Serum Endocan Levels Correlate with Metabolic Syndrome Severity and Endothelial Dysfunction: A Cross-Sectional Study Using the MetS-Z Score
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Assessment of MetS Severity Z-Score (MetS-Z Score)
2.3. Physical and Laboratory Assessments
2.4. Measurement of Serum Endocan and Soluble Cell Adhesion Molecule (sCAM; ICAM-1, VCAM-1) Concentrations
2.5. Statistical Analysis
3. Results
3.1. Demographic Information of the Research Cohorts
3.2. Correlations Between Ox-LDL, SCORE2 and Other Parameters
3.3. Receiver Operating Characteristic Analyses
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BMI | Body mass index |
CVD | Cardiovascular disease |
DBP | Diastolic blood pressure |
Endocan | Endothelial-specific molecule 1 |
FBG | Fasting blood glucose |
HDL-C | High-density lipoprotein cholesterol |
HOMA-IR | Homeostatic model assessment for insulin resistance |
LDL-C | Low-density lipoprotein cholesterol |
MetS | Metabolic syndrome |
MetS-Z | MetS severity Z-score |
SBP | Systolic blood pressure |
TC | Total cholesterol |
TG | Triglyceride |
WHR | Waist-to-hip ratio |
WHtR | Waist-to-height ratio |
References
- Shin, D.; Kongpakpaisarn, K.; Bohra, C. Trends in the prevalence of metabolic syndrome and its components in the United States 2007–2014. Int. J. Cardiol. 2018, 259, 216–219. [Google Scholar] [CrossRef]
- Beltrán-Sánchez, H.; Harhay, M.O.; Harhay, M.M.; McElligott, S. Prevalence and trends of metabolic syndrome in the adult US population, 1999–2010. J. Am. Coll. Cardiol. 2013, 62, 697–703. [Google Scholar] [CrossRef]
- Lee, A.M.; Gurka, M.J.; DeBoer, M.D. A metabolic syndrome severity score to estimate risk in adolescents and adults: Current evidence and future potential. Expert. Rev. Cardiovasc. Ther. 2016, 14, 411–413. [Google Scholar] [CrossRef]
- Das, D.; Shruthi, N.R.; Banerjee, A.; Jothimani, G.; Duttaroy, A.K.; Pathak, S. Endothelial dysfunction, platelet hyperactivity, hypertension, and the metabolic syndrome: Molecular insights and combating strategies. Front. Nutr. 2023, 10, 1221438. [Google Scholar] [CrossRef]
- Kaur, R.; Kaur, M.; Singh, J. Endothelial dysfunction and platelet hyperactivity in type 2 diabetes mellitus: Molecular insights and therapeutic strategies. Cardiovasc. Diabetol. 2018, 17, 121. [Google Scholar] [CrossRef] [PubMed]
- Du, Z.; Qin, Y. Dyslipidemia and Cardiovascular Disease: Current Knowledge, Existing Challenges, and New Opportunities for Management Strategies. J. Clin. Med. 2023, 12, 363. [Google Scholar] [CrossRef] [PubMed]
- Holewijn, S.; den Heijer, M.; Swinkels, D.W.; Stalenhoef, A.F.; de Graaf, J. The metabolic syndrome and its traits as risk factors for subclinical atherosclerosis. J. Clin. Endocrinol. Metab. 2009, 94, 2893–2899. [Google Scholar] [CrossRef]
