promoter) with nitric oxide/cGMP pathway [...] Read more.
The development of functional endothelial monolayers on synthetic vascular grafts remains challenging, particularly for small-diameter vessels (<6 mm) prone to thrombosis. Here, we present a pharmacological strategy combining 8-(4-chlorophenylthio) adenosine 3′,5′-cyclic monophosphate sodium salt (pCPT-cAMP, a tight junction promoter) with nitric oxide/cGMP pathway agonists 3-morpholinosydnonimine (SIN-1), captopril, and sildenafil) to enhance endothelialization. In human umbilical vein endothelial cells (HUVECs), this four-agent cocktail induced a flat, extended phenotype with a 3-fold increased cell area and 57.5% fewer cells required for surface coverage compared to controls. Immunofluorescence analysis revealed enhanced ZO-1 expression and continuous tight junction formation, while sustained nitric oxide (NO) production (3.9-fold increase) and restored prostacyclin (PGI2) secretion demonstrated preserved endothelial functionality. Anticoagulation assays confirmed a significant reduction in thrombus formation (p < 0.01) via dual inhibition of platelet activation and thrombin binding. These findings establish a synergistic drug combination that promotes rapid endothelialization while maintaining antithrombogenic activity, offering a promising solution for small-diameter vascular grafts. Further studies should validate long-term stability and translational potential in preclinical models. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

19 pages, 967 KiB  
Review
Hematologic and Immunologic Overlap Between COVID-19 and Idiopathic Pulmonary Fibrosis
by Gabriela Mara, Gheorghe Nini, Stefan Marian Frenț and Coralia Cotoraci
J. Clin. Med. 2025, 14(15), 5229; https://doi.org/10.3390/jcm14155229 - 24 Jul 2025
Viewed by 334
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive fibrosing lung disease characterized by chronic inflammation, vascular remodeling, and immune dysregulation. COVID-19, caused by SARS-CoV-2, shares several systemic immunohematologic disturbances with IPF, including cytokine storms, endothelial injury, and prothrombotic states. Unlike general comparisons of viral [...] Read more.
Idiopathic pulmonary fibrosis (IPF) is a progressive fibrosing lung disease characterized by chronic inflammation, vascular remodeling, and immune dysregulation. COVID-19, caused by SARS-CoV-2, shares several systemic immunohematologic disturbances with IPF, including cytokine storms, endothelial injury, and prothrombotic states. Unlike general comparisons of viral infections and chronic lung disease, this review offers a focused analysis of the shared hematologic and immunologic mechanisms between COVID-19 and IPF. Our aim is to better understand how SARS-CoV-2 infection may worsen disease progression in IPF and identify converging pathophysiological pathways that may inform clinical management. We conducted a narrative synthesis of the peer-reviewed literature from PubMed, Scopus, and Web of Science, focusing on clinical, experimental, and pathological studies addressing immune and coagulation abnormalities in both COVID-19 and IPF. Both diseases exhibit significant overlap in inflammatory and fibrotic signaling, particularly via the TGF-β, IL-6, and TNF-α pathways. COVID-19 amplifies coagulation disturbances and endothelial dysfunction already present in IPF, promoting microvascular thrombosis and acute exacerbations. Myeloid cell overactivation, impaired lymphocyte responses, and fibroblast proliferation are central to this shared pathophysiology. These synergistic mechanisms may accelerate fibrosis and increase mortality risk in IPF patients infected with SARS-CoV-2. This review proposes an integrative framework for understanding the hematologic and immunologic convergence of COVID-19 and IPF. Such insights are essential for refining therapeutic targets, improving prognostic stratification, and guiding early interventions in this high-risk population. Full article
(This article belongs to the Special Issue Chronic Lung Conditions: Integrative Approaches to Long-Term Care)
Show Figures

