Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (356)

Search Parameters:
Keywords = embryo loss

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1560 KiB  
Article
Detection of the Early Sensitive Stage and Natural Resistance of Broad Bean (Vicia faba L.) Against Black Bean and Cowpea Aphids
by Fouad Meradsi, Adel Lekbir, Oussama A. Bensaci, Abdelkader Tifferent, Asim Abbasi, Assia Djemoui, Nazih Y. Rebouh, Abeer Hashem, Graciela Dolores Avila-Quezada, Khalid F. Almutairi and Elsayed Fathi Abd_Allah
Insects 2025, 16(8), 817; https://doi.org/10.3390/insects16080817 - 7 Aug 2025
Abstract
Broad bean is one of the most important leguminous crops worldwide. However, its productivity is greatly affected by the infestation of Aphis fabae and Aphis craccivora (Hemiptera: Aphididae). The main objective of the current study was to identify the most susceptible phenological stages [...] Read more.
Broad bean is one of the most important leguminous crops worldwide. However, its productivity is greatly affected by the infestation of Aphis fabae and Aphis craccivora (Hemiptera: Aphididae). The main objective of the current study was to identify the most susceptible phenological stages of the broad bean variety (Histal) against black aphids’ herbivory. This had been achieved through an evaluation of plant resistance mechanisms such as antixenosis and antibiosis. The results regarding an antixenosis test revealed that the four tested phenological stages of V. faba did not have a significant effect on the preference of A. craccivora and A. fabae towards the crop plant. Overall, a slightly higher number of adults settled on the three and four unfolded leaves’ stage of the crop plant. Similarly, the highest number of developed embryos were found in the four leaves’ stage of the crop, and the lowest in the second leaf stage. The adult body size of A. craccivora was slightly larger in the case of the three unfolded leaves. Furthermore, the maximum body size of A. fabae adults was recorded in the case of the first unfolded leaf stage crop. Linear correlations between the biological parameters for both species revealed only one significant relationship between developed and total embryos for A. craccivora. The results of the current study highlight the need to protect broad bean crops against infestations of black aphids, i.e., A. craccivora and A. fabae. This is essential for reducing direct damage and preventing the transmission of phytoviruses. However, future studies should aim to evaluate the susceptibility of all developmental phenological stages of the crop against black aphids to mitigate potential crop losses. Full article
(This article belongs to the Section Insect Behavior and Pathology)
Show Figures

Figure 1

14 pages, 2425 KiB  
Review
Immunological Factors in Recurrent Pregnancy Loss: Mechanisms, Controversies, and Emerging Therapies
by Efthalia Moustakli, Anastasios Potiris, Athanasios Zikopoulos, Eirini Drakaki, Ioannis Arkoulis, Charikleia Skentou, Ioannis Tsakiridis, Themistoklis Dagklis, Peter Drakakis and Sofoklis Stavros
Biology 2025, 14(7), 877; https://doi.org/10.3390/biology14070877 - 17 Jul 2025
Viewed by 501
Abstract
Immunological factors have gained growing recognition as key contributors to recurrent pregnancy loss (RPL) after in vitro fertilization (IVF), representing a major challenge in reproductive medicine. RPL affects approximately 1–2% of women trying to conceive naturally and up to 10–15% of those undergoing [...] Read more.
Immunological factors have gained growing recognition as key contributors to recurrent pregnancy loss (RPL) after in vitro fertilization (IVF), representing a major challenge in reproductive medicine. RPL affects approximately 1–2% of women trying to conceive naturally and up to 10–15% of those undergoing IVF, where overall success rates remain around 30–40% per cycle. An imbalance in maternal immunological tolerance toward the semi-allogeneic fetus during pregnancy may lead to miscarriage and implantation failure. IVF-related ovarian stimulation and embryo modification offer additional immunological complications that can exacerbate existing immune dysregulation. Recent advances in reproductive immunology have significantly deepened our understanding of the immune mechanisms underlying RPL following IVF, particularly highlighting the roles of regulatory T cells (T regs), natural killer cells, cytokine dysregulation, and disruptions in maternal–fetal immune tolerance. In order to better customize therapies, this evaluation incorporates recently discovered immunological biomarkers and groups patients according to unique immune profiles. Beyond conventional treatments like intralipid therapy and intravenous immunoglobulin, it also examines new immunomodulatory medications that target certain immune pathways, such as precision immunotherapies and novel cytokine modulators. We also discuss the debates over immunological diagnostics and therapies, such as intralipid therapy, intravenous immunoglobulin, corticosteroids, and anticoagulants. The heterogeneity of patient immune profiles combined with a lack of strong evidence highlights the imperative for precision medicine to improve therapeutic consistency. Novel indicators for tailored immunotherapy and emerging treatments that target particular immune pathways have encouraging opportunities to increase pregnancy success rates. Improving management approaches requires that future research prioritize large-scale clinical trials and the development of standardized immunological assessments. This review addresses the immunological factors in RPL during IVF, emphasizing underlying mechanisms, ongoing controversies, and novel therapeutic approaches to inform researchers and clinicians. Full article
(This article belongs to the Section Immunology)
Show Figures

