Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (19,106)

Search Parameters:
Keywords = emerging treatments

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 745 KiB  
Review
Design and Application of Superhydrophobic Magnetic Nanomaterials for Efficient Oil–Water Separation: A Critical Review
by Rabiga M. Kudaibergenova, Elvira A. Baibazarova, Didara T. Balpanova, Gulnar K. Sugurbekova, Aizhan M. Serikbayeva, Marzhan S. Kalmakhanova, Nazgul S. Murzakasymova, Arman A. Kabdushev and Seitzhan A. Orynbayev
Molecules 2025, 30(15), 3313; https://doi.org/10.3390/molecules30153313 (registering DOI) - 7 Aug 2025
Abstract
Superhydrophobic magnetic nanomaterials (SHMNMs) are emerging as multifunctional platforms for efficient oil–water separation due to their combination of extreme water repellency, strong oil affinity, and external magnetic responsiveness. This review presents a comprehensive analysis of recent advances in the design, synthesis, and environmental [...] Read more.
Superhydrophobic magnetic nanomaterials (SHMNMs) are emerging as multifunctional platforms for efficient oil–water separation due to their combination of extreme water repellency, strong oil affinity, and external magnetic responsiveness. This review presents a comprehensive analysis of recent advances in the design, synthesis, and environmental application of SHMNMs. The theoretical foundations of superhydrophobicity and the physicochemical behavior of magnetic nanoparticles are first outlined, followed by discussion of their synergistic integration. Key fabrication techniques—such as sol–gel synthesis, electrospinning, dip-coating, laser-assisted processing, and the use of biomass-derived precursors—are critically assessed in terms of their ability to tailor surface morphology, chemical functionality, and long-term durability. The review further explores the mechanisms of oil adsorption, magnetic separation, and material reusability under realistic environmental conditions. Special attention is paid to the scalability, mechanical resilience, and environmental compatibility of SHMNMs in the context of water treatment technologies. Current limitations, including reduced efficiency in harsh media, potential environmental risks, and challenges in material regeneration, are discussed. This work provides a structured overview that could support the rational development of next-generation superhydrophobic materials tailored for sustainable and high-performance separation of oil and organic pollutants from water. Full article
(This article belongs to the Special Issue Recent Advances in Superhydrophobic Materials and Their Application)
Show Figures

