Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (598)

Search Parameters:
Keywords = emulsion solution

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2314 KiB  
Article
Effects of 2-Hydroxypropyl-β-Cyclodextrin on the Antioxidant Efficiency of Some Gallic Acid Derivatives in Soybean Oil-in-Water Emulsions
by Tamara Martínez-Senra, Sonia Losada-Barreiro and Carlos Bravo-Díaz
Antioxidants 2025, 14(7), 887; https://doi.org/10.3390/antiox14070887 - 18 Jul 2025
Viewed by 192
Abstract
Cyclodextrins (CDs) have been widely employed as natural host molecules to form inclusion complexes with bioactive molecules such as antioxidants. Their particular spatial configuration, in the form of truncated cones formed through α(1–4) ether linkages of glucopyranose units, makes them very appropriate for [...] Read more.
Cyclodextrins (CDs) have been widely employed as natural host molecules to form inclusion complexes with bioactive molecules such as antioxidants. Their particular spatial configuration, in the form of truncated cones formed through α(1–4) ether linkages of glucopyranose units, makes them very appropriate for the formation of host–guest complexes, modifying their physicochemical properties and their location in multiphasic systems. Here, we investigated the effects of 2-hydroxypropyl-β-cyclodextrin (HPCD) on the efficiency of a series of gallic acid derivatives (propyl (PG), butyl (BG), octyl (OG), and lauryl (LG) gallates) in inhibiting the oxidation of soybean oil-in-water emulsions. For this purpose, we investigated the effects of HPCD on both the kinetics of lipid oxidation and the distribution of antioxidants in the same intact emulsions. The results show that in an aqueous solution, the antioxidants form 1:1 inclusion complexes with HPCD, with inclusion constants ranging from 383 M−1 (PG) to 1946 M−1 (OG). The results also show that the addition of HPCD to emulsions containing antioxidants does not lead to significant changes in their antioxidant effectiveness, with their efficiency being similar to that when no HPCD molecules are present. The results are interpreted in terms of the blocking effect exerted by the Tween 20 molecules, which act as effective guest competitors capable of removing the antioxidants from the HPCD cavity. The Tween 20 surfactant molecules need to be employed to stabilize the emulsions kinetically. This blocking effect, as a primary consequence, indicates that the interfacial concentration of the antioxidants, which is the region where the inhibition reaction takes place, remains constant; thus, their efficiency is not altered. Full article
(This article belongs to the Special Issue Antioxidants for the Oxidative Stabilisation of Food Lipids)
Show Figures

Figure 1

19 pages, 6209 KiB  
Article
Structural and Thermal Effects of Beeswax Incorporation in Electrospun PVA Nanofibers
by Margarita P. Neznakomova, Fabien Salaün, Peter D. Dineff, Tsvetozar D. Tsanev and Dilyana N. Gospodinova
Materials 2025, 18(14), 3293; https://doi.org/10.3390/ma18143293 - 12 Jul 2025
Viewed by 319
Abstract
This study presents the development and characterization of electrospun nanofibers composed of polyvinyl alcohol (PVA) and natural beeswax (BW). A stable emulsion containing 9 wt% PVA and 5 wt% BW was successfully formulated and electrospun. The effects of beeswax incorporation on solution properties-viscosity, [...] Read more.
This study presents the development and characterization of electrospun nanofibers composed of polyvinyl alcohol (PVA) and natural beeswax (BW). A stable emulsion containing 9 wt% PVA and 5 wt% BW was successfully formulated and electrospun. The effects of beeswax incorporation on solution properties-viscosity, conductivity, and surface tension—were systematically evaluated. Electrospinning was performed at 30 kV and a working distance of 14.5 cm, yielding nanofibers with diameters between 125 and 425 nm. Scanning electron microscopy (SEM) revealed increased surface roughness and diameter variability in PVA/BW fibers compared to the PVA. Fourier transform infrared spectroscopy (FTIR) confirmed physical incorporation of BW without evidence of chemical bonding. Thermogravimetric and differential scanning calorimetry analyses (TGA/DSC) demonstrated altered behavior and an expanded profile of temperature transitions due to the waxy components. The solubility test of the nanofiber mat in saline indicated that BW slows dissolution and improves the structural integrity of the fibers. This study demonstrates, for the first time, the incorporation of beeswax into electrospun PVA nanofibers with improved structural and thermal properties, indicating potential for further exploration in biomedical material design. Full article
Show Figures

