Regenerative Cartilage Treatment for Focal Chondral Defects in the Knee: Focus on Marrow-Stimulating and Cell-Based Scaffold Approaches
Abstract
1. Introduction
2. Methods
- Problem: Chondral defects of the knee.
- Intervention: Surgical management.
- Outcomes: Clinical outcomes, imaging results, or failure.
3. Biological and Biomechanical Considerations in Cartilage Repair
4. Bone Marrow-Stimulating Techniques
5. Scaffold- and Cell-Based Techniques
6. Comparative Analysis of Cartilage Regeneration Techniques
7. Technical Considerations in Cartilage Repair
8. Biomechanical and Surgical Considerations in Patellofemoral and Tibiofemoral Lesions
9. Gel-Based Constructs, Simplified Workflows, and Biological Innovation
10. Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ACI | Autologous Chondrocyte Implantation |
AMIC | Autologous Matrix-Induced Chondrogenesis |
BMAC | Bone Marrow Aspirate Concentrate |
BMI | Body Mass Index |
cACI | Collagen-covered Autologous Chondrocyte Implantation |
IKDC | International Knee Documentation Committee |
IL-1β | Interleukin-1 beta |
KOOS | Knee Injury and Osteoarthritis Outcome Score |
mACI | Matrix-induced Autologous Chondrocyte Implantation |
MCID | Minimum Clinically Important Difference |
MMPs | Matrix-degrading Enzymes |
MOCART | Magnetic Resonance Observation of Cartilage Repair Tissue |
MRI | Magnetic Resonance Imaging |
MSCs | Mesenchymal Stem Cells |
NICE | National Institute for Health and Care Excellence |
pACI | Periosteal flap Autologous Chondrocyte Implantation |
PROMs | Patient-Reported Outcome Measures |
TNF-α | Tumour Necrosis Factor-alpha |
VAS | Visual Analogue Scale |
References
- Uhl, M.; Lahm, A.; Bley, T.A.; Haberstroh, J.; Mrosek, E.; Ghanem, N.; Erggelet, C. Experimental autologous osteochondral plug transfer in the treatment of focal chondral defects: Magnetic resonance imaging signs of technical success in sheep. Acta Radiol. 2005, 46, 875–880. [Google Scholar] [CrossRef]
- Lattermann, C.; Kang, R.W.; Cole, B.J. What’s new in the treatment of focal chondral defects of the knee? Orthopedics 2006, 29, 898–903. [Google Scholar] [CrossRef]
- Houck, D.A.; Kraeutler, M.J.; Belk, J.W.; Frank, R.M.; McCarty, E.C.; Bravman, J.T. Do Focal Chondral Defects of the Knee Increase the Risk for Progression to Osteoarthritis? A Review of the Literature. Orthop. J. Sports Med. 2018, 6, 2325967118801931. [Google Scholar] [CrossRef]
- Cases, E.; Natera, L.; Anton, C.; Consigliere, P.; Guillen, J.; Cruz, E.; Garrucho, M. Focal inlay resurfacing for full-thickness chondral defects of the femoral medial condyle may delay the progression to varus deformity. Eur. J. Orthop. Surg. Traumatol. 2021, 31, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Epanomeritakis, I.E.; Lee, E.; Lu, V.; Khan, W. The Use of Autologous Chondrocyte and Mesenchymal Stem Cell Implants for the Treatment of Focal Chondral Defects in Human Knee Joints—A Systematic Review and Meta-Analysis. Int. J. Mol. Sci. 2022, 23, 4065. [Google Scholar] [CrossRef] [PubMed]
- Papadopoulos, G.; Griffin, S.; Rathi, H.; Gupta, A.; Sharma, B.; van Bavel, D. Cost-effectiveness analysis of arthroscopic injection of a bioadhesive hydrogel implant in conjunction with microfracture for the treatment of focal chondral defects of the knee—An Australian perspective. J. Med. Econ. 2022, 25, 712–721. [Google Scholar] [CrossRef] [PubMed]
- van der Stok, J.; van Buul, G.M.; Stanclik, J.; Queally, J.M.; O’Donnell, T. Focal articular surface replacement as primary treatment for focal chondral defects of the femoral condyles: A series of 157 cases. Knee 2022, 34, 108–117. [Google Scholar] [CrossRef]
- Dhillon, J.; Kraeutler, M.J.; Fasulo, S.M.; Belk, J.W.; Scillia, A.J.; McCulloch, P.C. Isolated Osteotomy Versus Combined Osteotomy and Cartilage Repair for Osteoarthritis or Focal Chondral Defects of the Medial Compartment of the Knee Joint: A Systematic Review. Orthop. J. Sports Med. 2023, 11, 23259671231162030. [Google Scholar] [CrossRef]
- Kon, E.; De Caro, F.; Dasa, V.; Scopp, J.M.; Di Matteo, B.; Flanigan, D.; Shabshin, N.; Strickland, S.; Altschuler, N. Female patients report comparable results to males after the implantation of an aragonite-based scaffold for the treatment of knee chondral and osteochondral defects: A gender-based analysis of a RCT at 4 years’ follow-up. J. Orthop. Traumatol. 2025, 26, 17. [Google Scholar] [CrossRef]
- Tseng, T.H.; Chen, C.P.; Jiang, C.C.; Weng, P.W.; Chan, Y.S.; Hsu, H.C.; Chiang, H. Biphasic cartilage repair implant versus microfracture in the treatment of focal chondral and osteochondral lesions of the knee: A prospective, multi-center, randomized clinical trial. J. Orthop. Traumatol. 2024, 25, 62. [Google Scholar] [CrossRef]
- Migliorini, F.; Maffulli, N.; Baroncini, A.; Bell, A.; Hildebrand, F.; Schenker, H. Autologous matrix-induced chondrogenesis is effective for focal chondral defects of the knee. Sci. Rep. 2022, 12, 9328. [Google Scholar] [CrossRef] [PubMed]
- Migliorini, F.; Maffulli, N.; Schenker, H.; Eschweiler, J.; Driessen, A.; Knobe, M.; Tingart, M.; Baroncini, A. Surgical Management of Focal Chondral Defects of the Talus: A Bayesian Network Meta-analysis. Am. J. Sports Med. 2022, 50, 2853–2859. [Google Scholar] [CrossRef] [PubMed]
- Migliorini, F.; Maffulli, N.; Eschweiler, J.; Driessen, A.; Tingart, M.; Baroncini, A. Reliability of the MOCART score: A systematic review. J. Orthop. Traumatol. 2021, 22, 39. [Google Scholar] [CrossRef] [PubMed]
- Migliorini, F.; Eschweiler, J.; Spiezia, F.; van de Wall, B.J.M.; Knobe, M.; Tingart, M.; Maffulli, N. Arthroscopy versus mini-arthrotomy approach for matrix-induced autologous chondrocyte implantation in the knee: A systematic review. J. Orthop. Traumatol. 2021, 22, 23. [Google Scholar] [CrossRef]