Figure 1

18 pages, 1557 KiB  
Review
Extracellular Vesicle-Derived Bioactive Molecules for Corneal and Ocular Surface Regeneration
by Ana Kolenc, Živa Dimnik, Miha Marzidovšek, Petra Schollmayer, Marko Hawlina, Elvira Maličev and Zala Lužnik Marzidovšek
J. Clin. Med. 2025, 14(15), 5594; https://doi.org/10.3390/jcm14155594 (registering DOI) - 7 Aug 2025
Abstract
Cell-based therapies emerge as potential treatment options for various debilitating diseases. Preclinical research and clinical studies involving cells increased exponentially in the past decade. In addition to cell-based approaches, the use of extracellular vesicles (EVs), which are released by nearly all cell types, [...] Read more.
Cell-based therapies emerge as potential treatment options for various debilitating diseases. Preclinical research and clinical studies involving cells increased exponentially in the past decade. In addition to cell-based approaches, the use of extracellular vesicles (EVs), which are released by nearly all cell types, emerged as a promising cell-free alternative. Those approaches are also being explored in the field of ophthalmology. Several clinical trials involving EVs are underway to develop potential treatments for advanced ocular surface diseases, including corneal disorders, injuries, and dry eye disease. The cargo carried by EVs has been shown to include a diverse array of functional molecules such as transcription factors, cytokines, growth factors, mRNA, tRNA, rRNA, miRNA, and fragments of dsDNA. While the molecular composition of EVs is already well characterised, the specific activity of these molecules upon delivery to recipient cells remains poorly understood. In this review, we summarise recent studies investigating the bioactive molecules within EVs shown to influence or modulate cellular activity on the ocular surface. Among these, various miRNAs have most commonly been identified as therapeutic agents targeting distinct molecular pathways. The EVs studied were predominantly derived from various mesenchymal stem cells. Full article
(This article belongs to the Section Ophthalmology)
44 pages, 4978 KiB  
Review
Performance of Continuous Electrocoagulation Processes (CEPs) as an Efficient Approach for the Treatment of Industrial Organic Pollutants: A Comprehensive Review
by Zakaria Al-Qodah, Maha Mohammad AL-Rajabi, Hiba H. Al Amayreh, Eman Assirey, Khalid Bani-Melhem and Mohammad Al-Shannag
Water 2025, 17(15), 2351; https://doi.org/10.3390/w17152351 (registering DOI) - 7 Aug 2025
Abstract
Electrocoagulation (EC) processes have emerged as an efficient solution for different inorganic and organic effluents. The main characteristics of this versatile process are its ease of operation and low sludge production. The literature indicates that EC can be successfully used as a single [...] Read more.
Electrocoagulation (EC) processes have emerged as an efficient solution for different inorganic and organic effluents. The main characteristics of this versatile process are its ease of operation and low sludge production. The literature indicates that EC can be successfully used as a single process or a step within a combined treatment system. If used in a combined system, this process could be employed as a pre-, a post-, or middle treatment step. Additionally, the EC process has been used in both continuous and batch modes. In most studies, EC has achieved significant improvements in the treated water quality and relatively low total energy consumption. This review presents a comprehensive evaluation and analysis of standalone and combined continuous EC processes. The influence of key operational parameters on continuous EC performance is thoroughly discussed. Furthermore, recent advancements in reactor design, modeling, and process optimization are addressed. The benefits of integrating other treatment processes with the EC process, such as advanced oxidation, membranes, chemical coagulation, and adsorption, are also evaluated. The performance of most standalone and combined EC processes used for organic pollutant treatment and published in the last 25 years is critically analyzed. This review is expected to give researchers many insights to improve their treatment scenario with recent and efficient environmental experiences, sustainability, and circular economy. The clearly presented information is expected to guide researchers in selecting efficient, cost-effective, and time-saving treatment alternatives. The findings ensure the considerable potential of continuous EC treatment processes for organic pollutants. However, more research is warranted to enhance process design, operational efficiency, scale-up, and economic viability. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

16 pages, 3102 KiB  
Article
The Effect of Mild Exercise in the Chemotherapy Room on the Anxiety Level of Cancer Patients: A Prospective Observational Paired Cohort Study
by Christina Mavrogiannopoulou, Georgios Papastratigakis, Emmanouela Koutoulaki, Panagiotis Vardakis, Georgios Stefanakis, Athanasios Kourtsilidis, Kostantinos Lasithiotakis, Alexandra Papaioannou and Vasileia Nyktari
J. Clin. Med. 2025, 14(15), 5591; https://doi.org/10.3390/jcm14155591 - 7 Aug 2025
Abstract
Background/Objectives: Cancer represents a significant health challenge, with high mortality and morbidity rates. Its diagnosis often triggers chronic stress, adversely affecting patient outcomes. Exercise has emerged as complementary therapy, enhancing treatment adherence and mitigating the side effects of chemotherapy. This study examines the [...] Read more.
Background/Objectives: Cancer represents a significant health challenge, with high mortality and morbidity rates. Its diagnosis often triggers chronic stress, adversely affecting patient outcomes. Exercise has emerged as complementary therapy, enhancing treatment adherence and mitigating the side effects of chemotherapy. This study examines the effects of mild exercise during chemotherapy on patient anxiety. Methods: This prospective paired cohort study was conducted in the General Oncology Hospital of Kifisia “Agioi Anargyroi” in Athens, Greece. Adult cancer patients undergoing chemotherapy participated, excluding those with cognitive, hearing, or motor impairments, those who experienced side effects, or those who declined consent. Anxiety was measured before and after a 20-minute exercise routine performed during chemotherapy, using the Greek-translated State–Trait Anxiety Inventory (STAI). The exercise regimen included warm-up, full-body stretching, and cool-down exercises. Pre- and post-exercise scores were analyzed using the Wilcoxon signed-rank test. Results: Forty-five patients (20 women, 25 men; mean age 69.02 ± 10.62 years) with various cancer backgrounds participated. Pre-intervention anxiety levels were in the borderline “moderate” range, dropping post-exercise to the “low” range. Mean STAI scores decreased from 37.73 ± 13.33 to 32.00 ± 14.22 (p < 0.0001), with a medium-large effect size (Cohen’s d for paired samples = −0.646). No significant correlation was found between age and anxiety scores. Discussion: This study found a significant short-term reduction in anxiety, suggesting that incorporating mild exercise during chemotherapy may help in alleviating patient stress. The medium-to-large effect size supports the potential for meaningful short-term benefits. Conclusions: Incorporating mild exercise during chemotherapy may help reduce anxiety and psychological burden. These findings underscore the need for more comprehensive research in larger, more diverse populations to better understand the benefits of incorporating mild exercise during chemotherapy. Full article
(This article belongs to the Section Oncology)
Show Figures

