Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,314)

Search Parameters:
Keywords = electronic/chemical functionalization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 8045 KiB  
Article
Modification of G-C3N4 by the Surface Alkalinization Method and Its Photocatalytic Depolymerization of Lignin
by Zhongmin Ma, Ling Zhang, Lihua Zang and Fei Yu
Materials 2025, 18(14), 3350; https://doi.org/10.3390/ma18143350 - 17 Jul 2025
Abstract
The efficient depolymerization of lignin has become a key challenge in the preparation of high-value-added chemicals. Graphitic carbon nitride (g-C3N4)-based photocatalytic system shows potential due to its mild and green characteristics over other depolymerization methods. However, its inherent defects, [...] Read more.
The efficient depolymerization of lignin has become a key challenge in the preparation of high-value-added chemicals. Graphitic carbon nitride (g-C3N4)-based photocatalytic system shows potential due to its mild and green characteristics over other depolymerization methods. However, its inherent defects, such as a wide band gap and rapid carrier recombination, severely limit its catalytic performance. In this paper, a g-C3N4 modification strategy of K⁺ doping and surface alkalinization is proposed, which is firstly applied to the photocatalytic depolymerization of the lignin β-O-4 model compound (2-phenoxy-1-phenylethanol). K⁺ doping is achieved by introducing KCl in the precursor thermal polymerization stage to weaken the edge structure strength of g-C3N4, and post-treatment with KOH solution is combined to optimize the surface basic groups. The structural/compositional evolution of the materials was analyzed by XRD, FTIR, and XPS. The morphology/element distribution was visualized by SEM-EDS, and the optoelectronic properties were evaluated by UV–vis DRS, PL, EIS, and transient photocurrent (TPC). K⁺ doping and surface alkalinization synergistically regulate the layered structure of the material, significantly increase the specific surface area, introduce nitrogen vacancies and hydroxyl functional groups, effectively narrow the band gap (optimized to 2.35 eV), and inhibit the recombination of photogenerated carriers by forming electron capture centers. Photocatalytic experiments show that the alkalinized g-C3N4 can completely depolymerize 2-phenoxy-1-phenylethanol with tunable product selectivity. By adjusting reaction time and catalyst dosage, the dominant product can be shifted from benzaldehyde (up to 77.28% selectivity) to benzoic acid, demonstrating precise control over oxidation degree. Mechanistic analysis shows that the surface alkaline sites synergistically optimize the Cβ-O bond breakage path by enhancing substrate adsorption and promoting the generation of active oxygen species (·OH, ·O2). This study provides a new idea for the efficient photocatalytic depolymerization of lignin and lays an experimental foundation for the interface engineering and band regulation strategies of g-C3N4-based catalysts. Full article
(This article belongs to the Section Catalytic Materials)
Show Figures

Figure 1

22 pages, 11295 KiB  
Article
Process-Driven Structural and Property Evolution in Laser Powder Bed Fusion of a Newly Developed AISI 316L Stainless Steel
by Amir Behjat, Morteza Shamanian, Fazlollah Sadeghi, Mohammad Hossein Mosallanejad and Abdollah Saboori
Materials 2025, 18(14), 3343; https://doi.org/10.3390/ma18143343 - 16 Jul 2025
Viewed by 170
Abstract
The lack of new materials with desired processability and functional characteristics remains a challenge for metal additive manufacturing (AM). Therefore, in this work, a new promising AISI 316L-based alloy with better performance compared to the commercially available one is developed via the laser [...] Read more.
The lack of new materials with desired processability and functional characteristics remains a challenge for metal additive manufacturing (AM). Therefore, in this work, a new promising AISI 316L-based alloy with better performance compared to the commercially available one is developed via the laser powder bed fusion (L-PBF) process. Moreover, establishing process–structure–properties linkages is a critical point that should be evaluated carefully before adding newly developed alloys into the AM market. Hence, the current study investigates the influences of various process parameters on the as-built quality and microstructure of the newly developed alloy. The results revealed that increasing laser energy density led to reduced porosity and surface roughness, likely due to enhanced melting and solidification. Microstructural analysis revealed a uniform distribution of copper within the austenite phase without forming any agglomeration or secondary phases. Electron backscatter diffraction analysis indicated a strong texture along the build direction with a gradual increase in Goss texture at higher energy densities. Grain boundary regions exhibited higher local misorientation and dislocation density. These findings suggest that changing the process parameters of the L-PBF process is a promising method for developing tailored microstructures and chemical compositions of commercially available AISI 316L stainless steel. Full article
Show Figures