- Denisova, A.; Pilmane, M.; Fedirko, P. Glycosaminoglycan, Antimicrobial Defence Molecule and Cytokine Appearance in Tracheal Hyaline Cartilage of Healthy Humans. J. Funct. Morphol. Kinesiol. 2022, 7, 55. [Google Scholar] [CrossRef]
- Kurenkova, A.D.; Romanova, I.A.; Kibirskiy, P.D.; Timashev, P.; Medvedeva, E.V. Strategies to Convert Cells into Hyaline Cartilage: Magic Spells for Adult Stem Cells. Int. J. Mol. Sci. 2022, 23, 11169. [Google Scholar] [CrossRef]
- Kutaish, H.; Bengtsson, L.; Matthias Tscholl, P.; Marteyn, A.; Braunersreuther, V.; Guerin, A.; Bena, F.; Gimelli, S.; Longet, D.; Ilmjarv, S.; et al. Hyaline Cartilage Microtissues Engineered from Adult Dedifferentiated Chondrocytes: Safety and Role of WNT Signaling. Stem Cells Transl. Med. 2022, 11, 1219–1231. [Google Scholar] [CrossRef]
- Yao, H.; Li, T.; Wu, Z.; Tao, Q.; Shi, J.; Liu, L.; Zhao, Y. Superlarge living hyaline cartilage graft contributed by the scale-changed porous 3D culture system for joint defect repair. Biomed. Mater. 2022, 17, 064101. [Google Scholar] [CrossRef]
- Aprato, A.; Masse, A.; Faletti, C.; Valente, A.; Atzori, F.; Stratta, M.; Jayasekera, N. Magnetic resonance arthrography for femoroacetabular impingement surgery: Is it reliable? J. Orthop. Traumatol. 2013, 14, 201–206. [Google Scholar] [CrossRef]
- Negri, S.; Farinato, S.; Bellomi, A.; Fila, C.; Pagliaro, P. Tissue engineering: Chondrocyte cultures on type I collagen support. Cytohistological and immunohistochemical study. J. Orthop. Traumatol. 2007, 8, 57–63. [Google Scholar] [CrossRef]
- Alcaide-Ruggiero, L.; Molina-Hernandez, V.; Morgaz, J.; Fernandez-Sarmiento, J.A.; Granados, M.M.; Navarrete-Calvo, R.; Perez, J.; Quiros-Carmona, S.; Carrillo, J.M.; Cugat, R.; et al. Immunohistochemical Analysis of Knee Chondral Defect Repair after Autologous Particulated Cartilage and Platelet-Rich Plasma Treatment in Sheep. Int. J. Mol. Sci. 2023, 24, 15157. [Google Scholar] [CrossRef] [PubMed]
- Ren, B.; Chang, Y.; Liu, R.; Xiao, F.; Xu, J.; Li, L.; Li, T.; Ruan, Z.; Bao, Y.; Lin, J.; et al. Clinical phase I/II trial of SVF therapy for cartilage regeneration: A cellular therapy with novel 3D MRI imaging for evaluating chondral defect of knee osteoarthritis. Front. Cell Dev. Biol. 2023, 11, 1106279. [Google Scholar] [CrossRef] [PubMed]
- Matsukura, K.; Kondo, M.; Metzler, N.F.; Ford, A.J.; Maak, T.G.; Hutchinson, D.T.; Wang, A.A.; Sato, M.; Grainger, D.W.; Okano, T. Regenerative Variability of Human Juvenile Chondrocyte Sheets From Different Cell Donors in an Athymic Rat Knee Chondral Defect Model. Cartilage 2024, 2024, 19476035241277946. [Google Scholar] [CrossRef] [PubMed]
- Naik, A.; Shanmugasundaram, S.; Mahadev, K.; Shetty, A.A.; Kim, S.J. Volume index as a new measure of cartilage loss: A retrospective MRI-based study of chondral injury patterns in adult patients with knee pain. Eur. J. Orthop. Surg. Traumatol. 2023, 33, 75–80. [Google Scholar] [CrossRef] [PubMed]
- Vilchez, F.; Lara, J.; Alvarez-Lozano, E.; Cuervo, C.E.; Mendoza, O.F.; Acosta-Olivo, C.A. Knee chondral lesions treated with autologous chondrocyte transplantation in a tridimensional matrix: Clinical evaluation at 1-year follow-up. J. Orthop. Traumatol. 2009, 10, 173–177. [Google Scholar] [CrossRef]
- Ow, Z.G.W.; Ting, K.J.E.; Wong, K.L. Single-Stage Arthroscopic Cartilage Repair With Chondrectomy and Implantation of a Templated Membrane Collagen Scaffold With Bone Marrow Aspirate Concentrate Augmentation (AMIC Plus). Arthrosc. Tech. 2023, 12, e2085–e2091. [Google Scholar] [CrossRef]
- Savage-Elliott, I.; Kingery, M.T.; Azam, M.T.; Lowe, D.T.; Strauss, E.J. Cartilage Biopsy for Autologous Cell-Based Repair of the Knee in the Wide-Awake Setting Using Needle Arthroscopy. Arthrosc. Tech. 2023, 12, e2029–e2033. [Google Scholar] [CrossRef]
- Akhlagh, A.; Iraji, A.; Daneshi, S.S.; Kian, M.; Jamshidzadeh, A.; Zare, S.; Tanideh, N.; Naseh, M.; Mussin, N.M.; Kurmanalina, M.A.; et al. Therapeutic potential of resveratrol and autologous chondrocytes in male rat knee joint cartilage repair. Nat. Prod. Res. 2024, 2024, 1–15. [Google Scholar] [CrossRef]
- Behrendt, P.; Eggeling, L.; Lindner, A.; von Rehlingen-Prinz, F.; Krause, M.; Hoffmann, M.; Frosch, K.H.; Akoto, R.; Gille, J. Autologous matrix-induced chondrogenesis provides better outcomes in comparison to autologous minced cartilage implantation in the repair of knee chondral defects. Knee Surg. Sports Traumatol. Arthrosc. 2024, 32, 3023–3030. [Google Scholar] [CrossRef]
- Luo, Y.; Samuels, J.; Krasnokutsky, S.; Byrjalsen, I.; Kraus, V.B.; He, Y.; Karsdal, M.A.; Abramson, S.B.; Attur, M.; Bay-Jensen, A.C. A low cartilage formation and repair endotype predicts radiographic progression of symptomatic knee osteoarthritis. J. Orthop. Traumatol. 2021, 22, 10. [Google Scholar] [CrossRef]
- Faber, S.; Angele, P.; Zellner, J.; Bode, G.; Hochrein, A.; Niemeyer, P. Comparison of Clinical Outcome following Cartilage Repair for Patients with Underlying Varus Deformity with or without Additional High Tibial Osteotomy: A Propensity Score-Matched Study Based on the German Cartilage Registry (KnorpelRegister DGOU). Cartilage 2021, 13 (Suppl. S1), 1206S–1216S. [Google Scholar] [CrossRef]
- Maihofer, J.; Madry, H.; Rey-Rico, A.; Venkatesan, J.K.; Goebel, L.; Schmitt, G.; Speicher-Mentges, S.; Cai, X.; Meng, W.; Zurakowski, D.; et al. Hydrogel-Guided, rAAV-Mediated IGF-I Overexpression Enables Long-Term Cartilage Repair and Protection against Perifocal Osteoarthritis in a Large-Animal Full-Thickness Chondral Defect Model at One Year In Vivo. Adv. Mater. 2021, 33, e2008451. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Cao, L.; Song, C.; Pang, Z.; Jiang, H.; Guo, C. Cell-derived decellularized extracellular matrix scaffolds for articular cartilage repair. Int. J. Artif. Organs 2021, 44, 269–281. [Google Scholar] [CrossRef] [PubMed]