Graphical abstract

16 pages, 31664 KiB  
Article
Rheological Behavior of Poly(Styrene-Co-Acrylonitrile)/Carbon Nanotube Sponges for Fiber Electrospinning Applications
by Rubén Caro-Briones, Marco Antonio Pérez-Castillo, Hugo Martínez-Gutiérrez, Emilio Muñoz-Sandoval, Gabriela Martínez-Mejía, Lazaro Ruiz-Virgen and Mónica Corea
Nanomaterials 2025, 15(14), 1060; https://doi.org/10.3390/nano15141060 - 9 Jul 2025
Viewed by 246
Abstract
Polymeric composite solutions (PCSs) reinforced with carbon nanotubes sponges (CNT-sponges) have attracted interest in material science and engineering due to their physicochemical properties. Understanding the influence of CNT-sponges content (0.1 wt.%, 0.3 wt.% and 0.5 wt.%) on rheological behavior of poly(styrene-co-acrylonitrile) P(S:AN) (0:100, [...] Read more.
Polymeric composite solutions (PCSs) reinforced with carbon nanotubes sponges (CNT-sponges) have attracted interest in material science and engineering due to their physicochemical properties. Understanding the influence of CNT-sponges content (0.1 wt.%, 0.3 wt.% and 0.5 wt.%) on rheological behavior of poly(styrene-co-acrylonitrile) P(S:AN) (0:100, 20:80, 40:60 and 50:50, wt.%:wt.%) solutions synthesized by emulsion polymerization can predict the viscoelastic parameters for their possible application in electrospinning processes. The obtained nanofibers can be used as sensors, textiles, purifying agents or artificial muscles and tissues. For this, amplitude and frequency sweeps were performed to measure the viscosity (η), storage (G’) and loss (G”) moduli and loss factor (tan δ). Most PCSs showed a shear thinning behavior over the viscosity range of 0.8 < η/Pa·s < 20. At low CNT-sponges concentration in the polymer matrix, the obtained loss factor indicated a liquid-like behavior, while as CNT-sponges content increases, the solid-like behavior predominated. Then, the polymeric solutions were successfully electrospun; however, some agglomerations were formed in materials containing 0.5 wt.% of CNT-sponges attributed to the interaction forces generated within the structure. Finally, the rheological analysis indicates that the PCS with a low percentage of CNT-sponges are highly suitable to be electrospun. Full article
(This article belongs to the Special Issue Nanomaterials for Advanced Fibers and Textiles)
Show Figures

Graphical abstract

16 pages, 9013 KiB  
Article
Hybrid Membranes Based on Track-Etched Membranes and Nanofiber Layer for Water–Oil Separation and Membrane Distillation of Low-Level Liquid Radioactive Wastes and Salt Solutions
by Arman B. Yeszhanov, Aigerim Kh. Shakayeva, Maxim V. Zdorovets, Daryn B. Borgekov, Artem L. Kozlovskiy, Pavel V. Kharkin, Dmitriy A. Zheltov, Marina V. Krasnopyorova, Olgun Güven and Ilya V. Korolkov
Membranes 2025, 15(7), 202; https://doi.org/10.3390/membranes15070202 - 4 Jul 2025
Viewed by 455
Abstract
In this work, hybrid membranes were fabricated by depositing polyvinyl chloride (PVC) fibers onto PET track-etched membranes (TeMs) using the electrospinning technique. The resulting structures exhibited enhanced hydrophobicity, with contact angles reaching 155°, making them suitable for applications in both water–oil mixture separation [...] Read more.
In this work, hybrid membranes were fabricated by depositing polyvinyl chloride (PVC) fibers onto PET track-etched membranes (TeMs) using the electrospinning technique. The resulting structures exhibited enhanced hydrophobicity, with contact angles reaching 155°, making them suitable for applications in both water–oil mixture separation and membrane distillation processes involving low-level liquid radioactive waste (LLLRW), saline solutions, and natural water sources. The use of hybrids of TeMs and nanofiber membranes has significantly increased productivity compared to TeMs only, while maintaining a high degree of purification. Permeate obtained after MD of LLLRW and river water was analyzed by conductometry and the atomic emission spectroscopy (for Sr, Cs, Al, Mo, Co, Sb, Ca, Fe, Mg, K, and Na). The activity of radioisotopes (for 124Sb, 65Zn, 60Co, 57Co, 137Cs, and 134Cs) was evaluated by gamma-ray spectroscopy. In most cases, the degree of rejection was between 95 and 100% with a water flux of up to 17.3 kg/m2·h. These membranes were also tested in the separation of cetane–water emulsion with productivity up to 47.3 L/m2·min at vacuum pressure of 700 mbar and 15.2 L/m2·min at vacuum pressure of 900 mbar. Full article
(This article belongs to the Section Membrane Applications for Water Treatment)
Show Figures