Figure 1

15 pages, 3491 KiB  
Article
Development and Characterization of Composite Films of Potato Starch and Carboxymethylcellulose/Poly(ethylene oxide) Nanofibers
by Yenny Paola Cruz Moreno, Andres Felipe Rubiano-Navarrete, Erika Rocio Cely Rincón, Adriana Elizabeth Lara Sandoval, Alfredo Maciel Cerda, Edwin Yesid Gomez-Pachon and Ricardo Vera-Graziano
Eng 2025, 6(7), 160; https://doi.org/10.3390/eng6070160 - 15 Jul 2025
Viewed by 148
Abstract
This study aimed to develop and characterize biodegradable films based on potato starch reinforced with carboxymethylcellulose (CMC) and polyethylene oxide (PEO) nanofibers, with the goal of improving their mechanical and thermal properties for potential use in sustainable packaging. The films were prepared through [...] Read more.
This study aimed to develop and characterize biodegradable films based on potato starch reinforced with carboxymethylcellulose (CMC) and polyethylene oxide (PEO) nanofibers, with the goal of improving their mechanical and thermal properties for potential use in sustainable packaging. The films were prepared through the thermal gelatinization of starch extracted from tubers, combined with nanofibers obtained by electrospinning CMC synthesized from potato starch. Key electrospinning variables, including solution concentration, voltage, distance, and flow rate, were analyzed. The films were morphologically characterized using scanning electron microscopy (SEM) and chemically analyzed by Fourier Transform Infrared Spectroscopy (FTIR) and X-ray Diffraction (XRD), and their thermal properties were assessed by Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC). The results indicated an increase in tensile strength to 14.1 MPa in the reinforced films, compared to 13.6 MPa for pure starch and 7.1 MPa for the fiber-free CMC blend. The nanofibers had an average diameter of 63.3 nm and a porosity of 32.78%. A reduction in crystallinity and more stable thermal behavior were also observed in the composite materials. These findings highlight the potential of using agricultural waste as a functional reinforcement in biopolymers, providing a viable and environmentally friendly alternative to synthetic polymers. Full article
(This article belongs to the Section Materials Engineering)
Show Figures

Figure 1

17 pages, 5365 KiB  
Article
Method for Elucidating the Structural Evolution of a Nanoscale Release Layer in Double Copper Foils Under Thermal Exposure
by Rutuja Bhusari, Julien Bardon, Jérôme Guillot, Adrian-Marie Philippe, Sascha Scholzen, Zainhia Kaidi and Frédéric Addiego
Materials 2025, 18(14), 3316; https://doi.org/10.3390/ma18143316 - 14 Jul 2025
Viewed by 140
Abstract
Double ultrathin copper foils (DTH), widely used for producing conductive tracks in electronics, consist of an ultrathin copper functional foil (FF), a nanometric release layer (RL), and an ultrathin copper carrier foil (CF). Achieving stable release strength of the CF during DTH lamination [...] Read more.
Double ultrathin copper foils (DTH), widely used for producing conductive tracks in electronics, consist of an ultrathin copper functional foil (FF), a nanometric release layer (RL), and an ultrathin copper carrier foil (CF). Achieving stable release strength of the CF during DTH lamination remains a key challenge, largely due to limited knowledge about the structure of the RL. In this study, a comprehensive characterization methodology is proposed to investigate the physico-chemical structure of a chromium-based RL, both before and after thermal exposure at 230 °C. Peel-off testing, X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and transmission electron microscopy (TEM) were employed. The main structural transformation identified is the oxidation of the RL at the FF–RL interface, resulting in the formation of a chromium oxide layer. This transformation may underlie the significant increase in release strength, which rises from 5.9 N/m before thermal exposure to 163 N/m afterward. Full article
Show Figures