- Waltenspul, M.; Zindel, C.; Altorfer, F.C.S.; Wirth, S.; Ackermann, J. Correlation of Postoperative Imaging With MRI and Clinical Outcome After Cartilage Repair of the Ankle: A Systematic Review and Meta-analysis. Foot Ankle Orthop. 2022, 7, 24730114221092021. [Google Scholar] [CrossRef]
- Azam, M.T.; Butler, J.J.; Duenes, M.L.; McAllister, T.W.; Walls, R.C.; Gianakos, A.L.; Kennedy, J.G. Advances in Cartilage Repair. Orthop. Clin. N. Am. 2023, 54, 227–236. [Google Scholar] [CrossRef]
- Migliorini, F.; Baroncini, A.; Bell, A.; Weber, C.; Hildebrand, F.; Maffulli, N. Surgical strategies for chondral defects of the patellofemoral joint: A systematic review. J. Orthop. Surg. Res. 2022, 17, 524. [Google Scholar] [CrossRef]
- Migliorini, F.; Prinz, J.; Eschweiler, J.; Schenker, H.; Weber, C.; Maffulli, N.; Lecouturier, S.; Hildebrand, F.; Greven, J. Fibrin glue does not promote migration and proliferation of bone marrow derived mesenchymal stem cells in collagenic membranes: An in vitro study. Sci. Rep. 2022, 12, 20660. [Google Scholar] [CrossRef]
- Migliorini, F.; Maffulli, N.; Bell, A.; Hildebrand, F.; Weber, C.D.; Lichte, P. Autologous Matrix-Induced Chondrogenesis (AMIC) for Osteochondral Defects of the Talus: A Systematic Review. Life 2022, 12, 1738. [Google Scholar] [CrossRef]
- Migliorini, F.; Maffulli, N.; Eschweiler, J.; Götze, C.; Hildebrand, F.; Betsch, M. Prognostic factors for the management of chondral defects of the knee and ankle joint: A systematic review. Eur. J. Trauma. Emerg. Surg. 2023, 49, 723–745. [Google Scholar] [CrossRef]
- Migliorini, F.; Schenker, H.; Maffulli, N.; Eschweiler, J.; Lichte, P.; Hildebrand, F.; Weber, C.D. Autologous matrix induced chondrogenesis (AMIC) as revision procedure for failed AMIC in recurrent symptomatic osteochondral defects of the talus. Sci. Rep. 2022, 12, 16244. [Google Scholar] [CrossRef]
- Migliorini, F.; Prinz, J.; Maffulli, N.; Eschweiler, J.; Weber, C.; Lecoutrier, S.; Hildebrand, F.; Greven, J.; Schenker, H. Fibrin glue does not assist migration and proliferation of chondrocytes in collagenic membranes: An in vitro study. J. Orthop. Surg. Res. 2022, 17, 311. [Google Scholar] [CrossRef] [PubMed]
- Migliorini, F.; Eschweiler, J.; Götze, C.; Driessen, A.; Tingart, M.; Maffulli, N. Matrix-induced autologous chondrocyte implantation (mACI) versus autologous matrix-induced chondrogenesis (AMIC) for chondral defects of the knee: A systematic review. Br. Med. Bull. 2022, 141, 47–59. [Google Scholar] [CrossRef] [PubMed]
- Migliorini, F.; Eschweiler, J.; Schenker, H.; Baroncini, A.; Tingart, M.; Maffulli, N. Surgical management of focal chondral defects of the knee: A Bayesian network meta-analysis. J. Orthop. Surg. Res. 2021, 16, 543. [Google Scholar] [CrossRef]
- Gotze, C.; Nieder, C.; Felder, H.; Peterlein, C.D.; Migliorini, F. AMIC for traumatic focal osteochondral defect of the talar shoulder: A 5 years follow-up prospective cohort study. BMC Musculoskelet. Disord. 2021, 22, 638. [Google Scholar] [CrossRef]
- Migliorini, F.; Maffulli, N.; Baroncini, A.; Knobe, M.; Tingart, M.; Eschweiler, J. Matrix-induced autologous chondrocyte implantation versus autologous matrix-induced chondrogenesis for chondral defects of the talus: A systematic review. Br. Med. Bull. 2021, 138, 144–154. [Google Scholar] [CrossRef]
- Migliorini, F.; Eschweiler, J.; Maffulli, N.; Schenker, H.; Driessen, A.; Rath, B.; Tingart, M. Autologous Matrix Induced Chondrogenesis (AMIC) Compared to Microfractures for Chondral Defects of the Talar Shoulder: A Five-Year Follow-Up Prospective Cohort Study. Life 2021, 11, 244. [Google Scholar] [CrossRef]
- Migliorini, F.; Eschweiler, J.; Maffulli, N.; Schenker, H.; Baroncini, A.; Tingart, M.; Rath, B. Autologous Matrix-Induced Chondrogenesis (AMIC) and Microfractures for Focal Chondral Defects of the Knee: A Medium-Term Comparative Study. Life 2021, 11, 183. [Google Scholar] [CrossRef]
- Migliorini, F.; Eschweiler, J.; Maffulli, N.; Driessen, A.; Rath, B.; Tingart, M.; Schenker, H. Management of Patellar Chondral Defects with Autologous Matrix Induced Chondrogenesis (AMIC) Compared to Microfractures: A Four Years Follow-Up Clinical Trial. Life 2021, 11, 141. [Google Scholar] [CrossRef]
- Gotze, C.; Nieder, C.; Felder, H.; Migliorini, F. AMIC for Focal Osteochondral Defect of the Talar Shoulder. Life 2020, 10, 328. [Google Scholar] [CrossRef]
- Blanke, F.; Warth, F.; Oehler, N.; Siegl, J.; Prall, W.C. Autologous platelet-rich plasma and fibrin-augmented minced cartilage implantation in chondral lesions of the knee leads to good clinical and radiological outcomes after more than 12 months: A retrospective cohort study of 71 patients. J. Exp. Orthop. 2024, 11, e70051. [Google Scholar] [CrossRef]
- Abd-Elhafeez, H.H.; El-Sayed, A.M.; Ahmed, A.M.; Soliman, S.A.; Zaki, R.S.; Abd El-Mageed, D.S. Detection of food fraud of meat products from the different brands by application of histological methods. Microsc. Res. Tech. 2022, 85, 1538–1556. [Google Scholar] [CrossRef]
- Frodl, A.; Siegel, M.; Fuchs, A.; Wagner, F.C.; Schmal, H.; Izadpanah, K.; Yilmaz, T. Minced Cartilage Is a One-Step Cartilage Repair Procedure for Small Defects in the Knee—A Systematic-Review and Meta-Analysis. J. Pers. Med. 2022, 12, 1923. [Google Scholar] [CrossRef] [PubMed]
- Ophoven, C.; Wagner, F.C.; Izadpanah, K.; Jaeger, M.; Salzmann, G.M.; Gladbach, B.; Schmal, H.; Maier, D. Autologous Minced Cartilage Implantation for Arthroscopic One-Stage Treatment of Osteochondritis Dissecans of the Elbow. Arthrosc. Tech. 2022, 11, e435–e440. [Google Scholar] [CrossRef] [PubMed]
- Howick, J.; Chalmers, I.; Glasziou, P.; Greenhalgh, T.; Carl Heneghan Liberati, A.; Moschetti, I.; Phillips, B.; Thornton, H.; Goddard, O.; Hodgkinson, M. The 2011 Oxford CEBM Levels of Evidence; Oxford Centre for Evidence-Based Medicine: Oxford, UK, 2011; Available online: https://www.cebm.net/index.aspx?o=5653 (accessed on 1 June 2025).
