Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (837)

Search Parameters:
Keywords = end-to-end (E2E) optimization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 6442 KiB  
Article
Study on Heat Transfer of Fluid in a Porous Media by VOF Method with Fractal Reconstruction
by Shuai Liu, Qingyong Zhu and Wenjun Xu
Energies 2025, 18(15), 3935; https://doi.org/10.3390/en18153935 - 23 Jul 2025
Abstract
This paper addresses the critical gap in the existing literature regarding the combined buoyancy–Marangoni convection of power-law fluids in three-dimensional porous media with complex evaporation surfaces. Previous studies have rarely investigated the convective heat transfer mechanisms in such systems, and there is a [...] Read more.
This paper addresses the critical gap in the existing literature regarding the combined buoyancy–Marangoni convection of power-law fluids in three-dimensional porous media with complex evaporation surfaces. Previous studies have rarely investigated the convective heat transfer mechanisms in such systems, and there is a lack of effective methods to accurately track fractal evaporation surfaces, which are ubiquitous in natural and engineering porous media (e.g., geological formations, industrial heat exchangers). This research is significant because understanding heat transfer in these complex porous media is essential for optimizing energy systems, enhancing thermal management in industrial processes, and improving the efficiency of phase-change-based technologies. For this scientific issue, a general model is designed. There is a significant temperature difference on the left and right sides of the model, which drives the internal fluid movement through the temperature difference. The upper end of the model is designed as a complex evaporation surface, and there is flowing steam above it, thus forming a coupled flow field. The VOF fractal reconstruction method is adopted to approximate the shape of the complex evaporation surface, which is a major highlight of this study. Different from previous research, this method can more accurately reflect the flow and phase change on the upper surface of the porous medium. Through numerical simulation, the influence of the evaporation coefficient on the flow and heat transfer rate can be determined. Key findings from numerical simulations reveal the following: (1) Heat transfer rates decrease with increasing fractal dimension (surface complexity) and evaporation coefficient; (2) As the thermal Rayleigh number increases, the influence of the Marangoni number on heat transfer diminishes; (3) The coupling of buoyancy and Marangoni effects in porous media with complex evaporation surfaces significantly alters flow and heat transfer patterns compared to smooth-surfaced porous media. This study provides a robust numerical framework for analyzing non-Newtonian fluid convection in complex porous media, offering insights into optimizing thermal systems involving phase changes and irregular surfaces. The findings contribute to advancing heat transfer theory and have practical implications for industries such as energy storage, chemical engineering, and environmental remediation. Full article
(This article belongs to the Section J: Thermal Management)
Show Figures

Figure 1

18 pages, 3220 KiB  
Article
High-Throughput Microfluidic Electroporation (HTME): A Scalable, 384-Well Platform for Multiplexed Cell Engineering
by William R. Gaillard, Jess Sustarich, Yuerong Li, David N. Carruthers, Kshitiz Gupta, Yan Liang, Rita Kuo, Stephen Tan, Sam Yoder, Paul D. Adams, Hector Garcia Martin, Nathan J. Hillson and Anup K. Singh
Bioengineering 2025, 12(8), 788; https://doi.org/10.3390/bioengineering12080788 - 22 Jul 2025
Abstract
Electroporation-mediated gene delivery is a cornerstone of synthetic biology, offering several advantages over other methods: higher efficiencies, broader applicability, and simpler sample preparation. Yet, electroporation protocols are often challenging to integrate into highly multiplexed workflows, owing to limitations in their scalability and tunability. [...] Read more.
Electroporation-mediated gene delivery is a cornerstone of synthetic biology, offering several advantages over other methods: higher efficiencies, broader applicability, and simpler sample preparation. Yet, electroporation protocols are often challenging to integrate into highly multiplexed workflows, owing to limitations in their scalability and tunability. These challenges ultimately increase the time and cost per transformation. As a result, rapidly screening genetic libraries, exploring combinatorial designs, or optimizing electroporation parameters requires extensive iterations, consuming large quantities of expensive custom-made DNA and cell lines or primary cells. To address these limitations, we have developed a High-Throughput Microfluidic Electroporation (HTME) platform that includes a 384-well electroporation plate (E-Plate) and control electronics capable of rapidly electroporating all wells in under a minute with individual control of each well. Fabricated using scalable and cost-effective printed-circuit-board (PCB) technology, the E-Plate significantly reduces consumable costs and reagent consumption by operating on nano to microliter volumes. Furthermore, individually addressable wells facilitate rapid exploration of large sets of experimental conditions to optimize electroporation for different cell types and plasmid concentrations/types. Use of the standard 384-well footprint makes the platform easily integrable into automated workflows, thereby enabling end-to-end automation. We demonstrate transformation of E. coli with pUC19 to validate the HTME’s core functionality, achieving at least a single colony forming unit in more than 99% of wells and confirming the platform’s ability to rapidly perform hundreds of electroporations with customizable conditions. This work highlights the HTME’s potential to significantly accelerate synthetic biology Design-Build-Test-Learn (DBTL) cycles by mitigating the transformation/transfection bottleneck. Full article
(This article belongs to the Section Cellular and Molecular Bioengineering)
Show Figures

