Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (236)

Search Parameters:
Keywords = electron–vibration interactions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2706 KB  
Article
Dual-Promoted Trimetallic CoMo-Ni/Al2O3-K2O Catalysts: Impact of K2O Doping on Guaiacol Hydrodeoxygenation Selectivity
by Kenian L. Arévalo Blanco, Wilder S. Campo Baca and Esneyder Puello Polo
Inorganics 2026, 14(2), 45; https://doi.org/10.3390/inorganics14020045 - 30 Jan 2026
Viewed by 121
Abstract
The influence of potassium oxide (K2O) doping on the hydrodeoxygenation (HDO) performance of trimetallic CoMo–Ni/Al2O3 catalysts was systematically investigated using guaiacol as a lignin-derived model compound. Catalysts containing 0, 1, 3, and 5 wt% K2O were [...] Read more.
The influence of potassium oxide (K2O) doping on the hydrodeoxygenation (HDO) performance of trimetallic CoMo–Ni/Al2O3 catalysts was systematically investigated using guaiacol as a lignin-derived model compound. Catalysts containing 0, 1, 3, and 5 wt% K2O were synthesized and characterized by SEM-EDS, N2 physisorption, XRD, FTIR, and HRTEM. SEM micrographs showed homogeneous morphologies with no significant agglomeration, while EDS analysis confirmed elemental compositions close to nominal values, with K2O contents increasing proportionally and maintaining uniform surface distribution. Adsorption–desorption isotherms confirmed mesoporous structures with specific surface areas ranging from 258 to 184 m2 g−1, decreasing with increasing K2O loading. XRD revealed γ-Al2O3, NiO, (NH4)3[CoMo6O24H6]·7H2O, and K2O phases, with slight peak shifts indicating surface modification rather than lattice incorporation of K+. FTIR spectra evidenced characteristic polyoxomolybdate vibrations and metal–oxygen interactions with alumina. HRTEM revealed MoS2 slab lengths between 1.85 and 2.51 nm, stacking numbers from 2.08 to 3.17, and Mo edge-to-corner ratios (fe/fc) between 1.39 and 2.43, corresponding to dispersions of 0.45–0.57. Guaiacol conversion remained high (≥95%) for all catalysts, while HDO selectivity strongly depended on K2O content. At 5 wt% K2O, cyclohexane selectivity reached 81.3% with an HDO degree of 65%, compared to 52.0% and 31% for the undoped catalyst. Pseudo-first-order kinetic analysis revealed that potassium promotes demethylation and demethoxylation steps while suppressing rearrangement pathways, steering the reaction network toward direct deoxygenation. These results demonstrate that K2O acts as an efficient structural and electronic promoter, enabling precise control of HDO selectivity without compromising catalytic activity. Full article
(This article belongs to the Special Issue Transition Metal Catalysts: Design, Synthesis and Applications)
Show Figures

Figure 1

20 pages, 2338 KB  
Article
The Effects of Ankle Versus Plantar Vibrotactile Orthoses on Joint Position Sense and Postural Control in Individuals with Functional Ankle Instability: A Pilot Randomized Trial
by Hanieh Khaliliyan, Mahmood Bahramizadeh and Ebrahim Sadeghi-Demneh
Bioengineering 2026, 13(2), 138; https://doi.org/10.3390/bioengineering13020138 - 25 Jan 2026
Viewed by 251
Abstract
Functional ankle instability (FAI) is a common consequence of lateral ankle sprains, characterized by impaired sensorimotor control. While orthoses and localized vibration have shown individual benefits for FAI, their combined application in a wearable device has not been previously investigated. This pilot randomized [...] Read more.
Functional ankle instability (FAI) is a common consequence of lateral ankle sprains, characterized by impaired sensorimotor control. While orthoses and localized vibration have shown individual benefits for FAI, their combined application in a wearable device has not been previously investigated. This pilot randomized trial compared the effects of a vibrotactile foot orthosis (VFO) and a vibrotactile ankle orthosis (VAO) on joint position sense (JPS) and postural control in individuals with FAI. Sixteen participants were randomized to receive either a VFO or a VAO, both delivering 30–50 Hz pulsed vibration in 20 min sessions, three times a week, for two weeks. Outcome measures included joint position sense (JPS) error (°), center of pressure (COP) velocity (mm/s), the Star Excursion Balance Test (SEBT), and the Six-Meter Hop Test (SMHT), which were assessed pre-intervention, immediately post-intervention, and after two weeks of use. The analysis showed a statistically significant interaction between time and intervention group for JPS error (p = 0.02, η2 = 0.42). Specifically, the VFO group improved JPS significantly more than VAO at two weeks follow-up (MD = −1.75°, p = 0.005, d = −1.68). Both groups significantly reduced in anteroposterior COP velocity after two weeks (VFO: MD = 1, p = 0.003, d = 1.47; VAO: MD = 1.39, p ˂ 0.001, d = 2.05) with no between-group differences. No changes were observed in the SEBT or SMHT. Plantar-based vibrotactile stimulation was more effective than ankle-based stimulation in enhancing proprioceptive acuity in individuals with FAI. Both interventions improved static postural stability, supporting the potential of integrated vibrotactile orthoses in FAI rehabilitation. No major practical issues were reported during the intervention. Two participants experienced minor discomfort related to the electronic housing bulk in the first week, which was resolved by week two. No further complaints regarding device weight or usability were observed. Full article
(This article belongs to the Special Issue Advanced Biomedical Signal Communication Technology)
Show Figures