Figure 1

15 pages, 1896 KiB  
Case Report
Pathogenesis of Cardiac Valvular Hemangiomas: A Case Report and Literature Review
by Kimberly-Allisya Neeter, Catalin-Bogdan Satala, Daniela Mihalache, Alexandru-Stefan Neferu, Gabriela Patrichi, Carmen Elena Opris and Simona Gurzu
Int. J. Mol. Sci. 2025, 26(15), 7114; https://doi.org/10.3390/ijms26157114 - 23 Jul 2025
Viewed by 286
Abstract
Valvular hemangiomas are uncommon vascular anomalies that appear on the surface of heart valves. They can cause an array of non-specific symptoms and are consequently rarely diagnosed, with only 31 such cases (including the present one) reported to date in the literature; the [...] Read more.
Valvular hemangiomas are uncommon vascular anomalies that appear on the surface of heart valves. They can cause an array of non-specific symptoms and are consequently rarely diagnosed, with only 31 such cases (including the present one) reported to date in the literature; the present case is the first report of an arteriovenous hemangioma with a tricuspid localization. During the preoperative echocardiographic examination for a ventricular septal defect, a mass was incidentally discovered on the tricuspid valve of a 9-month-old infant. The involved leaflet was surgically removed and sent to the pathology department for analysis and subsequently diagnosed as an arteriovenous hemangioma. The patient recovered well, with no local tumor recurrence or other complications. The microscopic examination showed multiple blood vessels which stained positive for the endothelial markers CD31 and CD34 and which did not express D2-40, normally found in lymphatic endothelia. Surprisingly, endothelial cells lining the vessels also showed positivity for SMA, a mesenchymal cell marker, indicating a possible involvement of endothelial-to-mesenchymal transition and its opposite process, mesenchymal-to-endothelial transition, in the pathogenesis of these vascular anomalies. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

25 pages, 8728 KiB  
Article
Trans-Sodium Crocetinate Ameliorates High-Altitude Acute Lung Injury via Modulating EGFR/PI3K/AKT/NF-κB Signaling Axis
by Keke Liang, Yanlin Ta, Liang Xu, Shuhe Ma, Renjie Wang, Chenrong Xiao, Yue Gao and Maoxing Li
Nutrients 2025, 17(15), 2406; https://doi.org/10.3390/nu17152406 - 23 Jul 2025
Viewed by 311
Abstract
Objectives: Saffron, a traditional Chinese medicine, is renowned for its pharmacological effects in promoting blood circulation, resolving blood stasis, regulating menstruation, detoxification, and alleviating mental disturbances. Trans-crocetin, its principal bioactive component, exhibits significant anti-hypoxic activity. The clinical development and therapeutic efficacy of [...] Read more.
Objectives: Saffron, a traditional Chinese medicine, is renowned for its pharmacological effects in promoting blood circulation, resolving blood stasis, regulating menstruation, detoxification, and alleviating mental disturbances. Trans-crocetin, its principal bioactive component, exhibits significant anti-hypoxic activity. The clinical development and therapeutic efficacy of trans-crocetin are limited by its instability, poor solubility, and low bioavailability. Conversion of trans-crocetin into trans-sodium crocetinate (TSC) enhances its solubility, stability, and bioavailability, thereby amplifying its anti-hypoxic potential. Methods: This study integrates network pharmacology with in vivo and in vitro validation to elucidate the molecular targets and mechanisms underlying TSC’s therapeutic effects against high-altitude acute lung injury (HALI), aiming to identify novel treatment strategies. Results: TSC effectively reversed hypoxia-induced biochemical abnormalities, ameliorated lung histopathological damage, and suppressed systemic inflammation and oxidative stress in HALI rats. In vitro, TSC mitigated CoCl2-induced hypoxia injury in human pulmonary microvascular endothelial cells (HPMECs) by reducing inflammatory cytokines, oxidative stress, and ROS accumulation while restoring mitochondrial membrane potential. Network pharmacology and pathway analysis revealed that TSC primarily targets the EGFR/PI3K/AKT/NF-κB signaling axis. Molecular docking and dynamics simulations demonstrated stable binding interactions between TSC and key components of this pathway. ELISA and RT-qPCR confirmed that TSC significantly downregulated the expression of EGFR, PI3K, AKT, NF-κB, and their associated mRNAs. Conclusions: TSC alleviates high-altitude hypoxia-induced lung injury by inhibiting the EGFR/PI3K/AKT/NF-κB signaling pathway, thereby attenuating inflammatory responses, oxidative stress, and restoring mitochondrial function. These findings highlight TSC as a promising therapeutic agent for HALI. Full article
(This article belongs to the Special Issue Natural Active Compounds in Inflammation and Metabolic Diseases)
Show Figures