Figure 1

27 pages, 4412 KiB  
Review
Coupling Agents in Acoustofluidics: Mechanisms, Materials, and Applications
by Shenhao Deng, Yiting Yang, Menghui Huang, Cheyu Wang, Enze Guo, Jingui Qian and Joshua E.-Y. Lee
Micromachines 2025, 16(7), 823; https://doi.org/10.3390/mi16070823 - 19 Jul 2025
Viewed by 246
Abstract
Acoustic coupling agents serve as critical interfacial materials connecting piezoelectric transducers with microfluidic chips in acoustofluidic systems. Their performance directly impacts acoustic wave transmission efficiency, device reusability, and reliability in biomedical applications. Considering the rapidly growing body of research in the field of [...] Read more.
Acoustic coupling agents serve as critical interfacial materials connecting piezoelectric transducers with microfluidic chips in acoustofluidic systems. Their performance directly impacts acoustic wave transmission efficiency, device reusability, and reliability in biomedical applications. Considering the rapidly growing body of research in the field of acoustic microfluidics, this review aims to serve as an all-in-one reference on the role of acoustic coupling agents and relevant considerations pertinent to acoustofluidic devices for anyone working in or seeking to enter the field of disposable acoustofluidic devices. To this end, this review seeks to summarize and categorize key aspects of acoustic couplants in the implementation of acoustofluidic devices by examining their underlying physical mechanisms, material classifications, and core applications of coupling agents in acoustofluidics. Gel-based coupling agents are particularly favored for their long-term stability, high coupling efficiency, and ease of preparation, making them integral to acoustic flow control applications. In practice, coupling agents facilitate microparticle trapping, droplet manipulation, and biosample sorting through acoustic impedance matching and wave mode conversion (e.g., Rayleigh-to-Lamb waves). Their thickness and acoustic properties (sound velocity, attenuation coefficient) further modulate sound field distribution to optimize acoustic radiation forces and thermal effects. However, challenges remain regarding stability (evaporation, thermal degradation) and chip compatibility. Further aspects of research into gel-based agents requiring attention include multilayer coupled designs, dynamic thickness control, and enhancing biocompatibility to advance acoustofluidic technologies in point-of-care diagnostics and high-throughput analysis. Full article
(This article belongs to the Special Issue Recent Development of Micro/Nanofluidic Devices, 2nd Edition)
Show Figures