Graphical abstract

17 pages, 4195 KiB  
Article
Rapid Synthesis of Highly Crystalline ZnO Nanostructures: Comparative Evaluation of Two Alternative Routes
by Emely V. Ruiz-Duarte, Juan P. Molina-Jiménez, Duber A. Avila, Cesar O. Torres and Sindi D. Horta-Piñeres
Crystals 2025, 15(7), 640; https://doi.org/10.3390/cryst15070640 - 11 Jul 2025
Viewed by 162
Abstract
Zinc oxide (ZnO) is a wide bandgap semiconductor of great scientific and technological interest due to its high exciton binding energy and outstanding structural and optical properties, making it an ideal material for applications in optoelectronics, sensors, and photocatalysis. This study presents the [...] Read more.
Zinc oxide (ZnO) is a wide bandgap semiconductor of great scientific and technological interest due to its high exciton binding energy and outstanding structural and optical properties, making it an ideal material for applications in optoelectronics, sensors, and photocatalysis. This study presents the rapid synthesis of highly crystalline ZnO nanostructures using two alternative routes: (1) direct thermal decomposition of zinc acetate and (2) a physical-green route assisted by Mangifera indica extract. Both routes were subjected to identical calcination thermal conditions (400 °C for 2 h), allowing for an objective comparison of their effects on structural, vibrational, morphological, and optical characteristics. X-ray diffraction analyses confirmed the formation of a pure hexagonal wurtzite phase in both samples, highlighting a higher crystallinity index (91.6%) and a larger crystallite size (35 nm) in the sample synthesized using the physical-green route. Raman and FTIR spectra supported these findings, revealing greater structural order. Electron microscopy showed significant morphological differences, and UV-Vis analysis showed a red shift in the absorption peak, associated with a decrease in the optical bandgap (from 3.34 eV to 2.97 eV). These results demonstrate that the physical-green route promotes significant improvements in the structural and functional properties of ZnO, without requiring changes in processing temperature or the use of additional chemicals. Full article
(This article belongs to the Special Issue Synthesis and Characterization of Oxide Nanoparticles)
Show Figures

Figure 1

15 pages, 2184 KiB  
Article
First-Principles Study on Interfacial Triboelectrification Between Water and Halogen-Functionalized Polymer Surfaces
by Taili Tian, Bo Zhao, Yimin Wang, Shifan Huang, Xiangcheng Ju and Yuyan Fan
Lubricants 2025, 13(7), 303; https://doi.org/10.3390/lubricants13070303 - 11 Jul 2025
Viewed by 239
Abstract
Contact electrification (CE), or triboelectrification, is an electron transfer phenomenon occurring at the interface between dissimilar materials due to differences in polarity, holding significant research value in tribology. The microscopic mechanisms of CE remain unclear due to the complex coupling of multiple physical [...] Read more.
Contact electrification (CE), or triboelectrification, is an electron transfer phenomenon occurring at the interface between dissimilar materials due to differences in polarity, holding significant research value in tribology. The microscopic mechanisms of CE remain unclear due to the complex coupling of multiple physical processes. Recently, with the rise of triboelectric nanogenerator (TENG) technology, solid–liquid contact electrification has demonstrated vast application potential, sparking considerable interest in its underlying mechanisms. Emerging experimental evidence indicates that at water–polymer CE interfaces, the process involves not only traditional ion adsorption but also electron transfer. Halogen-containing functional groups in the solid material significantly enhance the CE effect. To elucidate the microscopic mechanism of water–polymer CE, this study employed first-principles density functional theory (DFT) calculations, simulating the interfacial electrification process using unit cell models of water contacting polymers. We systematically and quantitatively investigated the charge transfer characteristics at interfaces between water and three representative polymers with similar backbones but different halogen-functionalized (F, Cl) side chains: fluorinated ethylene propylene (FEP), polyvinyl chloride (PVC), and polytetrafluoroethylene (PTFE), focusing on evaluating halogen’s influence and mechanism on interfacial electron transfer. The results reveal that electron transfer is primarily governed by the energy levels of the polymer’s lowest unoccupied molecular orbital (LUMO) and highest occupied molecular orbital (HOMO). Halogen functional groups modulate the material’s electron-donating/accepting capabilities by altering these frontier orbital energy levels. Consequently, we propose that the critical strategy for polymer chemical modification resides in lowering the LUMO energy level of electron-accepting materials. This study provides a novel theoretical insight into the charge transfer mechanism at solid–liquid interfaces, offers guidance for designing high-performance TENG interfacial materials, and holds significant importance for both the fundamental theory and the development of advanced energy devices. Full article
Show Figures