Figure 1

16 pages, 2628 KiB  
Article
Astrocyte-Conditioned Medium Induces Protection Against Ischaemic Injury in Primary Rat Neurons
by Ayesha Singh and Ruoli Chen
Neuroglia 2025, 6(3), 27; https://doi.org/10.3390/neuroglia6030027 - 17 Jul 2025
Viewed by 276
Abstract
Background: Astrocytes are not only structural cells but also play a pivotal role in neurogenesis and neuroprotection by secreting a variety of neurotrophic factors that support neuronal survival, growth, and repair. This study investigates the time-dependent responses of primary rat cortical astrocytes to [...] Read more.
Background: Astrocytes are not only structural cells but also play a pivotal role in neurogenesis and neuroprotection by secreting a variety of neurotrophic factors that support neuronal survival, growth, and repair. This study investigates the time-dependent responses of primary rat cortical astrocytes to oxygen–glucose deprivation (OGD) and evaluates the neuroprotective potential of astrocyte-conditioned medium (ACM). Methods: Primary rat cortical astrocytes and neurons were obtained from postnatal Sprague Dawley rat pups (P1–3) and embryos (E17–18), respectively. Astrocytes exposed to 6, 24, and 48 h of OGD (0.3% O2) were assessed for viability, metabolic function, hypoxia-inducible factor 1 and its downstream genes expression. Results: While 6 h OGD upregulated protective genes such as Vegf, Glut1, and Pfkfb3 without cell loss, prolonged OGD, e.g., 24 or 48 h, led to significant astrocyte death and stress responses, including elevated LDH release, reduced mitochondrial activity, and increased expression of pro-apoptotic marker Bnip3. ACM from 6 h OGD-treated astrocytes significantly enhanced neuronal survival following 6 h OGD and 24 h reperfusion, preserving dendritic architecture, improving mitochondrial function, and reducing cell death. This protective effect was not observed with ACM from 24 h OGD astrocytes. Furthermore, 6 h OGD-ACM induced autophagy in neurons, as indicated by elevated LC3b-II and decreased p62 levels, suggesting autophagy as a key mechanism in ACM-mediated neuroprotection. Conclusions: These findings demonstrate that astrocytes exhibit adaptive, time-sensitive responses to ischemic stress and secrete soluble factors that can confer neuroprotection. This study highlights the therapeutic potential of targeting astrocyte-mediated signalling pathways to enhance neuronal survival following ischemic stroke. Full article
Show Figures