Figure 1

21 pages, 571 KiB  
Article
Joint Optimization of Caching and Recommendation with Performance Guarantee for Effective Content Delivery in IoT
by Zhiyong Liu, Hong Shen and Hui Tian
Appl. Sci. 2025, 15(14), 7986; https://doi.org/10.3390/app15147986 - 17 Jul 2025
Viewed by 132
Abstract
Content caching and recommendation for content delivery over the Internet are two key techniques for improving the content delivery effectiveness determined by delivery efficiency and user satisfaction, which is increasingly important in the booming Internet of Things (IoT). While content caching seeks the [...] Read more.
Content caching and recommendation for content delivery over the Internet are two key techniques for improving the content delivery effectiveness determined by delivery efficiency and user satisfaction, which is increasingly important in the booming Internet of Things (IoT). While content caching seeks the “greatest common denominator” among users to reduce end-to-end delay in content delivery, personalized recommendation, on the contrary, emphasizes users’ differentiation to enhance user satisfaction. Existing studies typically address them separately rather than jointly due to their contradictory objectives. They focus mainly on heuristics and deep reinforcement learning methods without the provision of performance guarantees, which are required in many real-world applications. In this paper, we study the problem of joint optimization of caching and recommendation in which recommendation is performed in the cached contents instead of purely according to users’ preferences, as in the existing work. We show the NP-hardness of this problem and present a greedy solution with a performance guarantee by first performing content caching according to user request probability without considering recommendations to maximize the aggregated request probability on cached contents and then recommendations from cached contents to incorporate user preferences for cache hit rate maximization. We prove that this problem has a monotonically increasing and submodular objective function and develop an efficient algorithm that achieves a 11e0.63 approximation ratio to the optimal solution. Experimental results demonstrate that our algorithm dramatically improves the popular least-recently used (LRU) algorithm. We also show experimental evaluations of hit rate variations by Jensen–Shannon Divergence on different parameter settings of cache capacity and user preference distortion limit, which can be used as a reference for appropriate parameter settings to balance user preferences and cache hit rate for Internet content delivery. Full article
Show Figures

Figure 1

24 pages, 6250 KiB  
Article
A Failure Risk-Aware Multi-Hop Routing Protocol in LPWANs Using Deep Q-Network
by Shaojun Tao, Hongying Tang, Jiang Wang and Baoqing Li
Sensors 2025, 25(14), 4416; https://doi.org/10.3390/s25144416 - 15 Jul 2025
Viewed by 176
Abstract
Multi-hop routing over low-power wide-area networks (LPWANs) has emerged as a promising technology for extending network coverage. However, existing protocols face high transmission disruption risks due to factors such as dynamic topology driven by stochastic events, dynamic link quality, and coverage holes induced [...] Read more.
Multi-hop routing over low-power wide-area networks (LPWANs) has emerged as a promising technology for extending network coverage. However, existing protocols face high transmission disruption risks due to factors such as dynamic topology driven by stochastic events, dynamic link quality, and coverage holes induced by imbalanced energy consumption. To address this issue, we propose a failure risk-aware deep Q-network-based multi-hop routing (FRDR) protocol, aiming to reduce transmission disruption probability. First, we design a power regulation mechanism (PRM) that works in conjunction with pre-selection rules to optimize end-device node (EN) activations and candidate relay selection. Second, we introduce the concept of routing failure risk value (RFRV) to quantify the potential failure risk posed by each candidate next-hop EN, which correlates with its neighborhood state characteristics (i.e., the number of neighbors, the residual energy level, and link quality). Third, a deep Q-network (DQN)-based routing decision mechanism is proposed, where a multi-objective reward function incorporating RFRV, residual energy, distance to the gateway, and transmission hops is utilized to determine the optimal next-hop. Simulation results demonstrate that FRDR outperforms existing protocols in terms of packet delivery rate and network lifetime while maintaining comparable transmission delay. Full article
(This article belongs to the Special Issue Security, Privacy and Trust in Wireless Sensor Networks)
Show Figures

Figure 1

33 pages, 1593 KiB  
Review
Bio-Coal Briquetting as a Potential Sustainable Valorization Strategy for Fine Coal: A South African Perspective in a Global Context
by Veshara Ramdas, Sesethu Gift Njokweni, Parsons Letsoalo, Solly Motaung and Santosh Omrajah Ramchuran
Energies 2025, 18(14), 3746; https://doi.org/10.3390/en18143746 - 15 Jul 2025
Viewed by 222
Abstract
The generation of fine coal particles during mining and processing presents significant environmental and logistical challenges, particularly in coal-dependent, developing countries like South Africa (SA). This review critically evaluates the technical viability of fine coal briquetting as a sustainable waste-to-energy solution within a [...] Read more.
The generation of fine coal particles during mining and processing presents significant environmental and logistical challenges, particularly in coal-dependent, developing countries like South Africa (SA). This review critically evaluates the technical viability of fine coal briquetting as a sustainable waste-to-energy solution within a SA context, while drawing from global best practices and comparative benchmarks. It examines abundant feedstocks that can be used for valorization strategies, including fine coal and agricultural biomass residues. Furthermore, binder types, manufacturing parameters, and quality optimization strategies that influence briquette performance are assessed. The co-densification of fine coal with biomass offers a means to enhance combustion efficiency, reduce dust emissions, and convert low-value waste into a high-calorific, manageable fuel. Attention is also given to briquette testing standards (i.e., South African Bureau of Standards, ASTM International, and International Organization of Standardization) and end-use applications across domestic, industrial, and off-grid settings. Moreover, the review explores socio-economic implications, including rural job creation, energy poverty alleviation, and the potential role of briquetting in SA’s ‘Just Energy Transition’ (JET). This paper uniquely integrates technical analysis with policy relevance, rural energy needs, and practical challenges specific to South Africa, while offering a structured framework for bio-coal briquetting adoption in developing countries. While technical and economic barriers remain, such as binder costs and feedstock variability, the integration of briquetting into circular economy frameworks represents a promising path toward cleaner, decentralized energy and coal waste valorization. Full article
(This article belongs to the Section A: Sustainable Energy)
Show Figures