Figure 1

16 pages, 1480 KiB  
Article
Enhanced Drug Screening Efficacy in Zebrafish Using a Highly Oxygen-Permeable Culture Plate
by Liqing Zang, Shota Kondo, Yukiya Komada and Norihiro Nishimura
Appl. Sci. 2025, 15(15), 8156; https://doi.org/10.3390/app15158156 - 22 Jul 2025
Viewed by 260
Abstract
Zebrafish are model organisms for drug screening owing to their transparent bodies, rapid embryonic development, and genetic similarities with humans. However, using standard polystyrene culture plates can limit the oxygen supply, potentially affecting embryo survival and the reliability of assays conducted in zebrafish. [...] Read more.
Zebrafish are model organisms for drug screening owing to their transparent bodies, rapid embryonic development, and genetic similarities with humans. However, using standard polystyrene culture plates can limit the oxygen supply, potentially affecting embryo survival and the reliability of assays conducted in zebrafish. In this study, we evaluated the application of a novel, highly oxygen-permeable culture plate (InnoCellTM) in zebrafish development and drug screening assays. Under both normal and oxygen-restricted conditions, zebrafish embryos cultured on InnoCellTM plates exhibited significantly improved developmental parameters, including heart rate and body length, compared with those cultured on conventional polystyrene plates. The InnoCellTM plate enabled a significant reduction in medium volume without compromising zebrafish embryo viability, thereby demonstrating its advantages, particularly in high-throughput 384-well formats. Drug screening tests using antiangiogenic receptor tyrosine kinase inhibitors (TKIs) revealed enhanced sensitivity and more pronounced biological effects in InnoCellTM plates, as evidenced by the quantification of intersegmental blood vessels and gene expression analysis of the vascular endothelial growth factor receptor (vegfr, also known as kdrl). These results indicate that the InnoCellTM highly oxygen-permeable plate markedly improves zebrafish-based drug screening efficiency and assay reliability, highlighting its potential for widespread application in biomedical research. Full article
Show Figures

Figure 1

16 pages, 14493 KiB  
Article
Identification of Drug Repurposing Candidates for Coxsackievirus B3 Infection in iPSC-Derived Brain-like Endothelial Cells
by Jacob F. Wood, John M. Vergis, Ali S. Imami, William G. Ryan, Jon J. Sin, Brandon J. Kim, Isaac T. Schiefer and Robert E. McCullumsmith
Int. J. Mol. Sci. 2025, 26(15), 7041; https://doi.org/10.3390/ijms26157041 - 22 Jul 2025
Viewed by 173
Abstract
The enterovirus Coxsackievirus B3 causes a range of serious health problems, including aseptic meningitis, myocarditis, and pancreatitis. Currently, Coxsackievirus B3 has no targeted antiviral treatments or vaccines, leaving supportive care as the primary management option. Understanding how Coxsackievirus B3 interacts with and alters [...] Read more.
The enterovirus Coxsackievirus B3 causes a range of serious health problems, including aseptic meningitis, myocarditis, and pancreatitis. Currently, Coxsackievirus B3 has no targeted antiviral treatments or vaccines, leaving supportive care as the primary management option. Understanding how Coxsackievirus B3 interacts with and alters the blood–brain barrier may help identify new therapies to combat this often-devastating infection. We reanalyzed a previously published RNA sequencing dataset for Coxsackievirus B3-infected human-induced pluripotent stem-cell-derived brain endothelial cells (iBECs) to examine how Coxsackievirus B3 altered mRNA expression. By integrating GSEA, EnrichR, and iLINCs-based perturbagen analysis, we present a novel, systems-level approach to uncover potential drug repurposing candidates for CVB3 infection. We found dynamic changes in host transcriptomic response to Coxsackievirus B3 infection at 2- and 5-day infection time points. Downregulated pathways included ribosomal biogenesis and protein synthesis, while upregulated pathways included a defense response to viruses, and interferon production. Using iLINCs transcriptomic analysis, MEK, PDGFR, and VEGF inhibitors were identified as possible novel antiviral therapeutics. Our findings further elucidate Coxsackievirus B3-associated pathways in (iBECs) and highlight potential drug repurposing candidates, including pelitinib and neratinib, which may disrupt Coxsackievirus B3 pathology at the blood–brain barrier (BBB). Full article
Show Figures