Figure 1

16 pages, 4159 KiB  
Article
Integrated Transcriptomic and Metabolic Analyses Highlight Key Pathways Involved in the Somatic Embryogenesis of Picea mongolica
by Jinling Dai, Shengli Zhang and Yu’e Bai
Plants 2025, 14(14), 2141; https://doi.org/10.3390/plants14142141 - 11 Jul 2025
Viewed by 379
Abstract
In the severe environment of Hunshandake Sandy Land, the uncommon and indigenous Chinese tree species Picea mongolica is an important biological component. Conventional seed propagation in P. mongolica is constrained by low germination rates, prolonged breeding cycles, and hybrid offspring genetic instability, limiting [...] Read more.
In the severe environment of Hunshandake Sandy Land, the uncommon and indigenous Chinese tree species Picea mongolica is an important biological component. Conventional seed propagation in P. mongolica is constrained by low germination rates, prolonged breeding cycles, and hybrid offspring genetic instability, limiting efficient varietal improvement. In contrast, somatic embryogenesis (SE) offers superior propagation efficiency, exceptional germination synchrony, and strict genetic fidelity, enabling rapid mass production of elite regenerants. However, SE in P. mongolica is hampered by severe genotype dependence, poor mature embryo induction rates, and loss of embryogenic potential during long-term cultures, restricting the production of high-quality seedlings. In this study, we aimed to analyze the transcriptome and metabolome of three crucial phases of SE: mature somatic embryos (MSEs), globular somatic embryos (GSEs), and embryogenic calli (EC). Numerous differentially expressed genes (DEGs) were found, especially in pathways linked to ribosomal functions, flavonoid biosynthesis, and the metabolism of starch and sucrose. Additionally, 141 differentially accumulated metabolites (DAMs) belonging to flavonoids, organic acids, carbohydrates, lipids, amino acids, and other metabolites were identified. An integrated study of metabolomic and transcriptome data indicated considerable enrichment of DEGs and DAMs in starch and sucrose metabolism, as well as phenylpropanoid biosynthesis pathways, all of which are required for somatic embryo start and development. This study revealed a number of metabolites and genes linked with SE, offering important insights into the molecular mechanisms driving SE in P. mongolica and laying the groundwork for the development of an efficient SE system. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

17 pages, 3653 KiB  
Article
Significant Increase of Cinnamic Acid in Metabolites of Chicks Infected with Infectious Bronchitis Virus and Its Remarkable Antiviral Effects In Vitro and In Vivo
by Lan-Ping Wei, Tao-Ni Zhang, Yu Zhang, Li-Na Ren, Yan-Peng Lu, Tian-Chao Wei, Teng Huang, Jian-Ni Huang and Mei-Lan Mo
Microorganisms 2025, 13(7), 1633; https://doi.org/10.3390/microorganisms13071633 - 10 Jul 2025
Viewed by 268
Abstract
Avian infectious bronchitis virus (IBV) infection has caused significant economic losses to the poultry industry. Unfortunately, there is currently no effective cure for this disease. Understanding the pathogenic mechanism is crucial for the treatment of the disease. Studying the pathogenic mechanism of IBV [...] Read more.
Avian infectious bronchitis virus (IBV) infection has caused significant economic losses to the poultry industry. Unfortunately, there is currently no effective cure for this disease. Understanding the pathogenic mechanism is crucial for the treatment of the disease. Studying the pathogenic mechanism of IBV based on metabolomics analysis is helpful for identifying antiviral drugs. However, studies on metabolomics analysis of IBV infection have been relatively limited, particularly without metabolomics analysis in sera after IBV infection. In this study, 17-day-old SPF chicks were infected with the IBV GX-YL5 strain, and serum samples were collected 7 days post-infection (DPI) for metabolomics analysis using ultraperformance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). A total of 143 differential metabolites were identified across 20 metabolic pathways, with the phenylalanine pathway showing the most significant changes. The level of cinnamic acid (CA), an upstream metabolite in the phenylalanine pathway, was notably increased following IBV infection. To investigate the antiviral effects of CA, chicken embryo kidney (CEK) cells and SPF chicks infected with IBV were treated with different concentrations of CA to assess its effect on viral replication. The results demonstrated that CA at 25 μg/mL effectively inhibited IBV replication in vitro; meanwhile, CA at 50 μg/mL and 25 μg/mL effectively inhibited IBV replication in vivo. Molecular docking and molecular dynamics simulation studies showed that CA interacts with the N domains of the IBV nucleocapsid (N) protein. In conclusion, the serum metabolite CA is significantly elevated following IBV infection and demonstrates remarkable antiviral effects both in vitro and in vivo, providing a promising avenue for the development of antiviral therapies to combat IBV infection. Full article
(This article belongs to the Special Issue Poultry Pathogens and Poultry Diseases, 2nd Edition)
Show Figures