Figure 1

21 pages, 583 KiB  
Review
Diagnosis and Emerging Biomarkers of Cystic Fibrosis-Related Kidney Disease (CFKD)
by Hayrettin Yavuz, Manish Kumar, Himanshu Ballav Goswami, Uta Erdbrügger, William Thomas Harris, Sladjana Skopelja-Gardner, Martha Graber and Agnieszka Swiatecka-Urban
J. Clin. Med. 2025, 14(15), 5585; https://doi.org/10.3390/jcm14155585 - 7 Aug 2025
Abstract
As people with cystic fibrosis (PwCF) live longer, kidney disease is emerging as a significant comorbidity that is increasingly linked to cardiovascular complications and progression to end-stage kidney disease. In our recent review, we proposed the unifying term CF-related kidney disease (CFKD) to [...] Read more.
As people with cystic fibrosis (PwCF) live longer, kidney disease is emerging as a significant comorbidity that is increasingly linked to cardiovascular complications and progression to end-stage kidney disease. In our recent review, we proposed the unifying term CF-related kidney disease (CFKD) to encompass the spectrum of kidney dysfunction observed in this population. Early detection of kidney injury is critical for improving long-term outcomes, yet remains challenging due to the limited sensitivity of conventional laboratory tests, particularly in individuals with altered muscle mass and unique CF pathophysiology. Emerging approaches, including novel blood and urinary biomarkers, urinary extracellular vesicles, and genetic risk profiling, offer promising avenues for identifying subclinical kidney damage. When integrated with machine learning algorithms, these tools may enable the development of personalized risk stratification models and targeted therapeutic strategies. This precision medicine approach has the potential to transform kidney disease management in PwCF, shifting care from reactive treatment of late-stage disease to proactive monitoring and early intervention. Full article
(This article belongs to the Special Issue Cystic Fibrosis: Clinical Manifestations and Treatment)
Show Figures

Figure 1

15 pages, 1369 KiB  
Article
MTLNFM: A Multi-Task Framework Using Neural Factorization Machines to Predict Patient Clinical Outcomes
by Rui Yin, Jiaxin Li, Qiang Yang, Xiangyu Chen, Xiang Zhang, Mingquan Lin, Jiang Bian and Ashwin Subramaniam
Appl. Sci. 2025, 15(15), 8733; https://doi.org/10.3390/app15158733 - 7 Aug 2025
Abstract
Accurately predicting patient clinical outcomes is a complex task that requires integrating diverse factors, including individual characteristics, treatment histories, and environmental influences. This challenge is further exacerbated by missing data and inconsistent data quality, which often hinder the effectiveness of traditional single-task learning [...] Read more.
Accurately predicting patient clinical outcomes is a complex task that requires integrating diverse factors, including individual characteristics, treatment histories, and environmental influences. This challenge is further exacerbated by missing data and inconsistent data quality, which often hinder the effectiveness of traditional single-task learning (STL) models. Multi-Task Learning (MTL) has emerged as a promising paradigm to address these limitations by jointly modeling related prediction tasks and leveraging shared information. In this study, we proposed MTLNFM, a multi-task learning framework built upon Neural Factorization Machines, to jointly predict patient clinical outcomes on a cohort of 2001 ICU patients. We designed a preprocessing strategy in the framework that transforms missing values into informative representations, mitigating the impact of sparsity and noise in clinical data. We leveraged the shared representation layers, composed of a factorization machine and dense neural layers that can capture high-order feature interactions and facilitate knowledge sharing across tasks for the prediction. We conducted extensive comparative experiments, demonstrating that MTLNFM outperforms STL baselines across all three tasks (i.e., frailty status, hospital length of stay and mortality prediction), achieving AUROC scores of 0.7514, 0.6722, and 0.7754, respectively. A detailed case analysis further revealed that MTLNFM effectively integrates both task-specific and shared representations, resulting in more robust and realistic predictions aligned with actual patient outcome distributions. Overall, our findings suggest that MTLNFM is a promising and practical solution for clinical outcome prediction, particularly in settings with limited or incomplete data, and can support more informed clinical decision-making and resource planning. Full article
(This article belongs to the Special Issue Advanced Image and Video Processing Technology for Healthcare)
Show Figures