- Wang, F.H.; Hsieh, C.Y.; Shen, C.I.; Chuang, C.H.; Chung, Y.H.; Kuo, C.C.; Lee, K.D.; Lin, C.L.; Su, H.L. Induction of type II collagen expression in M2 macrophages derived from peripheral blood mononuclear cells. Sci. Rep. 2022, 12, 21663. [Google Scholar] [CrossRef]
- Hamahashi, K.; Toyoda, E.; Ishihara, M.; Mitani, G.; Takagaki, T.; Kaneshiro, N.; Maehara, M.; Takahashi, T.; Okada, E.; Watanabe, A.; et al. Polydactyly-derived allogeneic chondrocyte cell-sheet transplantation with high tibial osteotomy as regenerative therapy for knee osteoarthritis. NPJ Regen. Med. 2022, 7, 71. [Google Scholar] [CrossRef]
- McCreery, K.P.; Luetkemeyer, C.M.; Calve, S.; Neu, C.P. Hyperelastic characterization reveals proteoglycans drive the nanoscale strain-stiffening response in hyaline cartilage. J. Biomech. 2023, 146, 111397. [Google Scholar] [CrossRef] [PubMed]
- Garcia, G.H.; Haratian, A.; Hasan, L.K.; Bolia, I.K.; Hatch, G.F.R., 3rd; Petrigliano, F.A.; Weber, A.E.; Liu, J.N. A Case of Patellar Instability and Lateral Facet Cartilage Defect. Video J. Sports Med. 2022, 2, 26350254221089353. [Google Scholar] [CrossRef]
- Zhao, G.; Jiang, H. Beneficial effects of Aucubin on restoration of rabbits with cartilage defect. Cell Tissue Bank. 2022, 23, 887–897. [Google Scholar] [CrossRef]
- Cheng, C.; Chaaban, M.; Born, G.; Martin, I.; Li, Q.; Schaefer, D.J.; Jaquiery, C.; Scherberich, A. Repair of a Rat Mandibular Bone Defect by Hypertrophic Cartilage Grafts Engineered From Human Fractionated Adipose Tissue. Front. Bioeng. Biotechnol. 2022, 10, 841690. [Google Scholar] [CrossRef]
- Wesdorp, M.A.; Capar, S.; Bastiaansen-Jenniskens, Y.M.; Kops, N.; Creemers, L.B.; Verhaar, J.A.N.; Van Osch, G.; Wei, W. Intra-articular Administration of Triamcinolone Acetonide in a Murine Cartilage Defect Model Reduces Inflammation but Inhibits Endogenous Cartilage Repair. Am. J. Sports Med. 2022, 50, 1668–1678. [Google Scholar] [CrossRef]
- Katano, H.; Ozeki, N.; Koga, H.; Tomita, M.; Suzuki, K.; Masumoto, J.; Sekiya, I. Three-dimensional MRI shows cartilage defect extension with no separation from the meniscus in women in their 70 s with knee osteoarthritis. Sci. Rep. 2022, 12, 4198. [Google Scholar] [CrossRef]
- Wagner, M.; Lindtner, R.A.; Schaller, L.; Schmaranzer, F.; Schmaranzer, E.; Vavron, P.; Endstrasser, F.; Brunner, A. Hip arthroscopy with initial access to the peripheral compartment for femoroacetabular impingement: Midterm results from a large-scale patient cohort. J. Orthop. Traumatol. 2024, 25, 29. [Google Scholar] [CrossRef]
- Weber, C.D.; Migliorini, F.; Hildebrand, F. Reconstruction of Large Osteochondral Lesions in the Knee: Focus on Fixation Techniques. Life 2021, 11, 543. [Google Scholar] [CrossRef] [PubMed]
- Giuliani, L.; Ottonello, C.; Giuliani, A.; Bondi, L.; Ronconi, P.; Tempesta, V.; Pacini, P.; Cantisani, V. MRI in the evaluation of plantar plate disease: Diagnostic value of the “stress test”. J. Orthop. Traumatol. 2024, 25, 70. [Google Scholar] [CrossRef] [PubMed]
- Ciatti, R.; Gabrielli, A.; Iannella, G.; Mariani, P.P. Arthroscopic incidence of lateral meniscal root avulsion in patients with anterior cruciate ligament injury. J. Orthop. Traumatol. 2021, 22, 30. [Google Scholar] [CrossRef] [PubMed]
- Sato, K.; Kikuchi, Y.; Mimata, Y.; Murakami, K.; Takahashi, G.; Doita, M. Volar locking plates not touching the flexor pollicis longus tendon appear as prominences on radiographs: A cadaver study. J. Orthop. Traumatol. 2019, 20, 29. [Google Scholar] [CrossRef]
- Keyhani, S.; Movahedinia, M.; LaPrade, R.F.; Qoreishy, M.; Vosoughi, F. Long-term clinical results of using a posteromedial all-inside and anteromedial inside-out approach to repair unstable or irreducible bucket-handle medial meniscal tears. J. Orthop. Traumatol. 2023, 24, 12. [Google Scholar] [CrossRef]
- Ishibashi, H.K.; Sasaki, E.; Ishibashi, K.; Chiba, D.; Tsushima, T.; Kimura, Y.; Kumagai, G.; Tsuda, E.; Sawada, K.; Mikami, T.; et al. Greater medial proximal tibial slope is associated with bone marrow lesions in middle-aged women with early knee osteoarthritis. J. Orthop. Traumatol. 2023, 24, 60. [Google Scholar] [CrossRef]
- Migliorini, F.; Cuozzo, F.; Cipollaro, L.; Oliva, F.; Hildebrand, F.; Maffulli, N. Platelet-rich plasma (PRP) augmentation does not result in more favourable outcomes in arthroscopic meniscal repair: A meta-analysis. J. Orthop. Traumatol. 2022, 23, 8. [Google Scholar] [CrossRef]
- Jia, L.; Zhang, P.; Ci, Z.; Hao, X.; Bai, B.; Zhang, W.; Jiang, H.; Zhou, G. Acellular cartilage matrix biomimetic scaffold with immediate enrichment of autologous bone marrow mononuclear cells to repair articular cartilage defects. Mater. Today Bio 2022, 15, 100310. [Google Scholar] [CrossRef]
- Heiss, R.; Guermazi, A.; Janka, R.; Uder, M.; Li, X.; Hayashi, D.; Roemer, F.W. Update: Posttreatment Imaging of the Knee after Cartilage Repair. Semin. Musculoskelet. Radiol. 2022, 26, 216–229. [Google Scholar] [CrossRef]
- Uzieliene, I.; Bironaite, D.; Pachaleva, J.; Bagdonas, E.; Sobolev, A.; Tsai, W.B.; Kvedaras, G.; Bernotiene, E. Chondroitin Sulfate-Tyramine-Based Hydrogels for Cartilage Tissue Repair. Int. J. Mol. Sci. 2023, 24, 3451. [Google Scholar] [CrossRef] [PubMed]
- Kacprzak, B.; Rosinska, K.; Siuba-Jarosz, N. Hyalofast Cartilage Repair Surgery with a Full Load-Bearing Rehabilitation Program One Day after Operation Reduces the Time for Professional Athletes to Return to Play. Medicina 2023, 59, 804. [Google Scholar] [CrossRef] [PubMed]
- Jeuken, R.M.; van Hugten, P.P.W.; Roth, A.K.; Boymans, T.; Caron, J.; Weber, A.; Custers, R.J.H.; Emans, P.J. Cartilage repair strategies in the knee according to Dutch Orthopedic Surgeons: A survey study. Arch. Orthop. Trauma. Surg. 2023, 143, 5175–5188. [Google Scholar] [CrossRef] [PubMed]