Figure 1

21 pages, 4562 KiB  
Article
The Influence of the Plant Biomass Pyrolysis Conditions on the Structure of Biochars and Sorption Properties
by Bernadetta Kaźmierczak, Jolanta Drabik, Paweł Radulski, Anna Kaczmarczyk and Edyta Osuch-Słomka
Molecules 2025, 30(14), 2926; https://doi.org/10.3390/molecules30142926 - 10 Jul 2025
Viewed by 182
Abstract
The aim of this work was to obtain biochar materials from plant biomass and to determine the changes occurring under the conditions of the pyrolysis process and physical activation, as well as to characterize the physicochemical characteristics of the produced products in terms [...] Read more.
The aim of this work was to obtain biochar materials from plant biomass and to determine the changes occurring under the conditions of the pyrolysis process and physical activation, as well as to characterize the physicochemical characteristics of the produced products in terms of their practical use. The pyrolysis process was carried out at a temperature of 700 °C, under the flow of a protective gas, i.e., carbon dioxide, at a rate of 5.0 L/min. The pyrolysis processes were carried out in the absence and presence of an activating agent. For ecological safety, physical activation using water vapor was chosen. In the next stage of the work, biochars were produced and subjected to detailed physicochemical analysis. A scanning electron microscope with energy-dispersive SEM/EDS was used to determine the microstructure and changes in the chemical composition of the biochars. FTIR spectrophotometry was used to identify the functional groups present in the structures of biochars and to indicate changes occurring in the biomass during pyrolysis. Meanwhile, Raman spectroscopy was used to assess the ordering of the biochar structures based on the identification of spectral signals. The description of the specific surface areas of the biochars was made possible by studies conducted using a physical and chemical adsorption analyzer. Based on the obtained research results, the elementary structure, surface development, presence of functional groups on the surfaces of biochars and changes in the structure before and after activation with water vapor were determined. It was found that the biochars had functional groups, a well-developed specific surface area that increased after activation with water vapor, micropores and mesopores, as well as changes in structure under the influence of physical activation. It has been shown that the presence of functional groups influences the hydrogen sulfide sorption capacity. Full article
(This article belongs to the Special Issue Natural-Based Sorbents for Water Remediation)
Show Figures

Figure 1

14 pages, 3176 KiB  
Article
Comparison of the Characteristics of Hydrochar and Torrefied-Char of Traditional Chinese Medicine Residues
by Zhiqiang Xu, Wenyu Ren, Shiliang Wu and Rui Xiao
Energies 2025, 18(14), 3646; https://doi.org/10.3390/en18143646 - 10 Jul 2025
Viewed by 173
Abstract
With the continuous reduction in fossil energy reserves and the increasingly prominent negative impacts on the environment, the search for sustainable alternative materials has become an urgent task. Biomass-based char has attracted much attention in the field of environmental protection, due to its [...] Read more.
With the continuous reduction in fossil energy reserves and the increasingly prominent negative impacts on the environment, the search for sustainable alternative materials has become an urgent task. Biomass-based char has attracted much attention in the field of environmental protection, due to its wide-ranging and renewable raw materials. Hydrothermal carbonization and torrefaction carbonization, as two important biomass carbonization processes, each have their own advantages. This study focuses on the millions of tons of Chinese medicine residue waste generated in China every year. Four common Chinese medicine residues, Shanyao (Chinese yam), Suoyang (Cynomorium songaricum), Yujin (Curcuma aromatica), and Xueteng (Spatholobus suberectus), were selected and treated by hydrothermal carbonization and torrefaction carbonization processes at temperatures of 240 °C, 260 °C, and 280 °C. Through analysis techniques such as Fourier-Transform Infrared Spectroscopy, X-Ray Diffraction, and Scanning Electron Microscopy, the changes in the crystal structure, chemical functional groups, and microscopic morphology of the carbonized products were deeply studied, and the carbon yield was measured. The research aims to reveal the carbonization laws of Chinese medicine residues, provide a scientific basis for their efficient resource utilization, and help promote the development of biomass-based carbon materials in the field of environmentally friendly materials, alleviating energy and environmental pressures. Full article
Show Figures