Figure 1

14 pages, 670 KiB  
Review
Hygiene Practices Against Dermatophytic Fungi: A Review of Strategies to Combat Antifungal Resistance
by Aditya K. Gupta, Daniel Taylor, Tong Wang, Elizabeth A. Cooper and Ditte Marie L. Saunte
Biology 2025, 14(8), 1016; https://doi.org/10.3390/biology14081016 - 7 Aug 2025
Abstract
Superficial fungal infections of the feet, such as tinea pedis and onychomycosis, are highly prevalent and frequently recurrent, often due to persistent contamination of footwear, textiles, and foot care instruments. Despite growing concern over antifungal resistance, environmental sources of reinfection remain under-recognized in [...] Read more.
Superficial fungal infections of the feet, such as tinea pedis and onychomycosis, are highly prevalent and frequently recurrent, often due to persistent contamination of footwear, textiles, and foot care instruments. Despite growing concern over antifungal resistance, environmental sources of reinfection remain under-recognized in clinical practice. This review critically examines historical and contemporary methods used to sanitize shoes, socks, podiatric tools, and related materials. Evidence from peer-reviewed studies published between 1938 and 2025 was analyzed across multiple disinfection categories, including chemical agents, thermal methods, laundering, ultraviolet- and ozone-based technologies, antimicrobial textiles, and sterilization protocols. Findings reveal a range of efficacies, limitations, and practical considerations across methods, with steam sterilization emerging as the most reliable for reusable instruments. A multifaceted approach combining pharmacologic treatment with consistent environmental hygiene is essential for breaking reinfection cycles and reducing antifungal resistance. This review highlights the need for clinical education and research into scalable, effective disinfection strategies. Full article
(This article belongs to the Section Microbiology)
Show Figures

Figure 1

21 pages, 7477 KiB  
Article
Bidirectional Hypoxic Extracellular Vesicle Signaling Between Müller Glia and Retinal Pigment Epithelium Regulates Retinal Metabolism and Barrier Function
by Alaa M. Mansour, Mohamed S. Gad, Samar Habib and Khaled Elmasry
Biology 2025, 14(8), 1014; https://doi.org/10.3390/biology14081014 - 7 Aug 2025
Abstract
The retina is highly sensitive to oxygen and blood supply, and hypoxia plays a key role in retinal diseases such as diabetic retinopathy (DR) and age-related macular degeneration (AMD). Müller glial cells, which are essential for retinal homeostasis, respond to injury and hypoxia [...] Read more.
The retina is highly sensitive to oxygen and blood supply, and hypoxia plays a key role in retinal diseases such as diabetic retinopathy (DR) and age-related macular degeneration (AMD). Müller glial cells, which are essential for retinal homeostasis, respond to injury and hypoxia with reactive gliosis, characterized by the upregulation of the glial fibrillary acidic protein (GFAP) and vimentin, cellular hypertrophy, and extracellular matrix changes, which can impair retinal function and repair. The retinal pigment epithelium (RPE) supports photoreceptors, forms part of the blood–retinal barrier, and protects against oxidative stress; its dysfunction contributes to retinal degenerative diseases such as AMD, retinitis pigmentosa (RP), and Stargardt disease (SD). Extracellular vesicles (EVs) play a crucial role in intercellular communication, protein homeostasis, and immune modulation, and have emerged as promising diagnostic and therapeutic tools. Understanding the role of extracellular vesicles’ (EVs’) signaling machinery of glial cells and the retinal pigment epithelium (RPE) is critical for developing effective treatments for retinal degeneration. In this study, we investigated the bidirectional EV-mediated crosstalk between RPE and Müller cells under hypoxic conditions and its impact on cellular metabolism and retinal cell integrity. Our findings demonstrate that RPE-derived extracellular vesicles (RPE EVs) induce time-dependent metabolic reprogramming in Müller cells. Short-term exposure (24 h) promotes pathways supporting neurotransmitter cycling, calcium and mineral absorption, and glutamate metabolism, while prolonged exposure (72 h) shifts Müller cell metabolism toward enhanced mitochondrial function and ATP production. Conversely, Müller cell-derived EVs under hypoxia influenced RPE metabolic pathways, enhancing fatty acid metabolism, intracellular vesicular trafficking, and the biosynthesis of mitochondrial co-factors such as ubiquinone. Proteomic analysis revealed significant modulation of key regulatory proteins. In Müller cells, hypoxic RPE-EV exposure led to reduced expression of Dyskerin Pseudouridine Synthase 1 (DKc1), Eukaryotic Translation Termination Factor 1 (ETF1), and Protein Ser/Thr phosphatases (PPP2R1B), suggesting alterations in RNA processing, translational fidelity, and signaling. RPE cells exposed to hypoxic Müller cell EVs exhibited elevated Ribosome-binding protein 1 (RRBP1), RAC1/2, and Guanine Nucleotide-Binding Protein G(i) Subunit Alpha-1 (GNAI1), supporting enhanced endoplasmic reticulum (ER) function and cytoskeletal remodeling. Functional assays also revealed the compromised barrier integrity of the outer blood–retinal barrier (oBRB) under hypoxic co-culture conditions. These results underscore the adaptive but time-sensitive nature of retinal cell communication via EVs in response to hypoxia. Targeting this crosstalk may offer novel therapeutic strategies to preserve retinal structure and function in ischemic retinopathies. Full article
Show Figures