- Toyooka, S.; Moatshe, G.; Persson, A.; Engebretsen, L. Return to Pivoting Sports after Cartilage Repair Surgery of the Knee: A Scoping Review. Cartilage 2023, 14, 17–25. [Google Scholar] [CrossRef]
- Tessaro, I.; Nguyen, V.T.; Di Giancamillo, A.; Agnoletto, M.; Verdoni, F.; Domenicucci, M.; Scurati, R.; Peretti, G.M.; Mangiavini, L. Animal models for cartilage repair. J. Biol. Regul. Homeost. Agents 2018, 32 (Suppl. S1), 105–116. [Google Scholar]
- Ow, Z.G.W.; Cheang, H.L.X.; Koh, J.H.; Koh, J.Z.E.; Lim, K.K.; Wang, D.; Minas, T.; Carey, J.L.; Lin, H.A.; Wong, K.L. Does the Choice of Acellular Scaffold and Augmentation With Bone Marrow Aspirate Concentrate Affect Short-term Outcomes in Cartilage Repair? A Systematic Review and Meta-analysis. Am. J. Sports Med. 2023, 51, 1622–1633. [Google Scholar] [CrossRef]
- DePhillipo, N.N.; Hendesi, H.; Aman, Z.S.; Lind, D.R.G.; Smith, J.; Dodge, G.R. Preclinical Use of FGF-18 Augmentation for Improving Cartilage Healing Following Surgical Repair: A Systematic Review. Cartilage 2023, 14, 59–66. [Google Scholar] [CrossRef]
- Dasari, S.P.; Jawanda, H.; Mameri, E.S.; Fortier, L.M.; Polce, E.M.; Kerzner, B.; Gursoy, S.; Hevesi, M.; Khan, Z.A.; Jackson, G.R.; et al. Single-stage autologous cartilage repair results in positive patient-reported outcomes for chondral lesions of the knee: A systematic review. J. ISAKOS 2023, 8, 372–380. [Google Scholar] [CrossRef]
- Wong, C.C.; Lu, C.X.; Cho, E.C.; Lee, P.W.; Chi, N.W.; Lin, P.Y.; Jheng, P.R.; Chen, H.L.; Mansel, B.W.; Chen, Y.M.; et al. Calcium peroxide aids tyramine-alginate gel to crosslink with tyrosinase for efficient cartilage repair. Int. J. Biol. Macromol. 2022, 208, 299–313. [Google Scholar] [CrossRef]
- Migliorini, F.; Pilone, M.; Ascani, J.; Schafer, L.; Jeyaraman, M.; Maffulli, N. Management of knee osteoarthritis using bone marrow aspirate concentrate: A systematic review. Br. Med. Bull. 2025, 153, ldae016. [Google Scholar] [CrossRef]
- Pintore, A.; Notarfrancesco, D.; Zara, A.; Oliviero, A.; Migliorini, F.; Oliva, F.; Maffulli, N. Intra-articular injection of bone marrow aspirate concentrate (BMAC) or adipose-derived stem cells (ADSCs) for knee osteoarthritis: A prospective comparative clinical trial. J. Orthop. Surg. Res. 2023, 18, 350. [Google Scholar] [CrossRef]
- Cheong, W.L.; Bin Abd Razak, H.R. Patellar Cartilage Bossing Causing Patellofemoral Pain After Cartilage Repair With Hyalofast(R) Scaffold and Bone Marrow Aspirate Concentrate (BMAC). Cureus 2023, 15, e43967. [Google Scholar] [CrossRef]
- Heng, C.H.Y.; Lee, Y.H.D. Single-Stage Arthroscopic Cartilage Repair With Gel Scaffold and BMAC. Video J. Sports Med. 2021, 1, 26350254211008190. [Google Scholar] [CrossRef] [PubMed]
- Karpinski, K.; Haner, M.; Bierke, S.; Petersen, W. Matrix-induced chondrogenesis is a valid and safe cartilage repair option for small- to medium-sized cartilage defects of the knee: A systematic review. Knee Surg. Sports Traumatol. Arthrosc. 2021, 29, 4213–4222. [Google Scholar] [CrossRef] [PubMed]
- Roemer, F.W.; Guermazi, A.; Trattnig, S.; Apprich, S.; Marlovits, S.; Niu, J.; Hunter, D.J.; Welsch, G.H. Whole joint MRI assessment of surgical cartilage repair of the knee: Cartilage repair osteoarthritis knee score (CROAKS). Osteoarthr. Cartil. 2014, 22, 779–799. [Google Scholar] [CrossRef] [PubMed]
- Wakitani, S.; Nawata, M.; Tensho, K.; Okabe, T.; Machida, H.; Ohgushi, H. Repair of articular cartilage defects in the patello-femoral joint with autologous bone marrow mesenchymal cell transplantation: Three case reports involving nine defects in five knees. J. Tissue Eng. Regen. Med. 2007, 1, 74–79. [Google Scholar] [CrossRef]
- Bong, G.; Lee, Y. Injectable Scaffold with Microfracture using the Autologous Matrix-Induced Chondrogenesis (AMIC) Technique: A Prospective Cohort Study. Malays. Orthop. J. 2022, 16, 86–93. [Google Scholar] [CrossRef]
- Waltenspul, M.; Suter, C.; Ackermann, J.; Kuhne, N.; Fucentese, S.F. Autologous Matrix-Induced Chondrogenesis (AMIC) for Isolated Retropatellar Cartilage Lesions: Outcome after a Follow-Up of Minimum 2 Years. Cartilage 2021, 13 (Suppl. S1), 1280S–1290S. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, X.; Zhou, H. Biomimetic Hydrogel Applications and Challenges in Bone, Cartilage, and Nerve Repair. Pharmaceutics 2023, 15, 2405. [Google Scholar] [CrossRef]
- O’Shea, D.G.; Hodgkinson, T.; Curtin, C.M.; O’Brien, F.J. An injectable and 3D printable pro-chondrogenic hyaluronic acid and collagen type II composite hydrogel for the repair of articular cartilage defects. Biofabrication 2023, 16, 015007. [Google Scholar] [CrossRef]
- Berounsky, K.; Vackova, I.; Vistejnova, L.; Maleckova, A.; Havrankova, J.; Klein, P.; Kolinko, Y.; Petrenko, Y.; Prazak, S.; Hanak, F.; et al. Autologous Mesenchymal Stromal Cells Immobilized in Plasma-Based Hydrogel for the Repair of Articular Cartilage Defects in a Large Animal Model. Physiol. Res. 2023, 72, 485–495. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Zhang, H.; Wang, S.; Sun, J.; Hu, Y.; Liu, H.; Liu, J.; Chen, X.; Zhou, F.; Bai, L.; et al. Ultrasound-triggered in situ gelation with ROS-controlled drug release for cartilage repair. Mater. Horiz. 2023, 10, 3507–3522. [Google Scholar] [CrossRef] [PubMed]
- Zujur, D.; Al-Akashi, Z.; Nakamura, A.; Zhao, C.; Takahashi, K.; Aritomi, S.; Theoputra, W.; Kamiya, D.; Nakayama, K.; Ikeya, M. Enhanced chondrogenic differentiation of iPS cell-derived mesenchymal stem/stromal cells via neural crest cell induction for hyaline cartilage repair. Front. Cell Dev. Biol. 2023, 11, 1140717. [Google Scholar] [CrossRef]