Figure 1

14 pages, 4370 KiB  
Article
Fabrication of Zwitterionized Nanocellulose/Polyvinyl Alcohol Composite Hydrogels Derived from Camellia Oleifera Shells for High-Performance Flexible Sensing
by Jingnan Li, Weikang Peng, Zhendong Lei, Jialin Jian, Jie Cong, Chenyang Zhao, Yuming Wu, Jiaqi Su and Shuaiyuan Han
Polymers 2025, 17(14), 1901; https://doi.org/10.3390/polym17141901 - 9 Jul 2025
Viewed by 318
Abstract
To address the growing demand for environmentally friendly flexible sensors, here, a composite hydrogel of nanocellulose (NC) and polyvinyl alcohol (PVA) was designed and fabricated using Camellia oleifera shells as a sustainable alternative to petroleum-based raw materials. Firstly, NC was extracted from Camellia [...] Read more.
To address the growing demand for environmentally friendly flexible sensors, here, a composite hydrogel of nanocellulose (NC) and polyvinyl alcohol (PVA) was designed and fabricated using Camellia oleifera shells as a sustainable alternative to petroleum-based raw materials. Firstly, NC was extracted from Camellia oleifera shells and modified with 2-chloropropyl chloride to obtain a nanocellulose-based initiator (Init-NC) for atomic transfer radical polymerization (ATRP). Subsequently, sulfonyl betaine methacrylate (SBMA) was polymerized by Init-NC initiating to yield zwitterion-functionalized nanocellulose (NC-PSBMA). Finally, the NC-PSBMA/PVA hydrogel was fabricated by blending NC-PSBMA with PVA. A Fourier transform infrared spectrometer (FT-IR), proton nuclear magnetic resonance spectrometer (1H-NMR), X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), universal mechanical testing machine, and digital source-meter were used to characterize the chemical structure, surface microstructure, and sensing performance. The results indicated that: (1) FT-IR and 1H NMR confirmed the successful synthesis of NC-PSBMA; (2) SEM, TEM, and alternating current (AC) impedance spectroscopy verified that the NC-PSBMA/PVA hydrogel exhibits a uniform porous structure (pore diameter was 1.1737 μm), resulting in significantly better porosity (15.75%) and ionic conductivity (2.652 S·m−1) compared to the pure PVA hydrogel; and (3) mechanical testing combined with source meter testing showed that the tensile strength of the composite hydrogel increased by 6.4 times compared to the pure PVA hydrogel; meanwhile, it showed a high sensitivity (GF = 1.40, strain range 0–5%; GF = 1.67, strain range 5–20%) and rapid response time (<0.05 s). This study presents a novel approach to developing bio-based, flexible sensing materials. Full article
(This article belongs to the Special Issue Polysaccharide-Based Materials: Developments and Properties)
Show Figures

Figure 1

27 pages, 690 KiB  
Review
Phthalocyanine-Modified Electrodes Used in the Electroanalysis of Monoamine Neurotransmitters
by Anton Alexandru Ciucu, Mihaela Buleandră, Dana Elena Popa and Dragoș Cristian Ștefănescu
Chemosensors 2025, 13(7), 243; https://doi.org/10.3390/chemosensors13070243 - 7 Jul 2025
Viewed by 420
Abstract
Metallo-phthalocyanines (MPcs) are versatile materials with applications in electroanalysis because of their superior catalytic properties. This review presents the electrochemical methods based on MPc-modified electrodes and reports some of their remarkable properties and applications in the electroanalysis of monoamine neurotransmitters and biomolecules that [...] Read more.
Metallo-phthalocyanines (MPcs) are versatile materials with applications in electroanalysis because of their superior catalytic properties. This review presents the electrochemical methods based on MPc-modified electrodes and reports some of their remarkable properties and applications in the electroanalysis of monoamine neurotransmitters and biomolecules that play a crucial role in vital functions of the human body. The development of electrocatalytic chemically modified electrodes is based on their ability to provide a selective and rapid response toward a specific analyte in complex media without the need for sample pretreatment. The explanation of several phenomena occurring at the MPc-modified electrode surface (e.g., MPc-mediated electrocatalysis), the advantages of promoting different electron transfer reactions, and the detection mechanism are also presented. The types of MPcs and different materials, such as carbon nanotubes and graphene, used as substrates for modified working electrodes are discussed. Modifying the properties of MPcs through various interactions, or combining MPcs with carbonaceous materials, creates a synergistic effect. Such hybrid materials present both extraordinary catalytic and increased conductivity properties. We conducted a compilation study based on recent works to demonstrate the efficacy of the developed sensors and methods in sensing monoamine neurotransmitters. We emphasize the analyte type, optimized experimental parameters, working range, limits of detection and quantification, and application to real samples. MPc–carbon hybrids have led to the development of sensors with superior sensitivity and improved selectivity, enabling the detection of analytes at lower concentrations. We highlight the main advantages and drawbacks of the discussed methods. This review summarizes recent progress in the development and application of metallo-phthalocyanine-modified electrodes in the electroanalysis of monoamine neurotransmitters. Some possible future trends are highlighted. Full article
(This article belongs to the Special Issue New Electrodes Materials for Electroanalytical Applications)
Show Figures