Graphical abstract

32 pages, 1991 KiB  
Review
Synthetic Small-Molecule Ligands Targeted to Adenosine Receptors: Is There Potential Towards Ischemic Heart Disease?
by Qi Xu, Yaw Nana Opoku, Kalwant S. Authi and Agostino Cilibrizzi
Cells 2025, 14(15), 1219; https://doi.org/10.3390/cells14151219 - 7 Aug 2025
Abstract
Ischemic heart disease (IHD) represents a leading cause of global morbidity and mortality. Despite significant advances in treatment achieved over recent decades, as well as various therapeutic strategies available to manage IHD progression currently, the global incidence of this disorder remains high. This [...] Read more.
Ischemic heart disease (IHD) represents a leading cause of global morbidity and mortality. Despite significant advances in treatment achieved over recent decades, as well as various therapeutic strategies available to manage IHD progression currently, the global incidence of this disorder remains high. This review examines essential cell biology aspects of adenosine receptors (ARs), along with the effects of known synthetic small-molecule AR ligands, to provide an up-to-date view on the therapeutic potential towards IHD treatment. In particular, we report here advancements made on a selection of AR synthetic ligands that have demonstrated efficacy in pre-clinical or clinical studies, thereby holding promise as new therapeutic candidates in the field of IHD. Although this work adds further evidence that clinically valid small-molecule therapeutic agents targeting ARs exist, their use represents an emerging area, with most drug prototypes still in the pre-clinical developmental stage and many lacking large-scale clinical trials. The future lies in identifying improved AR synthetic ligands with enhanced efficacy and selectivity, as well as reduced adverse side effects, along with establishing a platform of specific and diversified pre-clinical tests, to inform in turn the resulting clinical investigations. Full article
Show Figures