- Krüger-Genge, A.; Blocki, A.; Franke, R.-P.; Jung, F. Vascular Endothelial Cell Biology: An Update. Int. J. Mol. Sci. 2019, 20, 4411. [Google Scholar] [CrossRef] [PubMed]
- Balta, S.; Mikhailidis, D.P.; Demirkol, S.; Ozturk, C.; Celik, T.; Iyisoy, A. Endocan: A novel inflammatory indicator in cardiovascular disease? Atherosclerosis 2015, 243, 339–343. [Google Scholar] [CrossRef]
- Kali, A.; Shetty, K.S. Endocan: A novel circulating proteoglycan. Indian J. Pharmacol. 2014, 46, 579–583. [Google Scholar] [CrossRef]
- Klisic, A.; Patoulias, D. The Role of Endocan in Cardiometabolic Disorders. Metabolites 2023, 13, 640. [Google Scholar] [CrossRef]
- Ozer Yaman, S.; Balaban Yucesan, F.; Orem, C.; Vanizor Kural, B.; Orem, A. Elevated Circulating Endocan Levels Are Associated with Increased Levels of Endothelial and Inflammation Factors in Postprandial Lipemia. J. Clin. Med. 2023, 12, 1267. [Google Scholar] [CrossRef]
- Sági, B.; Vas, T.; Gál, C.; Horváth-Szalai, Z.; Kőszegi, T.; Nagy, J.; Csiky, B.; Kovács, T.J. The Relationship between Vascular Biomarkers (Serum Endocan and Endothelin-1), NT-proBNP, and Renal Function in Chronic Kidney Disease, IgA Nephropathy: A Cross-Sectional Study. Int. J. Mol. Sci. 2024, 25, 10552. [Google Scholar] [CrossRef] [PubMed]
- Chee, Y.J.; Dalan, R.; Cheung, C. The Interplay Between Immunity, Inflammation and Endothelial Dysfunction. Int. J. Mol. Sci. 2025, 26, 1708. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; He, B. Endothelial dysfunction: Molecular mechanisms and clinical implications. Med. Comm. 2024, 5, e651. [Google Scholar] [CrossRef]
- Cardel, M.I.; Chi, X.; Min, Y.I.; Sims, M.; Musani, S.K.; Dulin, A.; Gravlee, C.C.; Smith, S.M.; DeBoer, M.D.; Gurka, M.J. Experiences of Discrimination Are Associated with Worse Metabolic Syndrome Severity Among African Americans in the Jackson Heart Study. Ann Behav Med. 2021, 55, 266–279. [Google Scholar] [CrossRef] [PubMed]
- Gurka, M.J.; Lilly, C.L.; Oliver, M.N.; DeBoer, M.D. An examination of sex and racial/ethnic differences in the metabolic syndrome among adults: A confirmatory factor analysis and a resulting continuous severity score. Metabolism 2014, 63, 218–225. [Google Scholar] [CrossRef]
- Gurka, M.J.; DeBoer, M.D.; Filipp, S.L.; Khan, J.Z.; Rapczak, T.J.; Braun, N.D.; Hanson, K.S.; Barnes, C.P. MetS Calc: Metabolic Syndrome Severity Calculator. Cardiovasc. Diabetol. 2019, 17. [Google Scholar] [CrossRef]
- Leitzmann, M.F.; Moore, S.C.; Koster, A.; Harris, T.B.; Park, Y.; Hollenbeck, A.; Schatzkin, A. Waist circumference as compared with body-mass index in predicting mortality from specific causes. PLoS ONE 2011, 6, e18582. [Google Scholar] [CrossRef]
- Ma, W.Y.; Yang, C.Y.; Shih, S.R.; Hsieh, H.J.; Hung, C.S.; Chiu, F.C.; Lin, M.S.; Liu, P.H.; Hua, C.H.; Hsein, Y.C.; et al. Measurement of Waist Circumference: Midabdominal or iliac crest? Diabetes Care 2013, 36, 1660–1666. [Google Scholar] [CrossRef]