Figure 1

21 pages, 3659 KiB  
Article
Composite Nanoparticles of Yucca baccata Saponin-Rich Extract and Chitosan: An Alternative for the Development of Pickering Emulsions
by Guadalupe Johanna Góngora-Chi, Luis Quihui-Cota, Yolanda Leticia López-Franco, Waldo Manuel Argüelles-Monal, Marco Antonio López-Mata and Jaime Lizardi-Mendoza
Polysaccharides 2025, 6(3), 56; https://doi.org/10.3390/polysaccharides6030056 - 1 Jul 2025
Viewed by 260
Abstract
The growing demand for sustainable materials has led to innovation in the development of natural compound-based solutions for industrial applications. This study introduces composite nanoparticles (NP-CsYBE) synthesized from chitosan (Cs) and saponin-rich yucca extract (YBE), highlighting their application in Pickering emulsions (PE). Characterization [...] Read more.
The growing demand for sustainable materials has led to innovation in the development of natural compound-based solutions for industrial applications. This study introduces composite nanoparticles (NP-CsYBE) synthesized from chitosan (Cs) and saponin-rich yucca extract (YBE), highlighting their application in Pickering emulsions (PE). Characterization via DLS and AFM revealed NP-CsYBE as spherical particles with a hydrodynamic diameter of 230 nm and a ζ-potential of +36.9 mV, showing a non-aggregated morphology. Comparative analyses of emulsions formulated with Cs nanoparticles (Cs-NP) and YBE were conducted to assess the individual contributions of each component. Functional evaluations revealed that PE based on NP-CsYBE exhibited superior stability over time compared to those with Cs-NP or YBE alone. Additionally, the rheological properties of NP-CsYBE PE were influenced by pH: liquid-viscous behavior dominated at pH 4, while at pH 6.5, solid-elastic properties prevailed. Notably, increased temperature enhanced its mechanical properties. This innovative approach provides a framework for applying natural nanoparticles in PE formation, offering potential applications in the pharmaceutical, food, medical, and cosmetic industries, as well as biomaterials for protecting lipophilic substances. By leveraging natural resources, this work advances the understanding of natural nanoparticle-based systems and their role in developing sustainable and functional materials for industrial use. Full article
Show Figures

