MTLNFM: A Multi-Task Framework Using Neural Factorization Machines to Predict Patient Clinical Outcomes
Abstract
1. Introduction
2. Materials and Methods
2.1. Dataset
2.2. Feature Engineering
2.3. MTL Model Construction
2.4. Loss Function
2.5. Experiment Design
- Linear regression (LR): A basic model that calculates the first-order linear relationship between the input features and the target variable.
- XGBoost-raw: XGBoost [38], or Extreme Gradient Boosting, is a powerful ensemble learning algorithm that builds multiple decision trees sequentially. XGBoost-raw is XGBoost directly trained on the raw input features.
- XGBoost-embed: This version of XGBoost is trained on the embedded features, where the input features are transformed into a low-dimensional, dense representation.
- FM [34]: Factorization Machine extends linear models by creating second-order interactions between features. This approach adds the ability to capture interactions between pairs of features.
3. Results
3.1. Performance Comparison Between Baseline Methods and MTLNFM
3.2. STL vs. MTL Performance Comparison
3.3. The Comparison of Patients’ Characteristics Distribution
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Adeghe, E.P.; Okolo, C.A.; Ojeyinka, O.T. The role of big data in healthcare: A review of implications for patient outcomes and treatment personalization. World J. Biol. Pharm. Health Sci. 2024, 17, 198–204. [Google Scholar]
- Choi, A.; Lee, K.; Hyun, H.; Kim, K.J.; Ahn, B.; Lee, K.H.; Hahn, S.; Choi, S.Y.; Kim, J.H. A novel deep learning algorithm for real-time prediction of clinical deterioration in the emergency department for a multimodal clinical decision support system. Sci. Rep. 2024, 14, 30116. [Google Scholar] [CrossRef]
- Xu, J.; Yin, R.; Huang, Y.; Gao, H.; Wu, Y.; Guo, J.; Smith, G.E.; DeKosky, S.T.; Wang, F.; Guo, Y.; et al. Identification of outcome-oriented progression subtypes from mild cognitive impairment to Alzheimer’s disease using electronic health records. AMIA Annu. Symp. Proc. 2023, 2023, 764–773. [Google Scholar]
- Chen, Z.; Liang, N.; Zhang, H.; Li, H.; Yang, Y.; Zong, X.; Chen, Y.; Wang, Y.; Shi, N. Harnessing the power of clinical decision support systems: Challenges and opportunities. Open Heart 2023, 10, e002432. [Google Scholar]
- Zhang, Y.; Yang, Q. An overview of multi-task learning. Natl. Sci. Rev. 2017, 5, 30–43. [Google Scholar]
- Meng, W.; Xu, J.; Huang, Y.; Wang, C.; Song, Q.; Ma, A.; Song, L.; Bian, J.; Ma, Q.; Yin, R. Autoencoder to Identify Sex-Specific Sub-phenotypes in Alzheimer’s Disease Progression Using Longitudinal Electronic Health Records. medRxiv 2024. [Google Scholar] [CrossRef]
- Yin, R.; Zhao, H.; Li, L.; Yang, Q.; Zeng, M.; Yang, C.; Bian, J.; Xie, M. Gra-CRC-miRTar: The pre-trained nucleotide-to-graph neural networks to identify potential miRNA targets in colorectal cancer. Comput. Struct. Biotechnol. J. 2024, 23, 3020–3029. [Google Scholar]
- Yin, R.; Luo, Z.; Zhuang, P.; Zeng, M.; Li, M.; Lin, Z.; Kwoh, C.K. ViPal: A framework for virulence prediction of influenza viruses with prior viral knowledge using genomic sequences. J. Biomed. Inform. 2023, 142, 104388. [Google Scholar]
- Darcy, A.M.; Louie, A.K.; Roberts, L.W. Machine Learning and the Profession of Medicine. JAMA 2016, 315, 551–552. [Google Scholar]