Figure 1

14 pages, 1789 KiB  
Article
A Novel PLCζ Mutation Linked to Male Factor Infertility Induces a Gain-of-Function Effect on Ca2+ Oscillations in Eggs
by Alaaeldin Saleh, Zizhen Huang, Maryam Al Shaikh, Tomasz P. Jurkowski, Zeyaul Islam, Karl Swann and Michail Nomikos
Int. J. Mol. Sci. 2025, 26(13), 6241; https://doi.org/10.3390/ijms26136241 - 28 Jun 2025
Viewed by 329
Abstract
Mammalian fertilization is triggered by a series of calcium (Ca2+) oscillations that are essential for egg activation and successful embryo development. It is widely accepted that Phospholipase C zeta (PLCζ) is the sperm-derived factor that triggers these oscillations, initiating egg activation [...] Read more.
Mammalian fertilization is triggered by a series of calcium (Ca2+) oscillations that are essential for egg activation and successful embryo development. It is widely accepted that Phospholipase C zeta (PLCζ) is the sperm-derived factor that triggers these oscillations, initiating egg activation through the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) into inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG), leading to Ca2+ release. Several studies have reported a number of PLCζ mutations associated with polyspermy, egg activation failure and early embryonic arrest. Herein, six infertility-linked PLCζ mutations (I120M, L246F, L277P, S350P, A384V and M578T) spanning different domains of PLCζ were selected for characterization through in vivo assessment of their Ca2+-oscillation-inducing activities and complementary in silico analysis. Our data revealed that five of the investigated PLCζ mutants exhibited reduced or complete loss of in vivo Ca2+-oscillation-inducing activity, with the exception of the L277P, which resulted in increased frequency and duration of Ca2+ oscillations. Molecular modeling of PLCζ mutants was consistent with the in vivo characterization, revealing that most mutations have a deleterious effect on the structural stability. For the first time, we provide evidence that a gain-of-function PLCζ mutation may be a cause of fertilization failure in humans. Our findings suggest that PLCζ enzymatic activity must operate within an optimal range to ensure successful egg activation and early embryonic development. Additionally, we demonstrate the essential role of all PLCζ domains in maintaining the Ca2+ oscillation-inducing activity in eggs and the importance of PLCζ functionality in human fertilization. Full article
(This article belongs to the Special Issue A Molecular Perspective on Reproductive Health, 2nd Edition)
Show Figures

Figure 1

20 pages, 7139 KiB  
Article
Cannabinoid Receptor 1 Regulates Zebrafish Renal Multiciliated Cell Development via cAMP Signaling
by Thanh Khoa Nguyen, Sophia Baker, Julienne Angtuaco, Liana Arceri, Samuel Kaczor, Bram Fitzsimonds, Matthew R. Hawkins and Rebecca A. Wingert
J. Dev. Biol. 2025, 13(2), 20; https://doi.org/10.3390/jdb13020020 - 17 Jun 2025
Viewed by 799
Abstract
Endocannabinoid signaling plays a significant role in neurogenesis and nervous system physiology, but its roles in the development of other tissues are just beginning to be appreciated. Previous reports have shown the presence of the key endocannabinoid receptor Cannabinoid receptor 1 (CB1 or [...] Read more.
Endocannabinoid signaling plays a significant role in neurogenesis and nervous system physiology, but its roles in the development of other tissues are just beginning to be appreciated. Previous reports have shown the presence of the key endocannabinoid receptor Cannabinoid receptor 1 (CB1 or Cnr1) in multiciliated (MCC) tissues and its upregulation in kidney diseases, yet the relationship between Cnr1 and renal MCC development is unknown. Here, we report that Cnr1 is essential for cilia development across tissues and regulates renal MCCs via cyclic AMP (cAMP) signaling during zebrafish embryogenesis. Using a combination of genetic and pharmacological studies, we found that the loss of function, agonism and antagonism of cnr1 all lead to reduced mature renal MCC populations. cnr1 deficiency also led to reduced cilia development across tissues, including the pronephros, ear, Kupffer’s vesicle (KV), and nasal placode. Interestingly, treatment with the cAMP activator Forskolin (FSK) restored renal MCC defects in agonist-treated embryos, suggesting that cnr1 mediates cAMP signaling in renal MCC development. Meanwhile, treatment with the cAMP inhibitor SQ-22536 alone or with cnr1 deficiency led to reduced MCC populations, suggesting that cnr1 also mediates renal MCC development independently of cAMP signaling. Our findings indicate that cnr1 has a critical role in controlling renal MCC development both via cAMP signaling and an independent pathway, further revealing implications for ciliopathies and renal diseases. Full article
(This article belongs to the Special Issue Feature Papers from Journal of Developmental Biology Reviewers)
Show Figures