Figure 1

20 pages, 9651 KiB  
Article
Recovery of Vegetable Fibers from Licorice Processing Waste and a Case Study for Their Use in Green Building Products
by Luigi Madeo, Anastasia Macario, Sebastiano Candamano and Pierantonio De Luca
Clean Technol. 2025, 7(3), 55; https://doi.org/10.3390/cleantechnol7030055 - 7 Jul 2025
Viewed by 236
Abstract
The present research is aimed at the recovery of vegetable fibers from licorice root processing waste through simple methods that do not involve the use of chemical reagents to guarantee a complete eco-sustainability approach and for their use in the production of fiber-reinforced [...] Read more.
The present research is aimed at the recovery of vegetable fibers from licorice root processing waste through simple methods that do not involve the use of chemical reagents to guarantee a complete eco-sustainability approach and for their use in the production of fiber-reinforced ecomaterials. The waste was treated through several washing cycles with only water at different temperatures to identify the optimal conditions to obtain clean fibers. The clean fibers and the waste were analyzed and characterized in advance by scanning electron microscopy (SEM), microanalysis (EDS) and thermal analysis (DSC). Subsequently, both the clean fibers and the waste were used to produce fiber-reinforced plaster artifacts. The mechanical properties of the artifacts were measured as a function of % clean fibers or untreated waste. The results obtained showed that it is possible to effectively recover clean vegetable fibers from licorice waste through repeated washing cycles of 30 min with only water. By increasing the temperature, the necessary washing cycles decrease, and a good compromise is five washes at 100 °C. The yield of clean fibers compared to waste is 50%. The creation of prototypes of gypsum matrix panels, which incorporate fibers recovered from licorice processing waste through the methodology tested in this study, has also been successfully realized, representing a significant step forward towards practical applications in the field of eco-friendly construction. Full article
Show Figures