Figure 1

16 pages, 285 KiB  
Article
Correlation and Risk Assessment of Inflammation-Based Parameters on Cardiovascular Parameters and Clinical Events in Giant Cell Arteritis: A Retrospective Study
by Leyla Schweiger, Andreas Meinitzer, Dieter Szolar, Marianne Brodmann, Christian Dejaco, Franz Hafner and Philipp Jud
Int. J. Mol. Sci. 2025, 26(14), 7016; https://doi.org/10.3390/ijms26147016 - 21 Jul 2025
Viewed by 198
Abstract
This study investigated associations of inflammation-based biomarkers with endothelial dysfunction and lipids and their predictive value for clinical outcome parameters in patients with giant cell arteritis (GCA). A total of 138 patients with inactive GCA were retrospectively analyzed to investigate potential differences in [...] Read more.
This study investigated associations of inflammation-based biomarkers with endothelial dysfunction and lipids and their predictive value for clinical outcome parameters in patients with giant cell arteritis (GCA). A total of 138 patients with inactive GCA were retrospectively analyzed to investigate potential differences in inflammatory biomarkers regarding clinical GCA subtypes and potential correlations between inflammatory parameters with markers of endothelial dysfunction and lipid parameters. Additionally, the predictive role of inflammatory biomarkers for clinical outcomes, including disease relapse, all-cause mortality, cardiovascular events, and glucocorticoid adverse effects, was analyzed. GCA individuals without concomitant symptoms of polymyalgia rheumatica and those who received initial glucocorticoid pulse therapy exhibited significantly higher levels of white blood cells and neutrophils (all with p < 0.05). No other significant differences were observed between inflammatory biomarkers and clinical GCA subtypes. Additionally, significant correlations were identified between selected inflammation-based ratios and specific markers of endothelial dysfunction and lipid parameters (all with p < 0.05). Elevated white blood cells and neutrophils were significant and independent predictors of disease relapse in GCA (all with p < 0.05) in multiple logistic regression analysis. No significant associations were found between any other inflammatory biomarker and the occurrence of cardiovascular events, mortality, or glucocorticoid-related adverse effects. In patients with inactive GCA, selected inflammatory parameters correlated with endothelial dysfunction and dyslipidemia and may be predictive of disease relapse. Full article
(This article belongs to the Special Issue Forward in Vasculitis: Genetics and Beyond)
23 pages, 11818 KiB  
Article
Cryopreservation and Validation of Microfragmented Adipose Tissue for Autologous Use in Knee Osteoarthritis Treatment
by Marija Zekušić, Petar Brlek, Lucija Zenić, Vilim Molnar, Maja Ledinski, Marina Bujić Mihica, Adela Štimac, Beata Halassy, Snježana Ramić, Dominik Puljić, Tiha Vučemilo, Carlo Tremolada, Srećko Sabalić, David C. Karli, Dimitrios Tsoukas and Dragan Primorac
Int. J. Mol. Sci. 2025, 26(14), 6969; https://doi.org/10.3390/ijms26146969 - 20 Jul 2025
Viewed by 387
Abstract
Micro-fragmented adipose tissue (MFAT) is a promising autologous therapy for knee osteoarthritis. To avoid repeated liposuction procedures for its clinical application, MFAT obtained from patients with knee osteoarthritis was stored at −80 °C in a tissue bank. This study describes the preparation, cryopreservation, [...] Read more.
Micro-fragmented adipose tissue (MFAT) is a promising autologous therapy for knee osteoarthritis. To avoid repeated liposuction procedures for its clinical application, MFAT obtained from patients with knee osteoarthritis was stored at −80 °C in a tissue bank. This study describes the preparation, cryopreservation, thawing, and washing, as well as comprehensive analysis of cell populations in fresh and MFAT thawed after two years. Immunophenotyping of both fresh and thawed MFAT showed a significant presence of endothelial progenitors and pericytes in the stromal vascular fraction. Viability before (59.75%) and after freezing (55.73%) showed no significant difference. However, the average cell count per gram of MFAT was significantly reduced in thawed samples (3.00 × 105) compared to fresh ones (5.64 × 105), likely due to processing steps. Thawed MFAT samples showed increased CD73 expression on the CD31highCD34high subset of EP and SA-ASC, as well as increased expression of CD105 on EP, the CD31lowCD34low subset of EP, pericytes, and SA-ASC. Microbiological testing confirmed 100% sterility, and double washing efficiently removed DMSO, confirming sample safety. Histological analysis revealed healthy, uniformly shaped adipocytes with intact membranes. This approach allows accurate estimation of cell yield for intra-articular injection, ensuring delivery of the target cell number into the knee. Quality control analysis confirms that cryopreserved MFAT retains high cellular and structural integrity, supporting its safety and suitability for clinical application. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