Figure 1

12 pages, 523 KiB  
Review
Heat Stress from Calving to Mating: Mechanisms and Impact on Cattle Fertility
by Luís Capela, Inês Leites and Rosa M. L. N. Pereira
Animals 2025, 15(12), 1747; https://doi.org/10.3390/ani15121747 - 13 Jun 2025
Viewed by 836
Abstract
Animal production is a core sector to solve the increasing food demand worldwide, with productivity severely affected by climate change. Experts are predicting huge global productive losses in animal-derived products. Moreover, productive loss affects the economy, and the US dairy industry has reported [...] Read more.
Animal production is a core sector to solve the increasing food demand worldwide, with productivity severely affected by climate change. Experts are predicting huge global productive losses in animal-derived products. Moreover, productive loss affects the economy, and the US dairy industry has reported losses of 1.5 billion dollars annually due to climate change. Beef and dairy production are based on cow reproduction and fertility is a key indicator of productivity. However, under heat stress (HS), several physiological modifications decrease cows’ fertility. Lower levels of estradiol, progesterone, and epidermal growth factor lead to undetectable ovulations, an inability to maintain the embryo and the pregnancy, or increased cortisol levels, inducing immunosuppression and, consequently, puerperal diseases delaying new pregnancies. The welfare of cows under HS, especially those raised on pasture, is a huge concern. Considering the impact of ambient-temperature-induced HS, developing strategies to improve fertility—namely through the selection of thermotolerant breeds allied to environmental management measures—can improve cattle production efficiency and reduce resource use, thereby reducing the carbon footprint. This review focuses on the effects of HS on female fertility, from parturition until the new conception, and on the role of heat shock proteins during this period. Full article
(This article belongs to the Section Animal Reproduction)
Show Figures

Figure 1

21 pages, 5768 KiB  
Article
LPS Regulates Endometrial Immune Homeostasis and Receptivity Through the TLR4/ERK Pathway in Sheep
by Jinzi Wei, Xing Fan, Xiaorui Zang, Yu Guo, Wenjie Jiang, Meiyu Qi, Hongbing Han and Yuchang Yao
Animals 2025, 15(12), 1712; https://doi.org/10.3390/ani15121712 - 10 Jun 2025
Viewed by 540
Abstract
In sheep production, due to the limitations of breeding conditions, the uteri of ewes are often infected with bacteria, resulting in the failure of embryo implantation or loss, causing huge losses to the sheep industry. Therefore, in this study, by using RT-qPCR, Western [...] Read more.
In sheep production, due to the limitations of breeding conditions, the uteri of ewes are often infected with bacteria, resulting in the failure of embryo implantation or loss, causing huge losses to the sheep industry. Therefore, in this study, by using RT-qPCR, Western blot, and immunofluorescence, we investigated the effects of LPS infusion on the immune microenvironment and endometrial receptivity, which play an important role in the process of embryo implantation in ruminants, during the three critical periods of embryo implantation in sheep. The results showed that LPS infusion at day 12, day 16, and day 20 significantly increased the expression of Th1 cytokines (TNF-α, IL-1β, IL-8, IL-6), while significantly decreasing the expression of Th2 cytokines (IL-4 and IL-10) and disrupting the expression of implantation factors, such as ITGB3, ITGB5, VEGF, and LIF, in the endometrial tissues of sheep. Additionally, the protein expression level of TLR4 and the phosphorylation level of ERK were significantly elevated at day 12, day 16, and day 20 after LPS infusion, suggesting that LPS may impair endometrial receptivity through the TLR4/ERK pathway. Validation was conducted in a receptive model of sEECs using TLR4 and ERK phosphorylation inhibitors. Compared with the LPS group, TLR4 and ERK phosphorylation inhibitors significantly reduced the expression of TLR4 and p-ERK, down-regulated Th1 cytokines, up-regulated Th2 cytokines, and alleviated the disruption of genes for attachment. Treatment with 50 μM PTE can significantly alleviate the abnormal expression of implantation genes caused by LPS, and its mechanism may be related to the regulation of the ERK signaling pathway. Full article
(This article belongs to the Section Small Ruminants)
Show Figures