- Miotto, R.; Wang, F.; Wang, S.; Jiang, X.; Dudley, J.T. Deep learning for healthcare: Review, opportunities and challenges. Brief. Bioinform. 2018, 19, 1236–1246. [Google Scholar]
- Zhang, Y.; Yang, Q. A Survey on Multi-Task Learning. IEEE Trans. Knowl. Data Eng. 2022, 34, 5586–5609. [Google Scholar]
- Caruana, R. Multitask Learning. Mach. Learn. 1997, 28, 41–75. [Google Scholar]
- Vandenhende, S.; Georgoulis, S.; Van Gansbeke, W.; Proesmans, M.; Dai, D.; Van Gool, L. Multi-Task Learning for Dense Prediction Tasks: A Survey. IEEE Trans. Pattern. Anal. Mach. Intell. 2022, 44, 3614–3633. [Google Scholar]
- Peng, Y.; Chen, Q.; Lu, Z. An Empirical Study of Multi-Task Learning on BERT for Biomedical Text Mining. arXiv 2020, arXiv:2005.02799. [Google Scholar]
- Si, Y.; Roberts, K. Deep Patient Representation of Clinical Notes via Multi-Task Learning for Mortality Prediction. AMIA Summits Transl. Sci. Proc. 2019, 2019, 779–788. [Google Scholar]
- Vlachostergiou, A.; Tagaris, A.; Stafylopatis, A.; Kollias, S. Multi-Task Learning for Predicting Parkinson’s Disease Based on Medical Imaging Information. In Proceedings of the 2018 25th IEEE International Conference on Image Processing (ICIP), Athens, Greece, 7–10 October 2018; pp. 2052–2056. [Google Scholar]
- Liang, S.; Gu, Y. Computer-Aided Diagnosis of Alzheimer’s Disease through Weak Supervision Deep Learning Framework with Attention Mechanism. Sensors 2020, 21, 220. [Google Scholar]
- Zhang, K.; Karanth, S.; Patel, B.; Murphy, R.; Jiang, X. A multi-task Gaussian process self-attention neural network for real-time prediction of the need for mechanical ventilators in COVID-19 patients. J. Biomed. Inform. 2022, 130, 104079. [Google Scholar]
- Andreotti, F.; Heldt, F.S.; Abu-Jamous, B.; Li, M.; Javer, A.; Carr, O.; Jovanovic, S.; Lipunova, N.; Irving, B.; Khan, R.T.; et al. Prediction of the onset of cardiovascular diseases from electronic health records using multi-task gated recurrent units. arXiv 2020, arXiv:2007.08491. [Google Scholar]
- Wang, X.; Wang, F.; Hu, J. A Multi-task Learning Framework for Joint Disease Risk Prediction and Comorbidity Discovery. In Proceedings of the 2014 22nd International Conference on Pattern Recognition (ICPR), Stockholm, Sweden, 24–28 August; pp. 220–225.
- Talaei-Khoei, A.; Tavana, M.; Wilson, J.M. A predictive analytics framework for identifying patients at risk of developing multiple medical complications caused by chronic diseases. Artif. Intell. Med. 2019, 101, 101750. [Google Scholar]
- Smith, P.C.; Araya-Guerra, R.; Bublitz, C.; Parnes, B.; Dickinson, L.M.; Van Vorst, R.; Westfall, J.M.; Pace, W.D. Missing clinical information during primary care visits. JAMA 2005, 293, 565–571. [Google Scholar]
- Madden, J.M.; Lakoma, M.D.; Rusinak, D.; Lu, C.Y.; Soumerai, S.B. Missing clinical and behavioral health data in a large electronic health record (EHR) system. J. Am. Med. Inform. Assoc. 2016, 23, 1143–1149. [Google Scholar]
- Gudivada, V.N.; Apon, A.; Ding, J. Data Quality Considerations for Big Data and Machine Learning: Going Beyond Data Cleaning and Transformations. Available online: http://personales.upv.es/thinkmind/dl/journals/soft/soft_v10_n12_2017/soft_v10_n12_2017_1.pdf (accessed on 20 February 2023).