Figure 1

26 pages, 2011 KiB  
Review
Substance Abuse and Cognitive Decline: The Critical Role of Tau Protein as a Potential Biomarker
by Liliana Rebolledo-Pérez, Jorge Hernández-Bello, Alicia Martínez-Ramos, Rolando Castañeda-Arellano, David Fernández-Quezada, Flavio Sandoval-García and Irene Guadalupe Aguilar-García
Int. J. Mol. Sci. 2025, 26(15), 7638; https://doi.org/10.3390/ijms26157638 - 7 Aug 2025
Abstract
Tau protein is essential for the structural stability of neurons, particularly through its role in microtubule assembly and axonal transport. However, when abnormally hyperphosphorylated or cleaved, Tau can aggregate into insoluble forms that disrupt neuronal function, contributing to the pathogenesis of neurodegenerative diseases [...] Read more.
Tau protein is essential for the structural stability of neurons, particularly through its role in microtubule assembly and axonal transport. However, when abnormally hyperphosphorylated or cleaved, Tau can aggregate into insoluble forms that disrupt neuronal function, contributing to the pathogenesis of neurodegenerative diseases such as Alzheimer’s disease (AD). Emerging evidence suggests that similar Tau-related alterations may occur in individuals with chronic exposure to psychoactive substances. This review compiles experimental, clinical, and postmortem findings that collectively indicate a substance-specific influence on Tau dynamics. Alcohol and opioids, for instance, promote Tau hyperphosphorylation and fragmentation through the activation of kinases such as GSK-3β and CDK5, as well as proteases like caspase-3, leading to neuroinflammation and microglial activation. Stimulants and dissociatives disrupt insulin signaling, increase oxidative stress, and impair endosomal trafficking, all of which can exacerbate Tau pathology. In contrast, cannabinoids and psychedelics may exert protective effects by modulating kinase activity, reducing inflammation, or enhancing neuroplasticity. Psychedelic compounds such as psilocybin and harmine have been demonstrated to decrease Tau phosphorylation and facilitate cognitive restoration in animal models. Although the molecular mechanisms differ across substances, Tau consistently emerges as a convergent target altered in substance-related cognitive disorders. Understanding these pathways may provide not only mechanistic insights into drug-induced neurotoxicity but also identify Tau as a valuable biomarker and potential therapeutic target for the prevention or treatment of cognitive decline associated with substance use. Full article
(This article belongs to the Special Issue Neurobiological Mechanisms of Addictive Disorders)
Show Figures

Figure 1

28 pages, 3469 KiB  
Review
Prostate Cancer Treatments and Their Effects on Male Fertility: Mechanisms and Mitigation Strategies
by Aris Kaltsas, Nikolaos Razos, Zisis Kratiras, Dimitrios Deligiannis, Marios Stavropoulos, Konstantinos Adamos, Athanasios Zachariou, Fotios Dimitriadis, Nikolaos Sofikitis and Michael Chrisofos
J. Pers. Med. 2025, 15(8), 360; https://doi.org/10.3390/jpm15080360 - 7 Aug 2025
Abstract
Prostate cancer (PCa) is the second most frequently diagnosed malignancy in men worldwide. Although traditionally considered a disease of older men, the incidence of early-onset PCa (diagnosis < 55 years) is steadily rising. Advances in screening and therapy have significantly improved survival, creating [...] Read more.
Prostate cancer (PCa) is the second most frequently diagnosed malignancy in men worldwide. Although traditionally considered a disease of older men, the incidence of early-onset PCa (diagnosis < 55 years) is steadily rising. Advances in screening and therapy have significantly improved survival, creating a growing cohort of younger survivors for whom post-treatment quality of life—notably reproductive function—is paramount. Curative treatments such as radical prostatectomy, pelvic radiotherapy, androgen-deprivation therapy (ADT), and chemotherapy often cause irreversible infertility via multiple mechanisms, including surgical disruption of the ejaculatory tract, endocrine suppression of spermatogenesis, direct gonadotoxic injury to the testes, and oxidative sperm DNA damage. Despite these risks, fertility preservation is frequently overlooked in pre-treatment counseling, leaving many patients unaware of their options. This narrative review synthesizes current evidence on how PCa therapies impact male fertility, elucidates the molecular and physiological mechanisms of iatrogenic infertility, and evaluates both established and emerging strategies for fertility preservation and restoration. Key interventions covered include sperm cryopreservation, microsurgical testicular sperm extraction (TESE), and assisted reproductive technologies (ART). Psychosocial factors influencing decision-making, novel biomarkers predictive of post-treatment spermatogenic recovery, and long-term offspring outcomes are also examined. The review underscores the urgent need for timely, multidisciplinary fertility consultation as a routine component of PCa care. As PCa increasingly affects men in their reproductive years, proactively integrating preservation into standard oncologic practice should become a standard survivorship priority. Full article
(This article belongs to the Special Issue Clinical Advances in Male Genitourinary and Sexual Health)
Show Figures