Figure 1

22 pages, 2932 KB  
Article
Theoretical Calculation of Caq+ (q = 0, 1, 2) Interacting with a Krypton Atom: Electronic Structure and Vibrational Spectra Association
by Wissem Zrafi, Mohamed Bejaoui, Hela Ladjimi, Jamila Dhiflaoui and Hamid Berriche
Atoms 2026, 14(1), 5; https://doi.org/10.3390/atoms14010005 - 12 Jan 2026
Viewed by 334
Abstract
The potential energy curves and spectroscopic constants of the ground and several low-lying excited states of the Caq+-Kr (q = 0, 1, 2) van der Waals complexes were investigated using one- and two-electron pseudopotential approaches. This treatment effectively reduces the number [...] Read more.
The potential energy curves and spectroscopic constants of the ground and several low-lying excited states of the Caq+-Kr (q = 0, 1, 2) van der Waals complexes were investigated using one- and two-electron pseudopotential approaches. This treatment effectively reduces the number of active electrons in Caq+-Kr to a single valence electron for q = 1 and two valence electrons for q = 0, allowing the use of large and flexible basis sets for both Ca and Kr atoms. Within this work, potential energy curves (PECs) were calculated at the SCF level for the Ca+-Kr system, while both SCF and full configuration interaction (FCI) calculations were performed for the neutral Ca-Kr. Spin–orbit coupling effects were explicitly included in all calculations to accurately describe the fine-structure splitting of the asymptotic atomic states. The short-range core–core interaction for Ca2+-Kr was obtained using high-level CCSD(T) calculations. Spectroscopic constants were derived from the computed PECs and compared with available theoretical and experimental results, showing consistent trends. Furthermore, the transition dipole moments (TDM) were evaluated as a function of internuclear distances, including spin–orbit effects, to provide a comprehensive description of the electronic structure and radiative properties of these weakly bound systems. Full article
(This article belongs to the Section Atomic, Molecular and Nuclear Spectroscopy and Collisions)
Show Figures

Figure 1

15 pages, 2654 KB  
Article
Hydroxypropyl-β-Cyclodextrin Improves Removal of Polycyclic Aromatic Hydrocarbons by Fe3O4 Nanocomposites
by Wenhui Ping, Juan Yang, Xiaohong Cheng, Weibing Zhang, Yilan Shi and Qinghua Yang
Magnetochemistry 2026, 12(1), 4; https://doi.org/10.3390/magnetochemistry12010004 - 26 Dec 2025
Viewed by 301
Abstract
The contamination of water bodies by polycyclic aromatic hydrocarbons (PAHs) poses a significant concern for the ecological systems, along with public health. Magnetic adsorption stands out as a green and practical solution for treating polluted water. To make the process more efficient and [...] Read more.
The contamination of water bodies by polycyclic aromatic hydrocarbons (PAHs) poses a significant concern for the ecological systems, along with public health. Magnetic adsorption stands out as a green and practical solution for treating polluted water. To make the process more efficient and economical, it is important to create materials that not only absorb contaminants effectively but also allow for easy recovery and reuse. This study proposes a simple yet effective method for coating Fe3O4 nanoparticles with hydroxypropyl-β-cyclodextrin polymer (HP-β-CDCP). The physicochemical properties of the synthesized sorbent were characterized using a transmission electron microscope (TEM), Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), and Vibrating Sample Magnetometer (VSM) analysis. The adsorption performance of HP-β-CDCP/Fe3O4 nanoparticles was well-described by the pseudo-second-order kinetic model, thermodynamic analysis, and the Freundlich isotherm model, indicating multiple interaction mechanisms with PAHs, such as π–π interactions, hydrogen bonding, and van der Waals forces. Using HP-β-CDCP/Fe3O4 nanoparticles as the adsorbent, the purification rates for the fifteen representative PAHs were achieved within the range of 33.9–93.1%, compared to 15.3–64.8% of the unmodified Fe3O4 nanoparticles. The adsorption of all studied PAHs onto HP-β-CDCP/Fe3O4 nanocomposites was governed by pH, time, and temperature. Equilibrium in the uptake mechanism was obtained within 15 min, with the largest adsorption capacities for PAHs in competitive adsorption mode being 6.46–19.0 mg·g−1 at 20 °C, pH 7.0. This study points to the practical value of incorporating cyclodextrins into tailored polymer frameworks for improving the removal of PAHs from polluted water. Full article
(This article belongs to the Special Issue Applications of Magnetic Materials in Water Treatment—2nd Edition)
Show Figures