- De Angelis, E.; Barilli, A.; Saleri, R.; Rotoli, B.M.; Ravanetti, F.; Ferrari, F.; Ferrari, L.; Martelli, P.; Dall’Asta, V.; Borghetti, P. Osmolarity modulates the de-differentiation of horse articular chondrocytes during cell expansion in vitro: Implications for tissue engineering in cartilage repair. Vet. Res. Commun. 2023, 47, 2285–2292. [Google Scholar] [CrossRef]
- Sun, K.; Liu, B.; Wang, D.A. Editorial: Focus issue on biomaterials approaches to the repair and regeneration of cartilage tissue. Biomed. Mater. 2023, 18, 030201. [Google Scholar] [CrossRef]
- Yang, J.; Zhao, Y.; Fan, L.; Gao, C.; Liu, X.; Jing, X.; Zhang, H.; Huang, Y.; Guo, R.; Long, C.; et al. Cartilage Injury Repair by Human Umbilical Cord Wharton’s Jelly/Hydrogel Combined with Chondrocyte. Tissue Eng. Part. C Methods 2023, 29, 110–120. [Google Scholar] [CrossRef]
- Migliorini, F.; Eschweiler, J.; Prinz, J.; Weber, C.D.; Hofmann, U.K.; Hildebrand, F.; Maffulli, N. Autologous chondrocyte implantation in the knee is effective in skeletally immature patients: A systematic review. Knee Surg. Sports Traumatol. Arthrosc. 2023, 31, 2518–2525. [Google Scholar] [CrossRef]
- Snow, M.; Mandalia, V.; Custers, R.; Emans, P.J.; Kon, E.; Niemeyer, P.; Verdonk, R.; Gaissmaier, C.; Roeder, A.; Weinand, S.; et al. Cost-effectiveness of a new ACI technique for the treatment of articular cartilage defects of the knee compared to regularly used ACI technique and microfracture. J. Med. Econ. 2023, 26, 537–546. [Google Scholar] [CrossRef]
- Liu, X.; Ma, Y.; Wang, Y.; Zhang, Q. Effects of NBP injection on the inflammatory response, oxidative stress response and vascular endothelial function in patients with ACI: A systematic review and meta-analysis. Medicine 2023, 102, e33226. [Google Scholar] [CrossRef]
- Guillen-Garcia, P.; Guillen-Vicente, I.; Rodriguez-Inigo, E.; Guillen-Vicente, M.; Fernandez-Jaen, T.F.; Navarro, R.; Aboli, L.; Torres, R.; Abelow, S.; Lopez-Alcorocho, J.M. Cartilage Defect Treatment Using High-Density Autologous Chondrocyte Implantation (HD-ACI). Bioengineering 2023, 10, 1083. [Google Scholar] [CrossRef] [PubMed]
- Grevenstein, D.; Mamilos, A.; Schmitt, V.H.; Niedermair, T.; Wagner, W.; Kirkpatrick, C.J.; Brochhausen, C. Excellent histological results in terms of articular cartilage regeneration after spheroid-based autologous chondrocyte implantation (ACI). Knee Surg. Sports Traumatol. Arthrosc. 2021, 29, 417–421. [Google Scholar] [CrossRef] [PubMed]
- Migliorini, F.; Berton, A.; Salvatore, G.; Candela, V.; Khan, W.; Longo, U.G.; Denaro, V. Autologous Chondrocyte Implantation and Mesenchymal Stem Cells for the Treatments of Chondral Defects of the Knee—A Systematic Review. Curr. Stem Cell Res. Ther. 2020, 15, 547–556. [Google Scholar] [CrossRef] [PubMed]
- Rosa, D.; Balato, G.; Ciaramella, G.; Soscia, E.; Improta, G.; Triassi, M. Long-term clinical results and MRI changes after autologous chondrocyte implantation in the knee of young and active middle aged patients. J. Orthop. Traumatol. 2016, 17, 55–62. [Google Scholar] [CrossRef]
- Cugat, R.; Samitier, G.; Vinagre, G.; Sava, M.; Alentorn-Geli, E.; Garcia-Balletbo, M.; Cusco, X.; Seijas, R.; Barastegui, D.; Navarro, J.; et al. Particulated Autologous Chondral-Platelet-Rich Plasma Matrix Implantation (PACI) for Treatment of Full-Thickness Cartilage Osteochondral Defects. Arthrosc. Tech. 2021, 10, e539–e544. [Google Scholar] [CrossRef]
- Robertson, W.B.; Fick, D.; Wood, D.J.; Linklater, J.M.; Zheng, M.H.; Ackland, T.R. MRI and clinical evaluation of collagen-covered autologous chondrocyte implantation (CACI) at two years. Knee 2007, 14, 117–127. [Google Scholar] [CrossRef]
- Carey, J.L.; Remmers, A.E.; Flanigan, D.C. Use of MACI (Autologous Cultured Chondrocytes on Porcine Collagen Membrane) in the United States: Preliminary Experience. Orthop. J. Sports Med. 2020, 8, 2325967120941816. [Google Scholar] [CrossRef]
- Lenz, C.G.; Tan, S.; Carey, A.L.; Ang, K.; Schneider, T. Matrix-Induced Autologous Chondrocyte Implantation (MACI) Grafting for Osteochondral Lesions of the Talus. Foot Ankle Int. 2020, 41, 1099–1105. [Google Scholar] [CrossRef]
- Liu, Y.; Ma, N.; Zhao, Z.; Guo, Q. Mid- to Long-Term Clinical Outcomes of Cartilage Restoration of Knee Joint with Allogenic Next-Generation Matrix-Induced Autologous Chondrocyte Implantation (MACI). Orthop. Surg. 2023, 15, 549–562. [Google Scholar] [CrossRef]
- Hill, Z.; Delman, C.; Shelton, T.; Vander Voort, W.; Haus, B. Loose Body Versus Trochlear Biopsy Matrix-Induced Autologous Chondrocyte Implantation (MACI) MOCART Scores and IKDC Reported Outcomes in Pediatric Patients. J. Pediatr. Orthop. 2023, 43, e25–e29. [Google Scholar] [CrossRef]
- Jung, M.; Ruschke, S.; Karampinos, D.C.; Holwein, C.; Baum, T.; Gersing, A.S.; Bamberg, F.; Jungmann, P.M. The Predictive Value of Early Postoperative MRI-Based Bone Marrow Parameters for Mid-Term Outcome after MACI with Autologous Bone Grafting at the Knee. Cartilage 2022, 13, 19476035221093061. [Google Scholar] [CrossRef]
- Grossman, A.D.; Den Haese, J.P., Jr.; Georger, L.; Mc Millan, S.; Tuck, J.A. Matrix-Induced Autologous Chondrocyte Implantation (MACI) is Largely Effective and Provides Significant Improvement in Patients With Symptomatic, Large Chondral Defects: A Systematic Review and Meta-Analysis. Surg. Technol. Int. 2022, 41, 329–335. [Google Scholar] [CrossRef] [PubMed]
- Shelton, T.J.; Vasquez, B.J.; Workman, W.; Haus, B.M. Three-Year Outcomes After MACI for Glenoid Cartilage Loss in an Adolescent Athlete: A Case Report. JBJS Case Connect. 2021, 11, e21.00032. [Google Scholar] [CrossRef] [PubMed]
- Matthews, J.R.; Paul, R.W.; Freedman, K. Patellar MACI With Tibial Tubercle Osteotomy. Video J. Sports Med. 2022, 2, 26350254211053013. [Google Scholar] [CrossRef]