Figure 1

20 pages, 19259 KiB  
Article
Sponge bHLH Gene Expression in Xenopus laevis Disrupts Inner Ear and Lateral Line Neurosensory Development and Otic Afferent Pathfinding
by Karen L. Elliott, Clayton Gordy, Hannah Ingvalson, Charles Holliday, Jessica Halyko, Douglas W. Houston, Bernard M. Degnan and Bernd Fritzsch
Int. J. Mol. Sci. 2025, 26(12), 5487; https://doi.org/10.3390/ijms26125487 - 7 Jun 2025
Viewed by 449
Abstract
Basic helix–loop–helix (bHLH) transcription factors, such as those in the atonal family, are important in cellular fate determination. The expression of the sponge ortholog of the atonal bHLH gene family, AmqbHLH1, in Xenopus laevis previously resulted in the formation of ectodermal ectopic [...] Read more.
Basic helix–loop–helix (bHLH) transcription factors, such as those in the atonal family, are important in cellular fate determination. The expression of the sponge ortholog of the atonal bHLH gene family, AmqbHLH1, in Xenopus laevis previously resulted in the formation of ectodermal ectopic neurons. However, the extent to which these neurons persist through development and the effects on the inner ear and lateral line, which require a critical level and timing of bHLH genes, remains unexplored. To test these long-term effects, we injected various concentrations of AmqbHLH1 mRNA into X. laevis embryos and assessed neurosensory development at developmental stages coinciding with fully developed neurosensory structures. The expression of AmqbHLH1 mRNA in X. laevis resulted in a dose-dependent reduction in or loss of ears and the lateral line system without eliminating ectopic neurons. At the lowest concentrations examined, we found that inner ear neurosensory development consisted sometimes of only a few scattered hair cells in a single-layer epithelium. Furthermore, low concentrations of AmqbHLH1 mRNA affected inner ear afferent guidance. Our data suggest that the AmqbHLH1 gene has some anti-neurosensory abilities in frogs and that the overexpression of a single gene may not be sufficient for stable long-term transdifferentiation in cells. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

14 pages, 2638 KiB  
Article
CD46 Gene Editing Confers Ex Vivo BVDV Resistance in Fibroblasts from Cloned Angus Calves
by Aspen M. Workman, Michael P. Heaton and Brian L. Vander Ley
Viruses 2025, 17(6), 775; https://doi.org/10.3390/v17060775 - 29 May 2025
Viewed by 565
Abstract
A previous study demonstrated that a 19-nucleotide edit, encoding a six amino acid substitution in the bovine CD46 gene, dramatically reduced bovine viral diarrhea virus (BVDV) susceptibility in a cloned Gir (Bos indicus) heifer. The present study aimed to replicate this [...] Read more.
A previous study demonstrated that a 19-nucleotide edit, encoding a six amino acid substitution in the bovine CD46 gene, dramatically reduced bovine viral diarrhea virus (BVDV) susceptibility in a cloned Gir (Bos indicus) heifer. The present study aimed to replicate this result in American Angus (Bos taurus) using genetically matched controls and larger sample sizes. CRISPR/Cas9-mediated homology-directed repair introduced the identical CD46 edit, encoding the A82LPTFS amino acid sequence, into exon 2 of CD46 in primary Angus fibroblasts. Thirty-three cloned embryos (22 CD46-edited and 11 unedited) were transferred to recipient cows. However, all pregnancies resulted in pre- and perinatal losses due to cloning-related abnormalities, preventing in vivo BVDV challenge. Consequently, ex vivo BVDV susceptibility assays were performed on primary fibroblast cell lines rescued from deceased cloned Angus calves. Infection studies revealed significantly reduced susceptibility in the edited lines, comparable to the resistance previously observed from the edited Gir heifer. These studies extend the applicability of this finding from Gir to the most common US beef breed, Angus, suggesting the potential for broad application of CD46 editing in BVDV control. Continued advancements in cloning technology will enhance the potential of gene-editing for producing disease-resistant livestock. Full article
(This article belongs to the Special Issue Pestivirus 2025)
Show Figures