Figure 1

16 pages, 1099 KiB  
Article
Kidney Transplantation in Children Weighing Less than 15 kg: A 35-Year Single-Center Experience
by Elisa Benetti, Nicola Bertazza Partigiani, Marco Moi, Maria Sangermano, Francesco Fascetti Leon, Luisa Meneghini, Marco Daverio and Federica De Corti
J. Clin. Med. 2025, 14(14), 4905; https://doi.org/10.3390/jcm14144905 - 10 Jul 2025
Viewed by 261
Abstract
Background: Kidney transplantation is the treatment of choice for pediatric patients with end-stage kidney disease. However, transplantation in children weighing < 15 kg remains challenging due to limited donor availability and higher surgical and medical risks. We report our 35-year single-center experience [...] Read more.
Background: Kidney transplantation is the treatment of choice for pediatric patients with end-stage kidney disease. However, transplantation in children weighing < 15 kg remains challenging due to limited donor availability and higher surgical and medical risks. We report our 35-year single-center experience in this population, focusing on perioperative and long-term outcomes. Methods: We retrospectively analyzed kidney transplants performed from 1987 to 2023 in children weighing < 15 kg. Data on demographics, donor type, complications, immunosuppression, and outcomes at 2, 5, and 10 years (including survival, graft function, rejection, infections, and urological issues) were collected. Outcomes were compared between deceased and living donors and between recipients weighing < 10 kg and ≥10 kg. Results: Ninety-six transplants were included (mean age 3.3 years; mean weight 11.1 kg), 80 from deceased and 16 from living donors. Most patients (69.8%) had been treated with peritoneal dialysis. Median follow-up was 120 months. Patient survival was 95.8%; graft survival was 78.1%. Eight grafts (8.3%) were lost to renal vein thrombosis, all in deceased-donor recipients (p = 0.60). Preserved renal function (eGFR > 60 mL/min/1.73 m2) declined from 80.4% at 2 years to 66.0% at 5 years and 18.0% at 10 years. Graft survival at 10 years was significantly lower in children < 10 kg vs. ≥10 kg (49.6% vs. 80.3%, p = 0.003). CAKUT was associated with higher urological complication rates (p = 0.017). No significant differences emerged between living and deceased donor groups. Conclusions: Transplantation in children < 15 kg is feasible with good outcomes, but those <10 kg present lower graft survival at 10 years. Multidisciplinary assessment and center experience are key to optimizing results. Full article
(This article belongs to the Special Issue Updates on Renal Transplantation and Its Complications)
Show Figures