Figure 1

21 pages, 2754 KiB  
Article
Repurposing Torrefied Biomass as a Novel Feedstock for Microbial Bioprocessing—A Proof-of-Concept of Low-Cost Biosurfactant Production
by Anjana Hari, Vahur Rooni, Udayakumar Veerabagu, Shiplu Sarker, Alar Konist and Timo Kikas
Polymers 2025, 17(13), 1808; https://doi.org/10.3390/polym17131808 - 29 Jun 2025
Viewed by 354
Abstract
Torrefaction is a thermochemical pretreatment in which biomass is heated at 200–300 °C for 30–60 min in an inert atmosphere. Torrefaction has been previously used to improve the fuel properties of lignocellulosic biomass; however, the use of torrefaction for bioenergy generation represents a [...] Read more.
Torrefaction is a thermochemical pretreatment in which biomass is heated at 200–300 °C for 30–60 min in an inert atmosphere. Torrefaction has been previously used to improve the fuel properties of lignocellulosic biomass; however, the use of torrefaction for bioenergy generation represents a low-value final product as well as the dead end of the biomass value chain. Herein, we demonstrate the proof-of-concept for the utilisation of torrefaction as a pretreatment to convert low-value wood waste into biosurfactants, a high-value specialty biochemical. Wood waste was torrefied at 225 °C, 250 °C, 275 °C, and 300 °C and physicochemically characterised using proximate and ultimate analyses, FTIR, XRD, TGA–DTG, and SEM–EDX to assess its suitability as fermentation feedstock. Aspen waste torrefied at temperatures less than 250 °C was directly utilised by Burkholderia thailandensis DSM 13276 via semi-solid-state fermentation to yield biosurfactants, and 225 °C was selected for further experiments as it resulted in the production of biosurfactants which reduced the surface tension of the production medium to 36.8 mN/m and had an emulsification index of 64.1%. Tension and emulsification activities decreased with the increase in torrefaction temperature. The biosurfactant derived from torrefaction at 225 °C formed highly stable emulsions with diesel oil (lasting >40 days), in addition to low interfacial tension, suggesting potential applications in diesel bioremediation. This integrated, chemical-free strategy offers an alternative application for torrefied wood waste as well as a feasible solution for the cost-effective chemical-free production of biosurfactants, incorporating circular economy principles. Full article
Show Figures

Graphical abstract

11 pages, 652 KiB  
Article
Optimized Enoxolone-Loaded Microsponges for Drug Delivery: A Design of Experiments Approach
by Juste Baranauskaite, Sedef Sefer, Augusta Zevzikoviene, Andrejus Zevzikovas and Liudas Ivanauskas
Pharmaceuticals 2025, 18(7), 938; https://doi.org/10.3390/ph18070938 - 21 Jun 2025
Viewed by 357
Abstract
Enoxolon is widely recognized for its pharmacological potential, exhibiting antioxidant, anti-inflammatory, anticancer, and antiviral properties. Objectives: This study aimed to develop an enhanced formulation of enoxolone-loaded microsponges as a novel drug delivery system. A design of experiments (DoE) approach was employed for [...] Read more.
Enoxolon is widely recognized for its pharmacological potential, exhibiting antioxidant, anti-inflammatory, anticancer, and antiviral properties. Objectives: This study aimed to develop an enhanced formulation of enoxolone-loaded microsponges as a novel drug delivery system. A design of experiments (DoE) approach was employed for the optimization process. Methods: The microsponges were produced using the quasi-emulsion technique. The selected formulation was evaluated for yield, particle size, and entrapment efficiency. Furthermore, the microsponges were incorporated into a 1% MC solution matrix, and in vitro release studies were performed to assess their drug delivery performance. Results: The optimal formulation was determined through the DoE methodology, which involved varying the concentrations of methylcellulose (MC) (0.55–1.87%, w/w), polyvinyl alcohol (PVA) (0.5–1%, w/w), and Tween 80 (TW80) (1.5–2.5%, w/w). The results showed a particle size of 142.8 ± 10.02 µm and an entrapment efficiency of 80.3 ± 1.99%. When comparing the optimized microsponge formulation to pure enoxolon, a 1.29 times higher release rate was observed (p ≤ 0.05). Conclusions: Following optimizationand physicochemical characterization studies were conducted to further assess the formulation. These findings suggest that microsponge-based delivery systems hold considerable potential as an alternative platform for the topical treatment of chronic periodontitis. Full article
(This article belongs to the Section Pharmaceutical Technology)
Show Figures