Figure 1

18 pages, 3639 KiB  
Article
Therapeutic Potential of Chick Early Amniotic Fluid in Mitigating Ionizing-Radiation-Induced Damage
by Ke Zhang, Hai Yang, Yueyue Wu, Yining Zhao, Wenxu Xin, Deshen Han, Ning Sun and Chao Ye
Biomedicines 2025, 13(5), 1253; https://doi.org/10.3390/biomedicines13051253 - 21 May 2025
Viewed by 523
Abstract
Background: Clinical data indicate that at least half of patients with malignancies receive radiotherapy. While radiotherapy effectively kills tumor cells, it is also associated with significant ionizing radiation (IR) damage. Moreover, the increasing emissions of nuclear pollutants raise concerns about the potential exposure [...] Read more.
Background: Clinical data indicate that at least half of patients with malignancies receive radiotherapy. While radiotherapy effectively kills tumor cells, it is also associated with significant ionizing radiation (IR) damage. Moreover, the increasing emissions of nuclear pollutants raise concerns about the potential exposure of more individuals to the risks associated with IR. The Chinese term for amniotic fluid (AF) is rooted in the Yin–Yang theory of traditional Chinese medicine, where it symbolizes the inception of human life. Chick early AF (ceAF), a natural product, has shown promise in the field of regenerative medicine. There have been no studies investigating the potential efficacy of ceAF in the treatment of IR-induced damage. This study aims to assess the therapeutic potential of ceAF in alleviating IR-induced damage and elucidate its potential molecular mechanism. Methods: In vivo experiments were conducted on 8-week-old male C57BL/6J mice to investigate the effects of ceAF in a radiation injury model induced by whole-body irradiation with X-rays (6 Gy) for 5 min. The ceAF was extracted from chicken embryos aged 7–9 days. Results: We found that the supplementation of ceAF reduces mortality induced by IR, improves exercise capacity in IR mice, and reverses IR-induced skin damage. IR leads to varying degrees of volume atrophy and weight loss in the major internal organs of mice. However, ceAF intervention effectively mitigates IR-induced organ damage, with a notable impact on the spleen. The supplementation of ceAF enhances spleen hematopoietic and immune functions by reducing oxidative stress, alleviating inflammatory responses, and preventing splenic DNA damage from IR exposure, ultimately leading to an overall improvement in health. Conclusions: ceAF effectively alleviates body damage induced by IR, and our findings provide new perspectives and therapeutic strategies for mitigating IR-induced damage. Full article
(This article belongs to the Section Molecular and Translational Medicine)
Show Figures

Figure 1

25 pages, 1162 KiB  
Article
Geobotanical Study and Preservation of Rare and Endangered Rosaceae Species
by Natalya V. Romadanova, Alina S. Zemtsova, Nazira A. Altayeva, Natalya A. Artimovich, Alyona M. Alexandrova, Svetlana V. Kushnarenko and Jean Carlos Bettoni
Plants 2025, 14(10), 1526; https://doi.org/10.3390/plants14101526 - 19 May 2025
Cited by 1 | Viewed by 759
Abstract
The loss of plant species, especially endangered and endemic ones, poses a significant threat to global biodiversity. These species cannot easily be replaced when their populations decline or become extinct, which makes their loss particularly devastating. This study focuses on the geobotanical study [...] Read more.
The loss of plant species, especially endangered and endemic ones, poses a significant threat to global biodiversity. These species cannot easily be replaced when their populations decline or become extinct, which makes their loss particularly devastating. This study focuses on the geobotanical study of nine Rosaceae species (Cotoneaster karatavicus, Crataegus ambigua, Malus niedzwetzkyana, Malus sieversii, Prunus tenella, Prunus ulmifolia, Sibiraea laevigata, Sorbus persica, and Spiraeanthus schrenkianus) and the development of ex situ approaches for the conservation of Rosaceae species listed in the Red Book of Kazakhstan. The geobotanical study revealed an alarming trend of biodiversity loss in five regions of Kazakhstan. This loss is driven by threats from diseases and pests, as well as the aging of plants, small population sizes, weak in situ fruiting, and other factors, such as climate change. We have established an in vitro collection for the short- and medium-term conservation of seeds, embryos and shoots taken either directly from field-grown plants or from budwood cuttings forced indoors. We also use long-term sexual conservation methods, such as the cryopreservation of seed and embryonic axes, alongside conventional seed banking at −20 °C. Ex situ conservation efforts that use multiple propagules and storage methods for the same species are well-suited to a diverse genebank facility. These efforts enable future generations to use this valuable reservoir of genetic diversity for crop improvement and may also serve as a basis for propagating planting material to restore degraded populations. Full article
(This article belongs to the Special Issue Plant Tissue Culture and Plant Regeneration)
Show Figures