Figure 1

18 pages, 769 KiB  
Article
Optimization of Transmission Power in a 3D UAV-Enabled Communication System
by Jorge Carvajal-Rodríguez, David Vega-Sánchez, Christian Tipantuña, Luis Felipe Urquiza, Felipe Grijalva and Xavier Hesselbach
Drones 2025, 9(7), 485; https://doi.org/10.3390/drones9070485 - 10 Jul 2025
Viewed by 155
Abstract
Unmanned Aerial Vehicles (UAVs) are increasingly used in the new generation of communication systems. They serve as access points, base stations, relays, and gateways to extend network coverage, enhance connectivity, or offer communications services in places lacking telecommunication infrastructure. However, optimizing UAV placement [...] Read more.
Unmanned Aerial Vehicles (UAVs) are increasingly used in the new generation of communication systems. They serve as access points, base stations, relays, and gateways to extend network coverage, enhance connectivity, or offer communications services in places lacking telecommunication infrastructure. However, optimizing UAV placement in three-dimensional (3D) environments with diverse user distributions and uneven terrain conditions is a crucial challenge. Therefore, this paper proposes a novel framework to minimize UAV transmission power while ensuring a guaranteed data rate in realistic and complex scenarios. To this end, using the particle swarm optimization evolution (PSO-E) algorithm, this paper analyzes the impact of user-truncated distribution models for suburban, urban and dense urban environments. Extensive simulations demonstrate that dense urban environments demand higher power than suburban and urban environments, with uniform user distributions requiring the most power in all scenarios. Conversely, Gaussian and exponential distributions exhibit lower power requirements, particularly in scenarios with concentrated user hotspots. The proposed model provides insight into achieving efficient network deployment and power optimization, offering practical solutions for future communication networks in complex 3D scenarios. Full article
(This article belongs to the Section Drone Communications)
Show Figures

Figure 1

35 pages, 1595 KiB  
Article
Analysis of the Synergies of Air Pollutant and Greenhouse Gas Emission Reduction in Typical Chemical Enterprises
by Qi Gong, Yatfei Chan, Yijia Xia, Weiqi Tang and Weichun Ma
Sustainability 2025, 17(14), 6263; https://doi.org/10.3390/su17146263 - 8 Jul 2025
Viewed by 234
Abstract
In this study, we selected the production processes and main products of three typical chemical enterprises in Shanghai, namely SH Petrochemical (part of the oil-refining sector), SK Ethylene, and HS Chlor-Alkali, to quantitatively assess the synergistic effects across technology, policy, and emission mechanisms. [...] Read more.
In this study, we selected the production processes and main products of three typical chemical enterprises in Shanghai, namely SH Petrochemical (part of the oil-refining sector), SK Ethylene, and HS Chlor-Alkali, to quantitatively assess the synergistic effects across technology, policy, and emission mechanisms. The localized air pollutant levels and greenhouse gas emissions of the three enterprises were calculated. The synergistic effects between the end-of-pipe emission reductions for air pollutants and greenhouse gas emissions were analyzed using the pollutant reduction synergistic and cross-elasticity coefficients, including technology comparisons (e.g., acrylonitrile gas incineration (AOGI) technology vs. traditional flare). Based on these data, we used the SimaPro software and the CML-IA model to conduct a life cycle environmental impact assessment regarding the production and upstream processes of their unit products. By combining the life cycle method and the scenario simulation method, we predicted the trends in the environmental impacts of the three chemical enterprises after the implementation of low-carbon development policies in the chemical industry in 2030. We also quantified the synergistic effects of localized air pollutant and greenhouse gas (GHG) emission reductions within the low-carbon development scenario by using cross-elasticity coefficients based on life cycle environmental impacts. The research results show that, for every ton of air pollutant reduced through end-of-pipe treatment measures, the HS Chlor-Alkali enterprise would increase its maximum CO2 emissions, amounting to about 80 tons. For SK Ethylene, the synergistic coefficient for VOC reduction and CO2 emissions when using AOGI thermal incineration technology is superior to that for traditional flare thermal incineration. The activities of the three enterprises had an impact on several environmental indicators, particularly the fossil fuel resource depletion potential, accounting for 69.48%, 53.94%, and 34.23% of their total environmental impact loads, respectively. The scenario simulations indicate that, in a low-carbon development scenario, the overall environmental impact loads of SH Petrochemical (refining sector), SK Ethylene, and HS Chlor-Alkali would decrease by 3~5%. This result suggests that optimizing the upstream power structure, using “green hydrogen” instead of “grey hydrogen” in hydrogenation units within refining enterprises, and reducing the consumption of electricity and steam in the production processes of ethylene and chlor-alkali are effective measures in reducing carbon emissions in the chemical industry. The quantification of the synergies based on life cycle environmental impacts revealed that there are relatively strong synergies for air pollutant and GHG emission reductions in the oil-refining industry, while the chlor-alkali industry has the weakest synergies. Full article
Show Figures