Graphical abstract

32 pages, 11334 KiB  
Article
Photocatalytic Degradation of Petroleum Wastewater Using ZnO-Loaded Pistachio Shell Biochar: A Sustainable Approach for Oil and COD Removal
by Eveleen A. Dawood, Thamer J. Mohammed, Buthainah Ali Al-Timimi and Eman H. Khader
Reactions 2025, 6(3), 38; https://doi.org/10.3390/reactions6030038 - 4 Jul 2025
Viewed by 374
Abstract
The disposal of wastewater resulting from petroleum industries presents a major environmental challenge due to the presence of hard-to-degrade organic pollutants, such as oils and hydrocarbons, and high chemical oxygen demand (COD). In this study, an efficient and eco-friendly method was developed to [...] Read more.
The disposal of wastewater resulting from petroleum industries presents a major environmental challenge due to the presence of hard-to-degrade organic pollutants, such as oils and hydrocarbons, and high chemical oxygen demand (COD). In this study, an efficient and eco-friendly method was developed to treat such wastewater using a photocatalyst composed of biochar derived from pistachio shells and loaded with zinc oxide (ZnO) nanoparticles. The biochar-ZnO composite was prepared via a co-precipitation-assisted pyrolysis method to evaluate its efficiency in the photocatalytic degradation of petroleum wastewater (PW). The synthesized material was characterized using various techniques, including scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared (FTIR) spectroscopy, to determine surface morphology, crystal structure, and functional groups present on the catalyst surface. Photocatalytic degradation experiments were conducted under UV and sunlight for 90 h of irradiation to evaluate the performance of the proposed system in removing oil and reducing COD levels. Key operational parameters, such as pH (2–10), catalyst dosage (0–0.1) g/50 mL, and oil and COD concentrations (50–500) ppm and (125–1252) ppm, were optimized by response surface methodology (RSM) to obtain the maximum oil and COD removal efficiency. The oil and COD were removed from PW (90.20% and 88.80%) at 0.1 g/50 mL of PS/ZnO, a pH of 2, and 50 ppm oil concentration (125 ppm of COD concentration) under UV light. The results show that pollutant removal is slightly better when using sunlight (80.00% oil removal, 78.28% COD removal) than when using four lamps of UV light (77.50% oil removal, 75.52% COD removal) at 0.055 g/50 mL of PS/ZnO, a pH of 6.8, and 100 ppm of oil concentration (290 ppm of COD concentration). The degradation rates of the PS/ZnO supported a pseudo-first-order kinetic model with R2 values of 0.9960 and 0.9922 for oil and COD. This work indicates the potential use of agricultural waste, such as pistachio shells, as a sustainable source for producing effective catalysts for industrial wastewater treatment, opening broad prospects in the field of green and nanotechnology-based environmental solutions in the development of eco-friendly and effective wastewater treatment technologies under solar light. Full article
Show Figures

Figure 1

18 pages, 5419 KiB  
Article
Nanoporous Carbons from Hydrothermally Treated Alga: Role in Batch and Continuous Capacitive Deionization (CDI)
by Dipendu Saha, Ryan Schlosser, Lindsay Lapointe, Marisa L. Comroe, John Samohod, Elijah Whiting and David S. Young
Molecules 2025, 30(13), 2848; https://doi.org/10.3390/molecules30132848 - 3 Jul 2025
Viewed by 309
Abstract
This study presents a sustainable approach for synthesizing high-performance activated carbon from Spirulina Alga through hydrothermal carbonization followed by chemical activation using potassium hydroxide. The resulting activated carbon exhibited a high Brunauer–Emmett–Teller (BET) surface area of 1747 m2/g and a total [...] Read more.
This study presents a sustainable approach for synthesizing high-performance activated carbon from Spirulina Alga through hydrothermal carbonization followed by chemical activation using potassium hydroxide. The resulting activated carbon exhibited a high Brunauer–Emmett–Teller (BET) surface area of 1747 m2/g and a total pore volume of 1.147 cm3/g, with micropore volume accounting for 0.4 cm3/g. Characterization using Scanning Electron Microscopy-Energy Dispersive X-ray Spectroscopy (SEM-EDS), X-ray Photoelectron Spectroscopy (XPS), and gas adsorption analyses confirmed the presence of hierarchical micro- and mesoporosity as well as favorable surface functional groups. The synthesized carbon was used to fabricate electrodes for membrane capacitive deionization (MCDI) along with cation and anion-selective membranes, which were then tested with saline water (500–5000 ppm) and synthetic hard water (898 ppm of total salts). The salt adsorption capacity (SAC) reached 25 (batch) to 40 (continuous) mg/g, while rapid adsorption rates with average salt adsorption rates (ASARs) values exceeding 10 (batch) to 30 (continuous) mg·g−1·min−1 during early stages were obtained. Batch MCDI experiments demonstrated a higher SAC compared to continuous operation, with non-monotonic trends in SAC observed as a function of feed concentration. Ion adsorption kinetics were influenced by ion valency, membrane selectivity, and pore structure. The specific energy consumption (SEC) was calculated as 8–21 kJ/mol for batch and 0.1–0.5 kJ/mol for continuous process. These performance metrics are on par with or surpass those reported in the recent literature for similar single-electrode CDI configurations. The results demonstrate the viability of using Alga-derived carbon as an efficient and eco-friendly electrode material for water desalination technologies. Full article
(This article belongs to the Special Issue Carbon-Based Materials for Sustainable Chemistry: 2nd Edition)
Show Figures