Graphical abstract

16 pages, 2170 KiB  
Article
The Design of an Intensified Process and Production Plant for Cosmetic Emulsions Using Amazonian Oils
by Laura Scalvenzi, Estela Guardado Yordi, Edgar Wilfrido Santamaría Caño, Ibeth Nina Avilez Tolagasi, Matteo Radice, Reinier Abreu-Naranjo, Lianne León Guardado, Luis Ramón Bravo Sánchez and Amaury Pérez Martínez
Processes 2025, 13(6), 1923; https://doi.org/10.3390/pr13061923 - 17 Jun 2025
Viewed by 801
Abstract
The cosmetic industry in the Ecuadorian Amazon region faces the challenge of competitively integrating locally sourced plant-based raw materials into efficient and sustainable production processes. This study proposes the design of a pilot plant for the production of a cosmetic emulsion (CE), using [...] Read more.
The cosmetic industry in the Ecuadorian Amazon region faces the challenge of competitively integrating locally sourced plant-based raw materials into efficient and sustainable production processes. This study proposes the design of a pilot plant for the production of a cosmetic emulsion (CE), using oils extracted from Morete (Mauritia flexuosa) and Ungurahua (Oenocarpus bataua), with a focus on process intensification to reduce both capital investment and resource consumption. Process design methodologies and computational simulation (SuperPro Designer V10) were applied, along with Systematic Layout Planning (SLP) principles to optimize spatial configuration. The intensified scheme enabled the integration of extraction lines, reducing the number of major equipment units from 12 to 9 and lowering the investment from USD 1,016,000 to USD 719,000. Energy and environmental indicators showed consumption levels of 5.86 kWh and 48.4 kg of water per kg of cream, which are lower than those reported for other natural cosmetics plants. The intensified design achieved a Net Present Value (NPV) of USD 577,000 and a payback period of 3.93 years. Furthermore, solid by-products were valorized through circular economy principles. This approach offers a feasible, viable, and sustainable solution for the utilization of these Amazonian oils in the cosmetic industry. Full article
(This article belongs to the Special Issue 2nd Edition of Innovation in Chemical Plant Design)
Show Figures

Figure 1

15 pages, 2920 KiB  
Article
Comprehensive Study on Viscosity-Increasing and Oil Displacement Characteristics of Functional Polymer
by Jingang He, Xiangao Jin, Xiaoying Liu, Lin Yuan, Ruina Liu, Sian Chen, Hao Wu, Wei Yang, Jingyu Wang, Haixiang Zhang, Xuanzuo An, Meng Fan and Bicheng Gan
Processes 2025, 13(6), 1859; https://doi.org/10.3390/pr13061859 - 12 Jun 2025
Viewed by 350
Abstract
Polymer flooding is one of the critical methods for enhancing oil recovery (EOR) in domestic and international oilfields. Since the large-scale implementation of industrial polymer flooding in Daqing Oilfield in 1996, the overall recovery rate has increased by over 10%. With the advancement [...] Read more.
Polymer flooding is one of the critical methods for enhancing oil recovery (EOR) in domestic and international oilfields. Since the large-scale implementation of industrial polymer flooding in Daqing Oilfield in 1996, the overall recovery rate has increased by over 10%. With the advancement of chemical flooding technologies, conventional polymer flooding can no longer meet the practical demands of oilfield development. This study focuses on functional polymers, such as salt-resistant polymers and polymeric surfactants, tailored for Class II and III reservoirs in Daqing Oilfield. A series of experiments, including emulsification experiments, hydrodynamic characteristic size-reservoir compatibility comparison experiments, polymer retention experiments in porous media, and core flooding experiments, were conducted to investigate the differences between functional polymers and conventional polymers in terms of intrinsic properties and application performance. Comparative analyses of molecular chemical structures and micro-aggregation morphologies between functional polymers (branched polymers and polymeric surfactants) and conventional polymers revealed structural composition disparities and distinct viscosity-enhancing properties. From the perspective of aqueous solution viscosity enhancement mechanisms, functional polymers exhibit a three-stage viscosity-enhancing mechanism: bulk viscosity, associative viscosity, and emulsion-induced viscosity enhancement. The hydrodynamic characteristic sizes of polymers were analyzed to evaluate their compatibility with reservoir pore structures, and the seepage resistance mechanisms of both polymeric surfactants and salt-resistant polymers were identified. Core flooding experiments conclusively demonstrated the superior practical performance of functional polymers over conventional polymers. The application of functional polymers in polymer flooding can effectively enhance oil recovery. Full article
(This article belongs to the Section Materials Processes)
Show Figures