Figure 1

18 pages, 918 KiB  
Systematic Review
Uterine Transplantation: Advances, Challenges, and Future Perspectives
by Ana Pereira, Flávia Ribeiro, Sandra Soares and Hélder Ferreira
Diseases 2025, 13(5), 152; https://doi.org/10.3390/diseases13050152 - 15 May 2025
Cited by 1 | Viewed by 939
Abstract
Background: Infertility is a multifactorial condition with medical, psychological, demographic, and economic impacts. Around 3–5% of cases are due to uterine dysfunction. Absolute uterine factor infertility (AUFI) refers to infertility caused entirely by the absence or abnormality of the uterus, which prevents embryo [...] Read more.
Background: Infertility is a multifactorial condition with medical, psychological, demographic, and economic impacts. Around 3–5% of cases are due to uterine dysfunction. Absolute uterine factor infertility (AUFI) refers to infertility caused entirely by the absence or abnormality of the uterus, which prevents embryo implantation or pregnancy viability. Uterus transplantation (UTx) has emerged as a promising treatment for AUFI and has been successfully performed in over 10 countries. Objectives: This study aims to conduct a systematic review of uterus transplantation, evaluating its efficacy and safety, as well as maternal, neonatal, and long-term outcomes. It also explores current challenges and future directions. Methods: The methodology was registered on the PROSPERO platform. A literature search was performed in January 2025 across PubMed, Web of Science, and Scopus for articles published from January 2002 to December 2024 in English or Portuguese. The query was: “uterus/transplantation AND (pregnancy OR complications OR newborn OR premature OR diseases)”. Study quality was assessed by journal impact factor (IF). Data were analyzed using Microsoft Excel. Results: A total of 10 studies were included: four from Sweden, three from the DUETS group, two from the Czech Republic, and one multi-institutional American study. The UTx success rate was 74.0%; clinical pregnancy rate (CPR) and live birth rates (LBR) per embryo transfer (ET) were 36.3% and 22.0%, respectively. No significant increase in congenital or neurological complications was observed. Adverse psychological outcomes were associated with transplant failure or pregnancy loss. Conclusions: UTx is a promising treatment for AUFI, showing favorable pregnancy and birth outcomes without major fetal or neonatal risks. Full article
Show Figures

Figure 1

25 pages, 20577 KiB  
Article
Zebrafish cdh23 Affects Rod Cell Phototransduction Through Regulating Ca2+ Transport and MAPK Signaling Pathway
by Xiaoying Zheng, Binling Xie, Dingrui Chen, Jifan Jiang, Ting Zeng, Lei Xiong, Qingying Shi, Hao Xie, Yisheng Cai, Jiaxin Liang, Song Chen, Xiaochao Qu and Huaping Xie
Int. J. Mol. Sci. 2025, 26(10), 4604; https://doi.org/10.3390/ijms26104604 - 11 May 2025
Viewed by 623
Abstract
Mutations in the pathogenic gene CDH23 are known to cause Usher syndrome, affecting both auditory and visual functions. Our previous results provided valuable insights into the mechanisms underlying congenital hearing loss associated with CDH23 mutations. However, the molecular mechanisms and signaling pathways that [...] Read more.
Mutations in the pathogenic gene CDH23 are known to cause Usher syndrome, affecting both auditory and visual functions. Our previous results provided valuable insights into the mechanisms underlying congenital hearing loss associated with CDH23 mutations. However, the molecular mechanisms and signaling pathways that influence vision remain largely unknown. In this study, transcriptional sequencing and bioinformatics analysis were conducted to compare gene expression between the control and cdh23−/. Additionally, RT-qPCR experiments were performed to further validate the bioinformatics analysis results. The comparative transcriptomic analysis identified differentially expressed genes associated with photoreceptor degeneration and the mitogen-activated protein kinase (MAPK) signaling pathway. Embryos were subjected to hematoxylin and eosin (H&E) staining to assess their histological changes. The results showed that the cdh23−/− retina was morphologically indistinguishable from the control. Apoptosis was assessed using TUNEL staining, which revealed an increase in total cell death in the cdh23−/ retina. Our results revealed that the cell death was induced by Ca2+ and MAPK signaling interactions following photoreceptor degeneration. This study provides insights into the mechanisms underlying the role of cdh23 in vision. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

Back to TopTop