- Lin, L.Y.; Chang, T.T.; Leu, H.B.; Huang, C.C.; Wu, T.C.; Chou, R.H.; Huang, P.H.; Yin, W.H.; Tseng, W.K.; Wu, Y.W.; et al. Novel prognostic impact and cell specific role of endocan in patients with coronary artery disease. Clin. Res. Cardiol. 2024, 114, 952–968. [Google Scholar] [CrossRef]
- Chen, J.; Jiang, L.; Yu, X.H.; Hu, M.; Zhang, Y.K.; Liu, X.; He, P.; Ouyang, X. Endocan: A Key Player of Cardiovascular Disease. Front. Cardiovasc. Med. 2022, 8, 798699. [Google Scholar] [CrossRef]
- Kose, M.; Emet, S.; Akpinar, T.S.; Kocaaga, M.; Cakmak, R.; Akarsu, M.; Yuruyen, G.; Arman, Y.; Tukek, T. Serum Endocan Level and the Severity of Coronary Artery Disease: A Pilot Study. Angiology 2015, 66, 727–731. [Google Scholar] [CrossRef]
- Wang, X.S.; Yang, W.; Luo, T.; Wang, J.M.; Jing, Y.Y. Serum endocan levels are correlated with the presence and severity of coronary artery disease in patients with hypertension. Genet. Test. Mol. Biomarkers 2015, 19, 124–127. [Google Scholar] [CrossRef]
- Aparci, M.; Isilak, Z.; Uz, O.; Yalcin, M.; Kucuk, U. Endocan and Endothelial Dysfunction. Angiology 2015, 66, 488–489. [Google Scholar] [CrossRef] [PubMed]
- Milošević, N.; Rütter, M.; David, A. Endothelial cell adhesion molecules-(un) Attainable targets for nanomedicines. Front. Med. Technol. 2022, 4, 846065. [Google Scholar] [CrossRef] [PubMed]
- Gaudet, A.; Portier, L.; Mathieu, D.; Hureau, M.; Tsicopoulos, A.; Lassalle, P.; De Freitas, C.N. Cleaved endocan acts as a biologic competitor of endocan in the control of ICAM-1-dependent leukocyte diapedesis. J. Leukoc. Biol. 2020, 107, 833–841. [Google Scholar] [CrossRef] [PubMed]
- Medina-Leyte, D.J.; Zepeda-García, O.; Domínguez-Pérez, M.; González-Garrido, A.; Villarreal-Molina, T.; Jacobo-Albavera, L. Endothelial Dysfunction, Inflammation and Coronary Artery Disease: Potential Biomarkers and Promising Therapeutical Approaches. Int. J. Mol. Sci. 2021, 22, 3850. [Google Scholar] [CrossRef]
- Liu, S.; Bai, T.; Feng, J. Endocan, a novel glycoprotein with multiple biological activities, may play important roles in neurological diseases. Front. Aging Neurosci. 2024, 16, 1438367. [Google Scholar] [CrossRef]
- Pawlak, K.; Mysliwiec, M.; Pawlak, D. Endocan—The new endothelial activation marker independently associated with soluble endothelial adhesion molecules in uraemic patients with cardiovascular disease. Clin. Biochem. 2015, 48, 425–430. [Google Scholar] [CrossRef]
- Mercantepe, F.; Baydur, S.S.; Cumhur, C.M.; Karadag, Z. Relationship Between Serum Endocan Levels and Other Predictors of Endothelial Dysfunction in Obese Women. Angiology 2023, 74, 948–957. [Google Scholar] [CrossRef] [PubMed]