Figure 1

45 pages, 1648 KiB  
Review
Tribological Performance Enhancement in FDM and SLA Additive Manufacturing: Materials, Mechanisms, Surface Engineering, and Hybrid Strategies—A Holistic Review
by Raja Subramani, Ronit Rosario Leon, Rajeswari Nageswaren, Maher Ali Rusho and Karthik Venkitaraman Shankar
Lubricants 2025, 13(7), 298; https://doi.org/10.3390/lubricants13070298 - 7 Jul 2025
Viewed by 638
Abstract
Additive Manufacturing (AM) techniques, such as Fused Deposition Modeling (FDM) and Stereolithography (SLA), are increasingly adopted in various high-demand sectors, including the aerospace, biomedical engineering, and automotive industries, due to their design flexibility and material adaptability. However, the tribological performance and surface integrity [...] Read more.
Additive Manufacturing (AM) techniques, such as Fused Deposition Modeling (FDM) and Stereolithography (SLA), are increasingly adopted in various high-demand sectors, including the aerospace, biomedical engineering, and automotive industries, due to their design flexibility and material adaptability. However, the tribological performance and surface integrity of parts manufactured by AM are the biggest functional deployment challenges, especially in wear susceptibility or load-carrying applications. The current review provides a comprehensive overview of the tribological challenges and surface engineering solutions inherent in FDM and SLA processes. The overview begins with a comparative overview of material systems, process mechanics, and failure modes, highlighting prevalent wear mechanisms, such as abrasion, adhesion, fatigue, and delamination. The effect of influential factors (layer thickness, raster direction, infill density, resin curing) on wear behavior and surface integrity is critically evaluated. Novel post-processing techniques, such as vapor smoothing, thermal annealing, laser polishing, and thin-film coating, are discussed for their potential to endow surface durability and reduce friction coefficients. Hybrid manufacturing potential, where subtractive operations (e.g., rolling, peening) are integrated with AM, is highlighted as a path to functionally graded, high-performance surfaces. Further, the review highlights the growing use of finite element modeling, digital twins, and machine learning algorithms for predictive control of tribological performance at AM parts. Through material-level innovations, process optimization, and surface treatment techniques integration, the article provides actionable guidelines for researchers and engineers aiming at performance improvement of FDM and SLA-manufactured parts. Future directions, such as smart tribological, sustainable materials, and AI-based process design, are highlighted to drive the transition of AM from prototyping to end-use applications in high-demand industries. Full article
(This article belongs to the Special Issue Wear and Friction in Hybrid and Additive Manufacturing Processes)
Show Figures

Figure 1

15 pages, 1253 KiB  
Article
Laboratory Optimization of Poultry Feather Hydrolysate Application for Soil Fertility: Effects of Soil Texture and Hydrolysate State and Addition Rate
by Aditi Roy and Veronika Jílková
Agronomy 2025, 15(7), 1638; https://doi.org/10.3390/agronomy15071638 - 5 Jul 2025
Viewed by 275
Abstract
The application of soil organic amendments is a well-established approach to enhancing soil fertility; yet the effects of poultry feather hydrolysate (PFH) on temperate coarse-textured agricultural soils remain underexplored. A six-month microcosm experiment was conducted to determine the effects of PFH in different [...] Read more.
The application of soil organic amendments is a well-established approach to enhancing soil fertility; yet the effects of poultry feather hydrolysate (PFH) on temperate coarse-textured agricultural soils remain underexplored. A six-month microcosm experiment was conducted to determine the effects of PFH in different states (liquid or solid) and addition rates (none, low, or high; i.e., 0, 4, or 8 t dw ha−1, respectively) on microbial activity, nutrient availability and retention, and organic matter (OM) stabilization in two coarse-textured soils (loamy sand or sandy loam). Sandy loam soil exhibited a stronger response to PFH application, supporting 20% higher microbial activity, 35% higher nutrient retention, and 89% higher OM content in soil aggregates compared to loamy sand soil, reflecting enhanced OM stabilization. Moreover, PFH in the liquid state demonstrated more prolonged microbial activity and more sustained release of nutrients compared to the solid state. Finally, at the end of incubation, the high addition rate of PFH significantly increased soil nutrient content by 106%, while the low addition rate limited the increase to 39%, both compared to the no addition rate. Overall, the results suggest that PFH, particularly in the liquid state and at the high addition rate, serves as an effective soil organic amendment, enhancing microbial activity and soil fertility while emphasizing the importance of soil texture in optimizing its application. Full article
(This article belongs to the Section Farming Sustainability)
Show Figures