- Hasanzadeh, F.; Josephson, C.B.; Waters, G.; Adedinsewo, D.; Azizi, Z.; White, J.A. Bias recognition and mitigation strategies in artificial intelligence healthcare applications. npj Digit. Med. 2025, 8, 154. [Google Scholar]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar]
- He, X.; Chua, T.-S. Neural Factorization Machines for Sparse Predictive Analytics. In Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval, Tokyo, Japan, 7–11 August 2017; pp. 355–364. [Google Scholar]
- Subramaniam, A.M.; Anstey, C.M.; Curtis, J.R.; Ashwin, S.B.; Reddy, M.M.P.; Aliberti, M.J.R.; Avelino-Silva, T.J.; Welch, C.M.; Koduri, G.M.; Prowle, J.R.M.; et al. Characteristics and Outcomes of Patients With Frailty Admitted to ICU With Coronavirus Disease 2019, An Individual Patient Data Meta-Analysis. Crit. Care Explor. 2022, 4, e0616. [Google Scholar]
- Juma, S.; Taabazuing, M.-M.; Montero-Odasso, M. Clinical Frailty Scale in an Acute Medicine Unit: A Simple Tool That Predicts Length of Stay. Can. Geriatr. J. 2016, 19, 34–39. [Google Scholar]
- Rockwood, K.; Theou, O. Using the Clinical Frailty Scale in Allocating Scarce Health Care Resources. Can. Geriatr. J. 2020, 23, 210–215. [Google Scholar]
- Verbosky, L.A.; Franco, K.N.; Zrull, J.P. The relationship between depression and length of stay in the general hospital patient. J. Clin. Psychiatry 1993, 54, 177–181. [Google Scholar]
- Morris, P.E.; Berry, M.J.; Files, D.C.; Thompson, J.C.; Hauser, J.; Flores, L.; Dhar, S.; Chmelo, E.; Lovato, J.; Case, L.D.; et al. Standardized Rehabilitation and Hospital Length of Stay Among Patients With Acute Respiratory Failure: A Randomized Clinical Trial. JAMA 2016, 315, 2694–2702. [Google Scholar]
- Rendle, S. Factorization Machines. In Proceedings of the 2010 IEEE International Conference on Data Mining, Sydney, NSW, Australia, 13–17 December 2010; pp. 995–1000. [Google Scholar]
- Cheng, W.; Shen, Y.; Huang, L. Adaptive Factorization Network: Learning adaptive-order feature interactions. Proc. AAAI Conf. Artif. Intell. 2020, 34, 3609–3616. [Google Scholar]
- Akkus, C.; Chu, L.; Djakovic, V.; Jauch-Walser, S.; Koch, P.; Loss, G.; Marquardt, C.; Moldovan, M.; Sauter, N.; Schneider, M.; et al. Multimodal Deep Learning. arXiv 2023, arXiv:2301.04856. [Google Scholar]
- Guo, M.; Haque, A.; Huang, D.-A.; Yeung, S.; Fei-Fei, L. Dynamic Task Prioritization for Multitask Learning. Computer Vision—ECCV 2018; Springer International Publishing: Cham, Switzerland, 2018; pp. 282–299. [Google Scholar]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2012, 2825–2830. Available online: https://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf?ref=https:/ (accessed on 4 August 2025).
- Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. Pytorch: An imperative style, high-performance deep learning library. Adv. Neural Inf. Process. Syst. 2019, 32. Available online: https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html (accessed on 4 August 2025).
- Bertsimas, D.; Ma, Y. M3H: Multimodal Multitask Machine Learning for Healthcare. arXiv 2024, arXiv:2404.18975. [Google Scholar]
- Harutyunyan, H.; Khachatrian, H.; Kale, D.C.; Ver Steeg, G.; Galstyan, A. Multitask learning and benchmarking with clinical time series data. Sci. Data 2019, 6, 96. Available online: https://www.nature.com/articles/s41597-019-0103-9 (accessed on 4 August 2025).