- Aydin, H.R.; Adanur, S.; Ozkaya, F.; Utlu, A.; Laloglu, E.; Turgut, H.; Canda, A.E. Diagnostic Value of Serum and Urine Endocan Levels in Nonmuscle Invasive Bladder Cancer: A Prospective Comparative Study. Int. J. Clin. 2024, 1, 2699706. [Google Scholar] [CrossRef]
Parameter | Control n:50 | MetS n:120 | p |
---|---|---|---|
Gender (F/M) | 22/28 | 53/67 | 0.201 |
Age (years) | 42.0 ± 6.76 | 45.6 ± 8.42 | 0.586 |
BMI (kg/m2) | 23.8 ± 2.68 | 29.3 ± 4.75 | 0.001 |
WHR | 0.782 ± 0.061 | 0.835 ± 0.086 | 0.022 |
WHtR | 0.415 ± 0.037 | 0.528 ± 0.057 | 0.001 |
Glucose (mg/dL) | 89 ± 2.15 | 112 ± 3.28 | 0.002 |
Insulin (μIU/mL) | 8.21 [6.58–9.81] | 10.5 [8.96–13.7] | 0.006 * |
HOMA-IR | 1.52 [0.918–2.53] | 2.38 [1.14–3.81] | 0.019 * |
TG (mg/dL) | 95.0 [71–128] | 188 [167–221] | 0.0001 * |
TC (mg/dL) | 172 [159–188] | 241 [220–269] | 0.0001 * |
HDL-C (mg/dL) | 59 [48–65] | 48 [37–56] | 0.025 * |
LDL-C (mg/dL) | 50.0 [43.0–60.0] | 53 [47–59] | 0.0001 * |
SBP (mmHg) | 110 [105–120] | 120 [110–130] | 0.028 * |
DBP (mmHg) | 70 [70–80] | 80 [70–85] | 0.258 * |
MetS-Z Score | −3.41 [−4.41–(−2.88)] | 2.16 [1.88–3.64] | 0.0001 * |
Main Groups | Subgroups | ||||||
---|---|---|---|---|---|---|---|
MetS-Z Score Tertile | |||||||
Control (n:50) | MetS (n:120) | p | 1 (n:40) 1.18 [0.952–1.26] | 2 (n:40) 1.75 [1.40–2.01] | 3 (n:40) 2.21 [2.09–3.50] | p | |
Endothelial factors | |||||||
Endocan, ng/L | 68.8 (58.0–75.8) | 150 (86.4–176) | 0.0001 | 98.2 (83.0–105) | 125 (112–132) a | 168 (147–198) a, b | 0.0001 * |
sICAM-1, ng/mL | 157 (128–169) | 327 (211–810) | 0.003 | 188 (179–253) | 262 (307–510) a,b | 586 (447–745) a, b | 0.0001 * |
sVCAM-1, ng/mL | 7.24 (5.11–9.45) | 17.1 (12.1–25.9) | 0.001 | 10.0 (9.11–12.6) | 18.1 (16.1–20.0) a,b | 29.9 (22.3–41.5) a,b | 0.0001 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vatansever, M.; Yaman, S.; Cimbek, A.; Sezgin, Y.; Yaman, S.O. Serum Endocan Levels Correlate with Metabolic Syndrome Severity and Endothelial Dysfunction: A Cross-Sectional Study Using the MetS-Z Score. Metabolites 2025, 15, 521. https://doi.org/10.3390/metabo15080521
Vatansever M, Yaman S, Cimbek A, Sezgin Y, Yaman SO. Serum Endocan Levels Correlate with Metabolic Syndrome Severity and Endothelial Dysfunction: A Cross-Sectional Study Using the MetS-Z Score. Metabolites. 2025; 15(8):521. https://doi.org/10.3390/metabo15080521
Chicago/Turabian StyleVatansever, Mehmet, Selçuk Yaman, Ahmet Cimbek, Yılmaz Sezgin, and Serap Ozer Yaman. 2025. "Serum Endocan Levels Correlate with Metabolic Syndrome Severity and Endothelial Dysfunction: A Cross-Sectional Study Using the MetS-Z Score" Metabolites 15, no. 8: 521. https://doi.org/10.3390/metabo15080521
APA StyleVatansever, M., Yaman, S., Cimbek, A., Sezgin, Y., & Yaman, S. O. (2025). Serum Endocan Levels Correlate with Metabolic Syndrome Severity and Endothelial Dysfunction: A Cross-Sectional Study Using the MetS-Z Score. Metabolites, 15(8), 521. https://doi.org/10.3390/metabo15080521