16 pages, 2433 KiB  
Article
A Single-Cell Assessment of Intramuscular and Subcutaneous Adipose Tissue in Beef Cattle
by Mollie M. Green, Hunter R. Ford, Alexandra P. Tegeler, Oscar J. Benitez, Bradley J. Johnson and Clarissa Strieder-Barboza
Agriculture 2025, 15(14), 1545; https://doi.org/10.3390/agriculture15141545 - 18 Jul 2025
Viewed by 1248
Abstract
Deposition of intramuscular fat (IM), also known as marbling, is the deciding factor of beef quality grade in the U.S. Defining molecular mechanisms underlying the differential deposition of adipose tissue in distinct anatomical areas in beef cattle is key to the development of [...] Read more.
Deposition of intramuscular fat (IM), also known as marbling, is the deciding factor of beef quality grade in the U.S. Defining molecular mechanisms underlying the differential deposition of adipose tissue in distinct anatomical areas in beef cattle is key to the development of strategies for marbling enhancement while limiting the accumulation of excessive subcutaneous adipose tissue (SAT). The objective of this exploratory study was to define the IM and SAT transcriptional heterogeneity at the whole tissue and single-nuclei levels in beef steers. Longissimus dorsi muscle samples (9–11th rib) were collected from two finished beef steers at harvest to dissect matched IM and adjacent SAT (backfat). Total RNA from IM and SAT was isolated and sequenced in an Illumina NovaSeq 6000. Nuclei from the same samples were isolated by dounce homogenization, libraries generated with 10× Genomics, and sequenced in an Illumina NovaSeq 6000, followed by analysis via Cell Ranger pipeline and Seurat in RStudio (v4.3.2) By the expression of signature marker genes, single-nuclei RNA sequencing (snRNAseq) analysis identified mature adipocytes (AD; ADIPOQ, LEP), adipose stromal and progenitor cells (ASPC; PDGFRA), endothelial cells (EC; VWF, PECAM1), smooth muscle cells (SMC; NOTCH3, MYL9) and immune cells (IMC; CD163, MRC1). We detected six cell clusters in SAT and nine in IM. Across IM and SAT, AD was the most abundant cell type, followed by ASPC, SMC, and IMC. In SAT, AD made up 50% of the cellular population, followed by ASPC (31%), EC (14%), IMC (1%), and SMC (4%). In IM depot, AD made up 23% of the cellular population, followed by ASPC at 19% of the population, EC at 28%, IMC at 7% and SMC at 12%. The abundance of ASPC and AD was lower in IM vs. SAT, while IMC was increased, suggesting a potential involvement of immune cells on IM deposition. Accordingly, both bulk RNAseq and snRNAseq analyses identified activated pathways of inflammation and metabolic function in IM. These results demonstrate distinct transcriptional cellular heterogeneity between SAT and IM depots in beef steers, which may underly the mechanisms by which fat deposits in each depot. The identification of depot-specific cell populations in IM and SAT via snRNAseq analysis has the potential to reveal target genes for the modulation of fat deposition in beef cattle. Full article
Show Figures

Figure 1

Back to TopTop