Figure 1

23 pages, 5125 KiB  
Article
Development of a Water-Sensitive Self-Thickening Emulsion Temporary Plugging Diverting Agent for High-Temperature and High-Salinity Reservoirs
by Chong Liang, Ning Qi, Liqiang Zhao, Xuesong Li and Zhenliang Li
Polymers 2025, 17(11), 1543; https://doi.org/10.3390/polym17111543 - 1 Jun 2025
Viewed by 501
Abstract
In oil and gas production, reservoir heterogeneity causes plugging removal fluids to preferentially enter high-permeability zones, hindering effective production enhancement in low-permeability reservoirs. Traditional chemical diverting agents exhibit insufficient stability in high-temperature, high-salinity environments, risking secondary damage. To address these challenges, this study [...] Read more.
In oil and gas production, reservoir heterogeneity causes plugging removal fluids to preferentially enter high-permeability zones, hindering effective production enhancement in low-permeability reservoirs. Traditional chemical diverting agents exhibit insufficient stability in high-temperature, high-salinity environments, risking secondary damage. To address these challenges, this study developed a water-sensitive self-thickening emulsion, targeting improved high-temperature stability, selective plugging, and easy flowback performance. Formulation optimization was achieved via orthogonal experiments and oil–water ratio adjustment, combined with particle size regulation and viscosity characterization. Core plugging experiments demonstrated the new emulsion system’s applicability and diverting effects. Results showed that under 150 °C and 15 × 104 mg/L NaCl, the emulsion maintained a stable viscosity of above 302.7 mPa·s, with particle size D50 increasing from 31.1 μm to 71.2 μm, exceeding API RP 13A’s 100 mPa·s threshold for acidizing diverters, providing an efficient plugging solution for high-temperature, high-salinity reservoirs. The injection pressure difference in high-permeability cores stabilized at 2.1 MPa, significantly enhancing waterflood sweep efficiency. The self-thickening mechanism, driven by salt-induced droplet coalescence, enables selective plugging in heterogeneous formations, as validated by core flooding tests showing a 40% higher pressure differential in high-permeability zones compared to conventional systems. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

23 pages, 8978 KiB  
Article
A Lignin-Based Zwitterionic Surfactant Facilitates Heavy Oil Viscosity Reduction via Interfacial Modification and Molecular Aggregation Disruption in High-Salinity Reservoirs
by Qiutao Wu, Tao Liu, Xinru Xu and Jingyi Yang
Molecules 2025, 30(11), 2419; https://doi.org/10.3390/molecules30112419 - 31 May 2025
Viewed by 550
Abstract
The development of eco-friendly surfactants is pivotal for enhanced oil recovery (EOR). In this study, a novel lignin-derived zwitterionic surfactant (DMS) was synthesized through a two-step chemical process involving esterification and free radical polymerization, utilizing renewable alkali lignin, maleic anhydride, dimethylamino propyl methacrylamide [...] Read more.
The development of eco-friendly surfactants is pivotal for enhanced oil recovery (EOR). In this study, a novel lignin-derived zwitterionic surfactant (DMS) was synthesized through a two-step chemical process involving esterification and free radical polymerization, utilizing renewable alkali lignin, maleic anhydride, dimethylamino propyl methacrylamide (DMAPMA), and sulfobetaine methacrylate (SBMA) as precursors. Comprehensive characterization via 1H NMR, FTIR, and XPS validated the successful integration of amphiphilic functionalities. Hydrophilic–lipophilic balance (HLB) analysis showed a strong tendency to form stable oil-in-water (O/W) emulsions. The experimental results showed a remarkable 91.6% viscosity reduction in Xinjiang heavy crude oil emulsions at an optimum dosage of 1000 mg/L. Notably, DMS retained an 84.8% viscosity reduction efficiency under hypersaline conditions (total dissolved solids, TDS = 200,460 mg/L), demonstrating exceptional salt tolerance. Mechanistic insights derived from zeta potential measurements and molecular dynamics simulations revealed dual functionalities: interfacial modification by DMS-induced O/W phase inversion and electrostatic repulsion (zeta potential: −30.89 mV) stabilized the emulsion while disrupting π–π interactions between asphaltenes and resins, thereby mitigating macromolecular aggregation in the oil phase. As a green, bio-based viscosity suppressor, DMS exhibits significant potential for heavy oil recovery in high-salinity reservoirs, addressing the persistent challenge of salinity-induced inefficacy in conventional chemical solutions and offering a sustainable pathway for enhanced oil recovery. Full article
Show Figures