- Calvi, M.; Curti, M.; Ossola, C.; Duvia, M.; Angeretti, M.G.; Ronga, M.; Genovese, E.A. Knee articular cartilage injury treatment with matrix-induced autologous chondrocyte implantation (MACI): Correlation at 24 and 120 months between clinical and radiological findings using MR arthrography. Skeletal Radiol. 2021, 50, 2079–2090. [Google Scholar] [CrossRef]
- Flanigan, D.C.; Sherman, S.L.; Chilelli, B.; Gersoff, W.; Jones, D.; Lee, C.A.; Toth, A.; Cramer, C.; Zaporojan, V.; Carey, J. Consensus on Rehabilitation Guidelines among Orthopedic Surgeons in the United States following Use of Third-Generation Articular Cartilage Repair (MACI) for Treatment of Knee Cartilage Lesions. Cartilage 2021, 13, 1782S–1790S. [Google Scholar] [CrossRef]
- Seewoonarain, S.; Ganesh, D.; Perera, E.; Popat, R.; Jones, J.; Sugand, K.; Gupte, C. Scaffold-associated procedures are superior to microfracture in managing focal cartilage defects in the knee: A systematic review & meta-analysis. Knee 2023, 42, 320–338. [Google Scholar] [CrossRef]
- Bumberger, A.; Niemeyer, P.; Angele, P.; Wright, E.K.; Faber, S.O. Hydrogel-based and spheroid-based autologous chondrocyte implantation of the knee show similar 2-year functional outcomes: An analysis based on the German Cartilage Registry (KnorpelRegister DGOU). Knee Surg. Sports Traumatol. Arthrosc. 2024, 32, 2258–2266. [Google Scholar] [CrossRef]
- Vonk, L.A.; Roel, G.; Hernigou, J.; Kaps, C.; Hernigou, P. Role of Matrix-Associated Autologous Chondrocyte Implantation with Spheroids in the Treatment of Large Chondral Defects in the Knee: A Systematic Review. Int. J. Mol. Sci. 2021, 22, 7149. [Google Scholar] [CrossRef]
- Shah, S.S.; Mithoefer, K. Scientific Developments and Clinical Applications Utilizing Chondrons and Chondrocytes with Matrix for Cartilage Repair. Cartilage 2021, 13 (Suppl. S1), 1195S–1205S. [Google Scholar] [CrossRef]
- Riedl, M.; Vadala, G.; Papalia, R.; Denaro, V. Three-dimensional, Scaffold-Free, Autologous Chondrocyte Transplantation: A Systematic Review. Orthop. J. Sports Med. 2020, 8, 2325967120951152. [Google Scholar] [CrossRef]
- Eschen, C.; Kaps, C.; Widuchowski, W.; Fickert, S.; Zinser, W.; Niemeyer, P.; Roel, G. Clinical outcome is significantly better with spheroid-based autologous chondrocyte implantation manufactured with more stringent cell culture criteria. Osteoarthr. Cartil. Open 2020, 2, 100033. [Google Scholar] [CrossRef]
- Hoburg, A.; Loer, I.; Korsmeier, K.; Siebold, R.; Niemeyer, P.; Fickert, S.; Ruhnau, K. Matrix-Associated Autologous Chondrocyte Implantation Is an Effective Treatment at Midterm Follow-up in Adolescents and Young Adults. Orthop. J. Sports Med. 2019, 7, 2325967119841077. [Google Scholar] [CrossRef]
- Armoiry, X.; Cummins, E.; Connock, M.; Metcalfe, A.; Royle, P.; Johnston, R.; Rodrigues, J.; Waugh, N.; Mistry, H. Autologous Chondrocyte Implantation with Chondrosphere for Treating Articular Cartilage Defects in the Knee: An Evidence Review Group Perspective of a NICE Single Technology Appraisal. Pharmacoeconomics 2019, 37, 879–886. [Google Scholar] [CrossRef] [PubMed]
- Salzmann, G.M.; Ossendorff, R.; Gilat, R.; Cole, B.J. Autologous Minced Cartilage Implantation for Treatment of Chondral and Osteochondral Lesions in the Knee Joint: An Overview. Cartilage 2021, 13 (Suppl. S1), 1124S–1136S. [Google Scholar] [CrossRef] [PubMed]
- Ossendorff, R.; Grede, L.; Scheidt, S.; Strauss, A.C.; Burger, C.; Wirtz, D.C.; Salzmann, G.M.; Schildberg, F.A. Comparison of Minced Cartilage Implantation with Autologous Chondrocyte Transplantation in an In Vitro Inflammation Model. Cells 2024, 13, 546. [Google Scholar] [CrossRef] [PubMed]
- Schneider, S.; Ossendorff, R.; Walter, S.G.; Berger, M.; Endler, C.; Kaiser, R.; Ilg, A.; Salzmann, G.M.; Holz, J. Arthroscopic Autologous Minced Cartilage Implantation of Cartilage Defects in the Knee: A 2-Year Follow-up of 62 Patients. Orthop. J. Sports Med. 2024, 12, 23259671241297970. [Google Scholar] [CrossRef]
- Riewruja, K.; Aguglia, A.M.; Hines, S.; Makarcyzk, M.J.; Honsawek, S.; Lin, H. PEG Reinforced Scaffold Promotes Uniform Distribution of Human MSC-Created Cartilage Matrix. Gels 2022, 8, 794. [Google Scholar] [CrossRef]
- Yang, Y.; Huang, C.; Zheng, H.; Meng, Z.; Heng, B.C.; Zhou, T.; Jiang, S.; Wei, Y. Superwettable and injectable GelMA-MSC microspheres promote cartilage repair in temporomandibular joints. Front. Bioeng. Biotechnol. 2022, 10, 1026911. [Google Scholar] [CrossRef]
- Sang, S.; Mao, X.; Cao, Y.; Liu, Z.; Shen, Z.; Li, M.; Jia, W.; Guo, Z.; Wang, Z.; Xiang, C.; et al. 3D Bioprinting Using Synovium-Derived MSC-Laden Photo-Cross-Linked ECM Bioink for Cartilage Regeneration. ACS Appl. Mater. Interfaces 2023, 15, 8895–8913. [Google Scholar] [CrossRef]
- Menezes, R.; Sherman, L.; Rameshwar, P.; Arinzeh, T.L. Scaffolds containing GAG-mimetic cellulose sulfate promote TGF-beta interaction and MSC Chondrogenesis over native GAGs. J. Biomed. Mater. Res. A 2023, 111, 1135–1150. [Google Scholar] [CrossRef]
- Hsieh, C.C.; Chang, C.C.; Hsu, P.J.; Chen, L.; Yen, B.L. Protocol for efficient human MSC chondrogenesis via Wnt antagonism instead of TGF-beta. STAR Protoc. 2023, 4, 102728. [Google Scholar] [CrossRef]
- Valisena, S.; Azogui, B.; Nizard, R.S.; Tscholl, P.M.; Cavaignac, E.; Bouché, P.A.; Hannouche, D. Microfractures, autologous matrix-induced chondrogenesis, osteochondral autograft transplantation and autologous chondrocyte implantation for knee chondral defects: A systematic review and network meta-analysis of randomized controlled trials. EFORT Open Rev. 2024, 9, 785–795. [Google Scholar] [CrossRef] [PubMed]