Figure 1

25 pages, 1054 KiB  
Review
Gut Feeling: Biomarkers and Biosensors’ Potential in Revolutionizing Inflammatory Bowel Disease (IBD) Diagnosis and Prognosis—A Comprehensive Review
by Beatriz Teixeira, Helena M. R. Gonçalves and Paula Martins-Lopes
Biosensors 2025, 15(8), 513; https://doi.org/10.3390/bios15080513 - 7 Aug 2025
Abstract
Inflammatory Bowel Diseases (IBDs) are complex, multifactorial disorders with no known cure, necessitating lifelong care and often leading to surgical interventions. This ongoing healthcare requirement, coupled with the increased use of biological drugs and rising disease prevalence, significantly increases the financial burden on [...] Read more.
Inflammatory Bowel Diseases (IBDs) are complex, multifactorial disorders with no known cure, necessitating lifelong care and often leading to surgical interventions. This ongoing healthcare requirement, coupled with the increased use of biological drugs and rising disease prevalence, significantly increases the financial burden on the healthcare systems. Thus, a number of novel technological approaches have emerged in order to face some of the pivotal questions still associated with IBD. In navigating the intricate landscape of IBD, biosensors act as indispensable allies, bridging the gap between traditional diagnostic methods and the evolving demands of precision medicine. Continuous progress in biosensor technology holds the key to transformative breakthroughs in IBD management, offering more effective and patient-centric healthcare solutions considering the One Health Approach. Here, we will delve into the landscape of biomarkers utilized in the diagnosis, monitoring, and management of IBD. From well-established serological and fecal markers to emerging genetic and epigenetic markers, we will explore the role of these biomarkers in aiding clinical decision-making and predicting treatment response. Additionally, we will discuss the potential of novel biomarkers currently under investigation to further refine disease stratification and personalized therapeutic approaches in IBD. By elucidating the utility of biosensors across the spectrum of IBD care, we aim to highlight their importance as valuable tools in optimizing patient outcomes and reducing healthcare costs. Full article
(This article belongs to the Special Issue Feature Papers of Biosensors)
Show Figures

Figure 1

15 pages, 3724 KiB  
Article
Exploring the Association Between Multidimensional Dietary Patterns and Non-Scarring Hair Loss Using Mendelian Randomization
by Lingfeng Pan, Philipp Moog, Caihong Li, Leonard Steinbacher, Samuel Knoedler, Haydar Kükrek, Ulf Dornseifer, Hans-Günther Machens and Jun Jiang
Nutrients 2025, 17(15), 2569; https://doi.org/10.3390/nu17152569 - 7 Aug 2025
Abstract
Background: Androgenetic alopecia (AGA) and alopecia areata (AA) impose significant psychosocial burdens. While pharmacological and surgical treatments exist, the role of dietary factors remains underexplored due to methodological limitations in observational studies. This Mendelian randomization (MR) study investigates causal relationships between 187 dietary [...] Read more.
Background: Androgenetic alopecia (AGA) and alopecia areata (AA) impose significant psychosocial burdens. While pharmacological and surgical treatments exist, the role of dietary factors remains underexplored due to methodological limitations in observational studies. This Mendelian randomization (MR) study investigates causal relationships between 187 dietary exposures and hair loss, leveraging genetic variants to address confounding biases. Methods: Genome-wide association study (GWAS) data from 161,625 UK Biobank participants were analyzed, focusing on food preferences and intake patterns. Genetic instruments for each of the 187 dietary exposures were selected at a genome-wide significance threshold (p < 5 × 10−8), with rigorous sensitivity analyses (MR-Egger, MR-PRESSO) to validate causality. Outcomes included AA and AGA datasets from the FinnGen consortium. Results: MR analysis identified 18 specific dietary exposures significantly associated with non-scarring hair loss (FDR < 0.05). Protective effects emerged for antioxidant-rich dietary exposures, represented by higher preferences for melon, onions, and tea. Elevated risks were observed for certain exposures, including croissants, goat cheese, and whole milk. Alcohol consumption exhibited the strongest risk associations. Our extensive analysis of alcohol intake, combining data from multiple studies, consistently identified it as a significant risk factor for both alopecia areata and androgenetic alopecia. Conclusions: These findings imply modifiable dietary patterns in hair loss pathophysiology. A dual strategy is proposed: prioritizing polyphenol-rich plant foods while minimizing pro-inflammatory triggers like processed carbohydrates and alcohol. Clinically, tailored dietary adjustments—reducing ultra-processed foods and alcohol—may complement existing therapies for hair loss management. Full article
(This article belongs to the Section Nutrition and Metabolism)
Show Figures