Figure 1

25 pages, 6616 KiB  
Article
Optimization and Characterization of Crosslinked Chitosan-Based Oleogels Based on Mechanical Properties of Conventional Solid Fats
by Gabriela Baptista Brito, Jorge da Silva Pinho-Jr, André da Silva Guimarães, Carlos Adam Conte-Júnior, Marcio Nele, Daniel Perrone and Vanessa Naciuk Castelo-Branco
Polymers 2025, 17(11), 1526; https://doi.org/10.3390/polym17111526 - 29 May 2025
Viewed by 499
Abstract
Industrial trans and saturated fatty acids, which are key components of solid fats used in food products, should be replaced with unsaturated fatty acids from vegetable oils to reduce cardiovascular risk. However, unsaturated oils lack the structured networks required to replicate the technological [...] Read more.
Industrial trans and saturated fatty acids, which are key components of solid fats used in food products, should be replaced with unsaturated fatty acids from vegetable oils to reduce cardiovascular risk. However, unsaturated oils lack the structured networks required to replicate the technological properties of solid fats. Oleogelation, especially using polymer-based networks, offers a promising solution. This study optimized chitosan-based oleogels crosslinked with vanillin to mimic the texture of butter, partially hydrogenated fat, margarine, and palm fat while minimizing oil loss. Oleogels were prepared via the emulsion-template method and optimized through a central composite design combined with a desirability function, evaluating the effects of chitosan, vanillin, Tween® 60 concentrations, oil type (canola or soybean), and storage temperature (4 °C or 25 °C). Optimized oleogels were characterized for their rheological and microstructural properties. Chitosan concentration primarily governed oil loss, hardness, and adhesiveness of oleogels, independent of the oil phase and storage temperature. However, storage at 4 °C reduced oil loss but increased the hardness and adhesiveness compared to storage at 25 °C. The highest desirability scores (0.72 to 0.94) were achieved in soybean oil oleogels with 0.99% chitosan, 0.24–0.32% vanillin, and 0.17–0.18% Tween® 60, closely mimicking the texture of butter and margarine. These oleogels demonstrated stronger networks, enhanced gel strength, and elasticity, positioning them as viable alternatives to conventional solid fats. Full article
(This article belongs to the Special Issue Polysaccharides: Synthesis, Properties and Applications)
Show Figures

Graphical abstract

16 pages, 2637 KiB  
Article
Polyoxyethylene Group-Dependent Surface Properties and Aggregation Behavior in Oleyl-Based Sulfosuccinate Systems
by Ping Li, Zhengwei Zhang, Jie Chai, Yuan Liu, Siqi Han and Peixin Bai
Molecules 2025, 30(11), 2321; https://doi.org/10.3390/molecules30112321 - 26 May 2025
Viewed by 480
Abstract
Three oleyl-based sulfosuccinates with different polyoxyethylene (EO) chain length (MS-OEn, where n = 3, 5, 7) were synthesized, and their structure were confirmed using FT-IR and ¹H NMR analyses. The surfactant’s adsorption properties, aggregation behavior and practical performance were systematically investigated. [...] Read more.
Three oleyl-based sulfosuccinates with different polyoxyethylene (EO) chain length (MS-OEn, where n = 3, 5, 7) were synthesized, and their structure were confirmed using FT-IR and ¹H NMR analyses. The surfactant’s adsorption properties, aggregation behavior and practical performance were systematically investigated. Equilibrium surface tension measurements elucidated the surface adsorption properties such as critical micelle concentration (cmc) values and the corresponding surface tensions at cmc (γcmc). Dynamic surface tension analysis indicated slower adsorption kinetics for surfactants with longer EO chains. Aggregation studies demonstrated that MS-OE3 formed vesicles, whereas no such vesicular structures were observed in the aqueous solutions of MS-OE5 and MS-OE7 at equivalent concentrations. Further, it was observed that foam stability decreased with an increase in EO units, while MS-OE3 exhibited the best wetting ability. Notably, the liquid crystal emulsion formulated with MS-OE7 demonstrated exceptional long-term stability. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Graphical abstract