- Migliorini, F.; Vaishya, R.; Bell, A.; Weber, C.D.; Götze, C.; Maffulli, N. Fixation of the Membrane during Matrix-Induced Autologous Chondrocyte Implantation in the Knee: A Systematic Review. Life 2022, 12, 1718. [Google Scholar] [CrossRef] [PubMed]
- Walker, E.A.; Verner, A.; Flannery, C.R.; Archer, C.W. Cellular responses of embryonic hyaline cartilage to experimental wounding in vitro. J. Orthop. Res. 2000, 18, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Hunziker, E.B.; Quinn, T.M. Surgical removal of articular cartilage leads to loss of chondrocytes from cartilage bordering the wound edge. J. Bone Jt. Surg. Am. 2003, 85 (Suppl. S2), 85–92. [Google Scholar] [CrossRef]
- Buda, R.; Baldassarri, M.; Perazzo, L.; Ghinelli, D.; Pagliazzi, G. A useful combination for the treatment of patellofemoral chondral lesions: Realignment procedure plus mesenchymal stem cell-retrospective analysis and clinical results at 48 months of follow-up. Eur. J. Orthop. Surg. Traumatol. 2019, 29, 461–470. [Google Scholar] [CrossRef]
- Ebert, J.R.; Fallon, M.; Smith, A.; Janes, G.C.; Wood, D.J. Prospective clinical and radiologic evaluation of patellofemoral matrix-induced autologous chondrocyte implantation. Am. J. Sports Med. 2015, 43, 1362–1372. [Google Scholar] [CrossRef]
- Macmull, S.; Jaiswal, P.K.; Bentley, G.; Skinner, J.A.; Carrington, R.W.; Briggs, T.W. The role of autologous chondrocyte implantation in the treatment of symptomatic chondromalacia patellae. Int. Orthop. 2012, 36, 1371–1377. [Google Scholar] [CrossRef]
- Meyerkort, D.; Ebert, J.R.; Ackland, T.R.; Robertson, W.B.; Fallon, M.; Zheng, M.H.; Wood, D.J. Matrix-induced autologous chondrocyte implantation (MACI) for chondral defects in the patellofemoral joint. Knee Surg. Sports Traumatol. Arthrosc. 2014, 22, 2522–2530. [Google Scholar] [CrossRef]
- Niemeyer, P.; Pestka, J.M.; Kreuz, P.C.; Erggelet, C.; Schmal, H.; Suedkamp, N.P.; Steinwachs, M. Characteristic complications after autologous chondrocyte implantation for cartilage defects of the knee joint. Am. J. Sports Med. 2008, 36, 2091–2099. [Google Scholar] [CrossRef] [PubMed]
- Teo, B.J.; Buhary, K.; Tai, B.C.; Hui, J.H. Cell-based therapy improves function in adolescents and young adults with patellar osteochondritis dissecans. Clin. Orthop. Relat. Res. 2013, 471, 1152–1158. [Google Scholar] [CrossRef] [PubMed]
- Tradati, D.; De Luca, P.; Maione, A.; Uboldi, F.M.; Volpi, P.; de Girolamo, L.; Berruto, M. AMIC-Autologous Matrix-Induced Chondrogenesis Technique in Patellar Cartilage Defects Treatment: A Retrospective Study with a Mid-Term Follow-Up. J. Clin. Med. 2020, 9, 1184. [Google Scholar] [CrossRef] [PubMed]
- von Keudell, A.; Han, R.; Bryant, T.; Minas, T. Autologous Chondrocyte Implantation to Isolated Patella Cartilage Defects. Cartilage 2017, 8, 146–154. [Google Scholar] [CrossRef]
- Migliorini, F.; Eschweiler, J.; Goetze, C.; Tingart, M.; Maffulli, N. Membrane scaffolds for matrix-induced autologous chondrocyte implantation in the knee: A systematic review. Br. Med. Bull. 2021, 140, 50–61. [Google Scholar] [CrossRef]
- Shen, C.; Zhou, Z.; Li, R.; Yang, S.; Zhou, D.; Zhou, F.; Geng, Z.; Su, J. Silk fibroin-based hydrogels for cartilage organoids in osteoarthritis treatment. Theranostics 2025, 15, 560–584. [Google Scholar] [CrossRef]
- Li, X.; Sheng, S.; Li, G.; Hu, Y.; Zhou, F.; Geng, Z.; Su, J. Research Progress in Hydrogels for Cartilage Organoids. Adv. Healthc. Mater. 2024, 13, e2400431. [Google Scholar] [CrossRef]
- Ma, Z.; Wu, Y.; Li, G.; Liu, J.; Geng, Z.; Su, J. Extracellular vesicles-loaded DNA hydrogels: A promising candidate for cartilage organoids engineering. Chem. Eng. J. 2023, 477, 147146. [Google Scholar] [CrossRef]
Database | Search String |
---|---|
PubMed | (“knee” [MeSH Terms] OR “knee joint” [MeSH Terms]) AND (“cartilage, articular” [MeSH Terms] OR “cartilage repair” OR “chondral defect” OR “focal cartilage lesion”) AND (“autologous chondrocyte implantation” [MeSH Terms] OR “ACI” OR “AMIC” OR “bone marrow stimulation” OR “scaffold” OR “cell therapy” OR “regenerative medicine”) |
Scopus | TITLE-ABS-KEY(knee AND (cartilage OR chondral) AND (ACI OR AMIC OR “bone marrow stimulation” OR scaffold OR “cell therapy” OR “regenerative surgery”)) |
WoS | TS = (knee AND (cartilage OR chondral OR “focal defect”) AND (ACI OR AMIC OR “bone marrow stimulation” OR scaffold OR “cell-based therapy” OR “regenerative approach”)) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Migliorini, F.; Simeone, F.; Bardazzi, T.; Memminger, M.K.; Pipino, G.; Vaishya, R.; Maffulli, N. Regenerative Cartilage Treatment for Focal Chondral Defects in the Knee: Focus on Marrow-Stimulating and Cell-Based Scaffold Approaches. Cells 2025, 14, 1217. https://doi.org/10.3390/cells14151217
Migliorini F, Simeone F, Bardazzi T, Memminger MK, Pipino G, Vaishya R, Maffulli N. Regenerative Cartilage Treatment for Focal Chondral Defects in the Knee: Focus on Marrow-Stimulating and Cell-Based Scaffold Approaches. Cells. 2025; 14(15):1217. https://doi.org/10.3390/cells14151217
Chicago/Turabian StyleMigliorini, Filippo, Francesco Simeone, Tommaso Bardazzi, Michael Kurt Memminger, Gennaro Pipino, Raju Vaishya, and Nicola Maffulli. 2025. "Regenerative Cartilage Treatment for Focal Chondral Defects in the Knee: Focus on Marrow-Stimulating and Cell-Based Scaffold Approaches" Cells 14, no. 15: 1217. https://doi.org/10.3390/cells14151217
APA StyleMigliorini, F., Simeone, F., Bardazzi, T., Memminger, M. K., Pipino, G., Vaishya, R., & Maffulli, N. (2025). Regenerative Cartilage Treatment for Focal Chondral Defects in the Knee: Focus on Marrow-Stimulating and Cell-Based Scaffold Approaches. Cells, 14(15), 1217. https://doi.org/10.3390/cells14151217