Figure 1

29 pages, 3409 KiB  
Article
Optimal Portfolio Analysis Using Power and Natural Logarithm Utility Functions with E-Commerce Data
by Apni Diyanti, Moch. Fandi Ansori, Susilo Hariyanto and Ratna Herdiana
Int. J. Financial Stud. 2025, 13(3), 127; https://doi.org/10.3390/ijfs13030127 - 4 Jul 2025
Viewed by 400
Abstract
Determining the optimal portfolio is important in the investment process because it includes the selection of appropriate fund allocation to manage financial risk effectively. Although risk cannot be entirely eliminated, it is managed through strategic allocation based on investor preferences. Therefore, this research [...] Read more.
Determining the optimal portfolio is important in the investment process because it includes the selection of appropriate fund allocation to manage financial risk effectively. Although risk cannot be entirely eliminated, it is managed through strategic allocation based on investor preferences. Therefore, this research aimed to use mathematical models, including the power utility function, the natural logarithm utility function, and a combination of both, to capture varying degrees of risk aversion. The optimal allocation was obtained by analytically maximizing the expected end-of-period wealth utility under each specification, where the investor level of risk aversion was derived by determining the constant. The utility function that failed to produce closed-form solutions was solved through the use of a numerical method to approximate the optimal portfolio weight. Furthermore, numerical simulations were performed using data from two stocks in the e-commerce sector to prove the impact of parameter changes on investment decisions. The result showed explicit analytical values for each utility function, providing investors with a structured framework for determining optimal portfolio weights consistent with their risk profile. Full article
Show Figures

Figure 1

20 pages, 1342 KiB  
Article
Applications of the Calculus by the Transfer Matrix Method for Long Rectangular Plates Under Uniform Vertical Loads
by Cosmin-Sergiu Brisc, Mihai-Sorin Tripa, Ilie-Cristian Boldor, Dan-Marius Dumea, Robert Gyorbiro, Petre-Corneliu Opriţoiu, Laurenţiu Eusebiu Chifor, Ioan-Aurel Chereches, Vlad Mureşan and Mihaela Suciu
Mathematics 2025, 13(13), 2181; https://doi.org/10.3390/math13132181 - 3 Jul 2025
Viewed by 167
Abstract
The aim of this work is to present an original, relatively simple, and elegant approach to the analysis of long rectangular plates subjected to uniformly distributed vertical loads acting on various surfaces. Plate analysis is important in many fields, especially where components are [...] Read more.
The aim of this work is to present an original, relatively simple, and elegant approach to the analysis of long rectangular plates subjected to uniformly distributed vertical loads acting on various surfaces. Plate analysis is important in many fields, especially where components are either rectangular plates or can be approximated as such. The Transfer Matrix Method is increasingly used in research, as evidenced by the references cited. The advantages of this method lie in the simplicity of its algorithm, the ease of implementation in programming, and its straightforward integration into optimization software. The approach consists of discretizing the rectangular plate by sectioning it with planes parallel to the short sides—i.e., perpendicular to the two long edges. This results in a set of beams, each with a length equal to the width of the plate, a height equal to the plate’s thickness, and a unit width. Each unit beam has support at its ends that replicate the edge conditions of the plate along its long sides. In the study presented, the rectangular plate is embedded along its two long edges, meaning the unit beam is considered embedded at both ends. The Transfer Matrix Method is particularly valuable because it lends itself well to iterative calculations, making it easy to develop software capable of analyzing long rectangular plates quickly. This makes it especially useful for shape optimization applications, which we intend and hope to pursue in future studies. Full article
(This article belongs to the Special Issue Control Theory and Applications, 2nd Edition)
Show Figures