25 pages, 5888 KiB  
Article
Special Characterization and Excellent Antioxidant Capabilities of Zinc Chelated Squid Protein Nanoparticles
by Qiyi Zhou, Tianming Wang, Lixin Liu, Yaqi Kong, Yifan Liu, Wenhui Wu and Xiaozhen Diao
Foods 2025, 14(10), 1789; https://doi.org/10.3390/foods14101789 - 18 May 2025
Viewed by 437
Abstract
The functional exploration of marine-derived proteins is at the forefront of nutritional research. The Argentine squid protein (ASP) was extracted from Argentine squid carcasses and was hydrolyzed using neutral protease, with the degree of hydrolysis serving as the response variable. Using single-factor experiments [...] Read more.
The functional exploration of marine-derived proteins is at the forefront of nutritional research. The Argentine squid protein (ASP) was extracted from Argentine squid carcasses and was hydrolyzed using neutral protease, with the degree of hydrolysis serving as the response variable. Using single-factor experiments and response surface methodology, we identified optimal conditions for preparing Argentine squid protein peptides (ASPP). The hydrolysis degree reached 41.32% ± 0.27 under the conditions of 7% enzyme preparation addition, 2.4 h enzyme digestion time, and 6% substrate concentration. The ASPP was subsequently chelated with zinc sulfate to produce Zn-ASPP, whose structural and functional properties—including particle size, FTIR, DSC, viscosity, SEM, solubility, emulsibility, foamability, and antioxidant capacity—were systematically characterized. The results indicate that Zn-ASPP forms stable nanoparticles with strong antioxidant activity. The strongest antioxidant capacity reached 73.79% at a solution pH of 8, making it particularly valuable for food industry applications. This work may provide a theoretical basis and practical guidance for the development of zinc-fortified marine protein supplements with enhanced antioxidant properties. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Graphical abstract

14 pages, 4138 KiB  
Article
Preparation of Tannic Acid-Pectin Coated PVDF Membrane for High-Efficiency Separation of Oil and Water Emulsions
by Liangku Zhai, Jiuyun Cui, Lei Lu, Hailong Wang, Can Wei, Jirong Luo and Atian Xie
Membranes 2025, 15(5), 155; https://doi.org/10.3390/membranes15050155 - 16 May 2025
Viewed by 704
Abstract
The simple preparation of superhydrophilic membranes with good stability is of great significance for efficient oil–water separation. In this work, a polyvinylidene fluoride (PVDF) membrane modified with tannic acid (TA) and pectin (PT) was developed through immersion in TA/PT solutions, facilitating the formation [...] Read more.
The simple preparation of superhydrophilic membranes with good stability is of great significance for efficient oil–water separation. In this work, a polyvinylidene fluoride (PVDF) membrane modified with tannic acid (TA) and pectin (PT) was developed through immersion in TA/PT solutions, facilitating the formation of complexes via co-deposition. The optimized PVDF@TA/PT3 membrane exhibited superhydrophilicity/superoleophobicity. The membrane achieved remarkable separation efficiencies exceeding 98.3% and fluxes ranging from 71.3 to 156.3 L m−2 h−1 for various oil–water emulsions under gravity-driven conditions. Notably, the membrane maintained exceptional durability through 10 separation cycles, retaining about 98% efficiency while exhibiting strong antifouling properties. Excellent separation performance coupled with facile fabrication protocol and chemical stability of the membrane, position the PVDF@TA/PT membrane as a technologically viable candidate for wastewater purification. Full article
(This article belongs to the Special Issue Emerging Superwetting Membranes: New Advances in Water Treatment)
Show Figures

Figure 1

Back to TopTop