- Joshi, A.; Karimi, S.; Sparks, R.; Paris, C.; Macintyre, C. Does Multi-Task Learning Always Help?: An Evaluation on Health Informatics. In Proceedings of the 17th Annual Workshop of the Australasian Language Technology Association, Sydney, Australia, 4–6 December 2019; Mistica, M., Piccardi, M., MacKinlay, A., Eds.; pp. 151–158. [Google Scholar]
- Thung, K.-H.; Wee, C.-Y. A brief review on multi-task learning. Multimedia Tools Appl. 2018, 77, 29705–29725. [Google Scholar]
- Chen, S.; Zhang, Y.; Yang, Q. Multi-Task Learning in Natural Language Processing: An overview. ACM Comput. Surv. 2024, 56, 1–32. [Google Scholar]
- Mulyar, A.; Uzuner, O.; McInnes, B. MT-clinical BERT: Scaling clinical information extraction with multitask learning. J. Am. Med. Inform. Assoc. 2021, 28, 2108–2115. [Google Scholar]
- Gao, F.; Yoon, H.; Wu, T.; Chu, X. A feature transfer enabled multi-task deep learning model on medical imaging. Expert Syst. Appl. 2020, 143, 112957. [Google Scholar]
- Kim, S.; Purdie, T.G.; McIntosh, C. Cross-Task Attention Network: Improving multi-task learning for medical imaging applications. arXiv 2023, arXiv:2309.03837. [Google Scholar] [CrossRef]
- Arif, A.; Wang, Y.; Yin, R.; Zhang, X.; Helmy, A. EF-Net: Mental State Recognition by Analyzing Multimodal EEG-fNIRS via CNN. Sensors 2024, 24, 1889. [Google Scholar] [CrossRef]
- Yang, Q.; Sharma, A.; Calin, D.; de Crecy, C.; Inampudi, R.; Yin, R. FCFNets: A factual and counterfactual learning framework for enhanced hepatic fibrosis prediction in young adults with T2D. medRxiv 2025. [Google Scholar] [CrossRef]
- Meng, W.; Inampudi, R.; Zhang, X.; Xu, J.; Huang, Y.; Xie, M.; Bian, J.; Yin, R. An Interpretable Population Graph Network to Identify Rapid Progression of Alzheimer’s Disease Using UK Biobank. medRxiv 2024. [CrossRef]
- Callahan, A.; Shah, N.H.; Chen, J.H. Research and reporting considerations for observational studies using electronic health record data. Ann. Intern. Med. 2020, 172, S79–S84. [Google Scholar]
- Amaro, I.; Citarella, A.A.; De Marco, F.; Della Greca, A.; Di Biasi, L.; Francese, R.; Rossi, D.; Tortora, G.; Tucci, C. AI-driven technologies in Digital Health & Well Being: Early detection and intervention strategies. Ceur Workshop Proc. 2024, 3762, 354–359. [Google Scholar]
Predictive Task | Models | Accuracy | Precision | F1-Score | AUROC |
---|---|---|---|---|---|
Frailty Status | LR | 0.8447 | 0.5140 | 0.4902 | 0.7322 |
XGBoost (raw) | 0.8398 | 0.4936 | 0.3959 | 0.7400 | |
XGBoost (embed) | 0.8268 | 0.4518 | 0.4309 | 0.7463 | |
FM | 0.8308 | 0.4674 | 0.4517 | 0.7359 | |
MTLNFM | 0.8607 | 0.6278 | 0.4390 | 0.7514 | |
Hospital Length of Stay | LR | 0.7263 | 0.7324 | 0.8376 | 0.6432 |