Figure 1

12 pages, 3225 KiB  
Article
Multiple Slater Determinants and Strong Spin-Fluctuations as Key Ingredients of the Electronic Structure of Electron- and Hole-Doped Pb10−xCux(PO4)6O
by Dimitar Pashov, Swagata Acharya, Stephan Lany, Daniel S. Dessau and Mark van Schilfgaarde
Crystals 2025, 15(7), 621; https://doi.org/10.3390/cryst15070621 - 2 Jul 2025
Viewed by 770
Abstract
LK-99, with chemical formula Pb10−xCux(PO4)6O, was recently reported to be a room-temperature superconductor. While this claim has met with little support in a flurry of ensuing work, a variety of calculations (mostly based on [...] Read more.
LK-99, with chemical formula Pb10−xCux(PO4)6O, was recently reported to be a room-temperature superconductor. While this claim has met with little support in a flurry of ensuing work, a variety of calculations (mostly based on density-functional theory) have demonstrated that the system possesses some unusual characteristics in the electronic structure, in particular flat bands. We have established previously that within DFT, the system is insulating with many characteristics resembling the classic cuprates, provided the structure is not constrained to the P3(143) symmetry nominally assigned to it. Here we describe the basic electronic structure of LK-99 within self-consistent many-body perturbative approach, quasiparticle self-consistent GW (QSGW) approximation and their diagrammatic extensions. QSGW predicts that pristine LK-99 is indeed a Mott/charge transfer insulator, with a bandgap gap in excess of 3 eV, whether or not constrained to the P3(143) symmetry. When Pb9Cu(PO4)6O is hole-doped, the valence bands modify only slightly, and a hole pocket appears. However, two solutions emerge: a high-moment solution with the Cu local moment aligned parallel to neighbors, and a low-moment solution with Cu aligned antiparallel to its environment. In the electron-doped case the conduction band structure changes significantly: states of mostly Pb character merge with the formerly dispersionless Cu d state, and high-spin and low spin solutions once again appear. Thus we conclude that with suitable doping, the ground state of the system is not adequately described by a band picture, and that strong correlations are likely. Irrespective of whether this system class hosts superconductivity or not, the transition of Pb10(PO4)6O from being a band insulator to Pb9Cu(PO4)6O, a Mott insulator, and multi-determinantal nature of doped Mott physics make this an extremely interesting case-study for strongly correlated many-body physics. Full article
Show Figures

Figure 1

20 pages, 5421 KiB  
Article
Influence of Encapsulation Size and Textile Integration Techniques on the Wash Durability of Textiles with Integrated Electronic Yarn
by Arash M. Shahidi, Parvin Ebrahimi, Kalana Marasinghe, Tharushi Peiris, Zahra Rahemtulla, Carlos Oliveira, Dominic Eberl-Craske, Tilak Dias and Theo Hughes-Riley
Fibers 2025, 13(7), 89; https://doi.org/10.3390/fib13070089 - 2 Jul 2025
Viewed by 570
Abstract
A crucial factor when developing e-textiles is ensuring their robustness and functionality during everyday activities, particularly washing. The ability to launder e-textile garments is not merely a matter of convenience but a necessity for widespread adoption. Incorporating electronics into textiles can lead to [...] Read more.
A crucial factor when developing e-textiles is ensuring their robustness and functionality during everyday activities, particularly washing. The ability to launder e-textile garments is not merely a matter of convenience but a necessity for widespread adoption. Incorporating electronics into textiles can lead to damage due to mechanical and chemical stresses, which most electronics are not designed to withstand. This work focuses on electronic yarn technology (e-yarn), in which electronic functionality is added to textiles by embedding small electronic components into a flexible yarn-like structure. First, the component is soldered onto thin conductive wires. The soldered component is then enclosed in a protective polymer resin (micro-pod). Micro-pods have different diameters depending on the size of the embedded electronic component. The ensemble is finally covered in a textile sheath. This study focuses on the wash durability of e-yarns integrated with textiles in three different ways: embroidered onto the surface of a woven fabric, within a knitted channel in a knitted fabric, and woven as a weft yarn. Further, the work studied the impact of using different sizes of micro-pods on the e-yarns’ wash durability. Ultimately, good wash durability was observed under all testing conditions. Full article
Show Figures

Figure 1

Back to TopTop