Figure 1

21 pages, 880 KiB  
Review
Regenerative Cartilage Treatment for Focal Chondral Defects in the Knee: Focus on Marrow-Stimulating and Cell-Based Scaffold Approaches
by Filippo Migliorini, Francesco Simeone, Tommaso Bardazzi, Michael Kurt Memminger, Gennaro Pipino, Raju Vaishya and Nicola Maffulli
Cells 2025, 14(15), 1217; https://doi.org/10.3390/cells14151217 - 7 Aug 2025
Abstract
Focal chondral defects of the knee are a common cause of pain and functional limitation in active individuals and may predispose to early degenerative joint changes. Given the limited regenerative capacity of hyaline cartilage, biologically based surgical strategies have emerged to promote tissue [...] Read more.
Focal chondral defects of the knee are a common cause of pain and functional limitation in active individuals and may predispose to early degenerative joint changes. Given the limited regenerative capacity of hyaline cartilage, biologically based surgical strategies have emerged to promote tissue repair and restore joint function. This narrative review critically examines current treatment approaches that rely on autologous cell sources and scaffold-supported regeneration. Particular emphasis is placed on techniques that stimulate endogenous repair or support chondrocyte-based tissue restoration through the use of autologous biomaterial constructs. The influence of lesion morphology, joint biomechanics, and patient-specific variables on treatment selection is discussed in detail, focusing on the differences between tibiofemoral and patellofemoral involvement. Biologically driven approaches have shown promising mid- to long-term outcomes in selected patients, and are increasingly favoured over traditional methods in specific clinical scenarios. However, the literature remains limited by heterogeneity in study design, follow-up duration, and outcome measures. This review aims to provide an evidence-based, morphology-informed framework to support the clinical decision-making process in the management of knee cartilage defects. Full article
Show Figures

Figure 1

15 pages, 1304 KiB  
Review
Calcific Aortic Valve Stenosis: A Focal Disease in Older and Complex Patients—What Could Be the Best Time for an Appropriate Interventional Treatment?
by Annamaria Mazzone, Augusto Esposito, Ilenia Foffa and Sergio Berti
J. Clin. Med. 2025, 14(15), 5560; https://doi.org/10.3390/jcm14155560 - 7 Aug 2025
Abstract
Calcific aortic stenosis (CAS) is a newly emerging pandemic in elderly individuals due to the aging of the population in the world. Surgical Aortic Valve Replacement (SAVR) and Transcatheter Aortic Valve Replacement (TAVR) are the cornerstone of the management of severe aortic stenosis [...] Read more.
Calcific aortic stenosis (CAS) is a newly emerging pandemic in elderly individuals due to the aging of the population in the world. Surgical Aortic Valve Replacement (SAVR) and Transcatheter Aortic Valve Replacement (TAVR) are the cornerstone of the management of severe aortic stenosis accompanied by one or more symptoms. Moreover, an appropriate interventional treatment of CAS, in elderly patients, is a very complex decision for heart teams, to avoid bad outcomes such as operative mortality, cardiovascular and all-cause death, hospitalization for heart failure, worsening of quality of life. In fact, CAS in the elderly is not only a focal valve disease, but a very complex clinical picture with different risk factors and etiologies, differing underlying pathophysiology, large phenotypic heterogeneity in a context of subjective biological, phenotypic and functional aging until frailty and disability. In this review, we analyzed separately and in a more integrated manner, the natural and prognostic histories of the progression of aortic stenosis, the phenotypes of myocardial damage and heart failure, within the metrics and aging trajectory. The aim is to suggest, during the clinical timing of valve disease, the best interval time for an appropriate and effective interventional treatment in each older patient, beyond subjective symptoms by integration of clinical, geriatric, chemical, and advanced imaging biomarkers. Full article
(This article belongs to the Section Cardiology)
Show Figures

Figure 1

Back to TopTop