XGBoost (raw) | 0.6766 | 0.6931 | 0.7189 | 0.6264 | |
XGBoost (embed) | 0.6866 | 0.7378 | 0.8015 | 0.5877 | |
FM | 0.7343 | 0.7401 | 0.8410 | 0.6189 | |
MTLNFM | 0.7383 | 0.7448 | 0.8424 | 0.6772 | |
Mortality | LR | 0.7224 | 0.7294 | 0.6396 | 0.7626 |
XGBoost (raw) | 0.7267 | 0.7100 | 0.7015 | 0.7244 | |
XGBoost (embed) | 0.7085 | 0.6701 | 0.6565 | 0.7344 | |
FM | 0.6906 | 0.6719 | 0.6088 | 0.7337 | |
MTLNFM | 0.7234 | 0.7202 | 0.6489 | 0.7754 |
Feature Category and Name | Test Set | STLNFM Prediction | MTLNFM Prediction | ||||
---|---|---|---|---|---|---|---|
Days <= 10 | Days > 10 | Days <= 10 | Days > 10 | Days <= 10 | Days > 10 | ||
Numerical Features Mean (Std) | CCI | 3.1 (2.3) | 1.7 (1.9) | 6.0 (0.0) | 2.0 (2.1) | 3.4 (2.8) | 2.0 (2.0) |
Creat | 150 (181.0) | 136.4 (132.1) | 63.4 (2.2) | 140.9 (147.3) | 169 (227.6) | 137.9 (139.4) | |
Urea | 60.0 (57.4) | 44.7 (42.9) | 23.2 (25.2) | 49.2 (47.8) | 47.2 (47.4) | 49.1 (47.8) | |
Lactate | 10.6 (10.1) | 10.6 (7.6) | 17.0 (0.0) | 10.6 (8.3) | 9.9 (7.8) | 10.7 (8.3) | |
Apache2 | 13.2 (7.9) | 11.5 (7.9) | 2.0 (0) | 12.1 (7.9) | 9.3 (6.8) | 12.2 (8.0) | |
sofa | 9.5 (4.1) | 8.2 (4.3) | 4.0 (0.0) | 8.6 (4.3) | 9.1 (5.3) | 8.5 (4.2) | |
Categorical Features Patients (%) | CKD | 6 (10.7%) | 12 (8.3%) | 0 (0.0%) | 18 (9.1%) | 1 (6.2%) | 17 (9.2%) |
Obesity | 15 (26.8) | 46 (31.7%) | 0 (0.0%) | 61 (31.0%) | 3 (18.8%) | 58 (31.4%) | |
Dementia | 2 (3.6%) | 3 (2.1%) | 0 (0.0%) | 5 (2.5%) | 3 (18.8%) | 2 (1.1%) | |
Cancer | 5 (8.9%) | 12 (8.3%) | 0 (0.0%) | 17 (8.6%) | 1 (6.2%) | 16 (8.6%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, R.; Li, J.; Yang, Q.; Chen, X.; Zhang, X.; Lin, M.; Bian, J.; Subramaniam, A. MTLNFM: A Multi-Task Framework Using Neural Factorization Machines to Predict Patient Clinical Outcomes. Appl. Sci. 2025, 15, 8733. https://doi.org/10.3390/app15158733
Yin R, Li J, Yang Q, Chen X, Zhang X, Lin M, Bian J, Subramaniam A. MTLNFM: A Multi-Task Framework Using Neural Factorization Machines to Predict Patient Clinical Outcomes. Applied Sciences. 2025; 15(15):8733. https://doi.org/10.3390/app15158733
Chicago/Turabian StyleYin, Rui, Jiaxin Li, Qiang Yang, Xiangyu Chen, Xiang Zhang, Mingquan Lin, Jiang Bian, and Ashwin Subramaniam. 2025. "MTLNFM: A Multi-Task Framework Using Neural Factorization Machines to Predict Patient Clinical Outcomes" Applied Sciences 15, no. 15: 8733. https://doi.org/10.3390/app15158733
APA StyleYin, R., Li, J., Yang, Q., Chen, X., Zhang, X., Lin, M., Bian, J., & Subramaniam, A. (2025). MTLNFM: A Multi-Task Framework Using Neural Factorization Machines to Predict Patient Clinical Outcomes. Applied Sciences, 15(15), 8733. https://doi.org/10.3390/app15158733