Figure 1

19 pages, 6386 KiB  
Article
Process–Structure Co-Optimization of Glass Fiber-Reinforced Polymer Automotive Front-End Module
by Ziming Chen, Pengcheng Guo, Longjian Tan, Tuo Ye and Luoxing Li
Materials 2025, 18(13), 3121; https://doi.org/10.3390/ma18133121 - 1 Jul 2025
Viewed by 341
Abstract
For automotive GFRP structural components, beyond structural design, the warpage, residual stress/strain, and fiber orientation inevitably induced during the injection molding process significantly compromise their service performance. These factors also diminish the reliability of performance assessments. Thus, it is imperative to develop a [...] Read more.
For automotive GFRP structural components, beyond structural design, the warpage, residual stress/strain, and fiber orientation inevitably induced during the injection molding process significantly compromise their service performance. These factors also diminish the reliability of performance assessments. Thus, it is imperative to develop a process–structure co-optimization approach for GFRP components. In this paper, the performance of a front-end module is evaluated through topological structure design, injection molding process optimization, and simulation with mapped injection molding history, followed by experimental validation and analysis. Under ±1000 N loading, the initial design shows excessive displacement at the latch mounting points (2.254 mm vs. <2.0 mm limit), which is reduced to 1.609 mm after topology optimization. By employing a sequential valve control system, the controls of the melt line and fiber orientation are is superior to thatose of conventional gating systems. The optimal process parameter combination is determined through orthogonal experiments, reducing the warpage to 1.498 mm with a 41.5% reduction compared to the average warpage of the orthogonal tests. The simulation results incorporating injection molding data mapping (fiber orientation, residual stress–strain) show closer agreement with experimental measurements. When the measured displacement exceeded 0.65 mm, the average relative error Er, range R, and variance s2 between the experimental results and mapped simulations were 11.78%, 14%, and 0.002462, respectively, validating the engineering applicability of this method. The methodology and workflow can provide methodological support for the design and performance assessment of GFRP automotive body structures, which enhances structural rigidity, improves control over injection molding process defects, and elevates the reliability of performance evaluation. Full article
Show Figures

Figure 1

24 pages, 19576 KiB  
Article
Evaluating HAS and Low-Latency Streaming Algorithms for Enhanced QoE
by Syed Uddin, Michał Grega, Mikołaj Leszczuk and Waqas ur Rahman
Electronics 2025, 14(13), 2587; https://doi.org/10.3390/electronics14132587 - 26 Jun 2025
Viewed by 827
Abstract
The demand for multimedia traffic over the Internet is exponentially growing. HTTP adaptive streaming (HAS) is the leading video delivery system that delivers high-quality video to the end user. The adaptive bitrate (ABR) algorithms running on the HTTP client select the highest feasible [...] Read more.
The demand for multimedia traffic over the Internet is exponentially growing. HTTP adaptive streaming (HAS) is the leading video delivery system that delivers high-quality video to the end user. The adaptive bitrate (ABR) algorithms running on the HTTP client select the highest feasible video quality by adjusting the quality according to the fluctuating network conditions. Recently, low-latency ABR algorithms have been introduced to reduce the end-to-end latency commonly experienced in HAS. However, a comprehensive study of the low-latency algorithms remains limited. This paper investigates the effectiveness of low-latency streaming algorithms in maintaining a high quality of experience (QoE) while minimizing playback delay. We evaluate these algorithms in the context of both Dynamic Adaptive Streaming over HTTP (DASH) and the Common Media Application Format (CMAF), with a particular focus on the impact of chunked encoding and transfer mechanisms on the QoE. We perform both objective as well as subjective evaluations of low-latency algorithms and compare their performance with traditional DASH-based ABR algorithms across multiple QoE metrics, various network conditions, and diverse content types. The results demonstrate that low-latency algorithms consistently deliver high video quality across various content types and network conditions, whereas the performance of the traditional adaptive bitrate (ABR) algorithms exhibit performance variability under fluctuating network conditions and diverse content characteristics. Although traditional ABR algorithms download higher-quality segments in stable network environments, their effectiveness significantly declines under unstable conditions. Furthermore, the low-latency algorithms maintained high user experience regardless of segment duration. In contrast, the performance of traditional algorithms varied significantly with changes in segment duration. In summary, the results underscore that no single algorithm consistently achieves optimal performance across all experimental conditions. Performance varies depending on network stability, content characteristics, and segment duration, highlighting the need for adaptive strategies that can dynamically respond to varying streaming environments. Full article
(This article belongs to the Special Issue Video Streaming Service Solutions)
Show Figures

Figure 1

Back to TopTop