Figure 1

17 pages, 7435 KB  
Article
Evaluation of Zirconium Oxide Nanoparticle-Reinforced Pigmented Maxillofacial Silicone Mimicking Human Skin Tone: Effects on Color Stability and Surface Roughness After Accelerated Aging
by Soz Grundig, Kawan Othman and Bruska Azhdar
Prosthesis 2026, 8(1), 3; https://doi.org/10.3390/prosthesis8010003 - 25 Dec 2025
Viewed by 405
Abstract
Background/Objectives: This in vitro study examined the potential enhancement in resistance to accelerated aging in room-temperature vulcanized (RTV) maxillofacial silicone, intrinsically pigmented in two skin tones, through the use of zirconium oxide (ZrO2) nanoparticles. Methods: A total of 128 disc-shaped specimens [...] Read more.
Background/Objectives: This in vitro study examined the potential enhancement in resistance to accelerated aging in room-temperature vulcanized (RTV) maxillofacial silicone, intrinsically pigmented in two skin tones, through the use of zirconium oxide (ZrO2) nanoparticles. Methods: A total of 128 disc-shaped specimens were created in rose silk and soft brown shades, each containing zirconium oxide concentrations of 0%, 1%, 2%, and 3% by weight. Color variation (ΔE*) was assessed initially and following 252, 750, and 1252 h of artificial aging, tested with a colorimeter. Surface roughness characteristics (Ra, Rq, Rt) were evaluated before and after 1252 h using atomic force microscopy (AFM). Structural, vibrational, and morphological characteristics were analyzed through X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and field emission scanning electron microscopy (FESEM). Results: Non-parametric tests (Friedman, Kruskal–Wallis, and Bonferroni-adjusted paired testing; p < 0.05) indicated that accelerated aging significantly increased ΔE* in all specimens. The addition of ZrO2 reduced these changes; however, the optimal concentration differed by pigment: 1% for rose silk and 3% for soft brown. The effect on surface roughness depended on pigment type. Higher nanoparticle concentrations generally improved post-aging smoothness in soft brown samples, whereas rose silk showed a more variable response. XRD and FTIR analyses confirmed successful nanoparticle incorporation without altering the fundamental silicone structure, while FESEM demonstrated improved filler–matrix interaction in modified groups. Conclusions: Adjusting ZrO2 concentration according to pigment type can improve the future color retention and surface characteristics of maxillofacial silicone. Full article
Show Figures

Figure 1

16 pages, 2244 KB  
Article
Fine Structure Investigation and Laser Cooling Study of the CdBr Molecule
by Ali Mostafa, Israa Zeid, Nariman Abu El Kher, Nayla El-Kork and Mahmoud Korek
Int. J. Mol. Sci. 2026, 27(1), 184; https://doi.org/10.3390/ijms27010184 - 23 Dec 2025
Viewed by 376
Abstract
The ab initio calculations of the electronic structure of the low-lying electronic states of the CdBr molecule are characterized in the 2S+1Λ(+/−) and Ω(+/−) representations using the complete active-space self-consistent field (CASSCF) method, followed by the multireference configuration interaction (MRCI) [...] Read more.
The ab initio calculations of the electronic structure of the low-lying electronic states of the CdBr molecule are characterized in the 2S+1Λ(+/−) and Ω(+/−) representations using the complete active-space self-consistent field (CASSCF) method, followed by the multireference configuration interaction (MRCI) method with Davidson correction (+Q). The potential energy curves are investigated, and spectroscopic parameters (Te, Re, ωe, Be, αe, μe, and De) of the bound states are determined and analyzed. In addition, the rovibrational constants (Ev, Bv, Dv, Rmin, and Rmax) are reported for the investigated states with and without spin–orbit coupling. The electronic transition dipole moment curve (TDMC) is obtained for the C2Π1/2 − X2Σ+1/2 transition. Based on these data, Franck–Condon factors (FCFs), Einstein coefficient of spontaneous emission Aν’ν, radiative lifetime τ, vibrational branching ratios, and the associated slowing distance are evaluated. The results indicated that CdBr is a promising candidate for direct laser cooling, and a feasible cooling scheme employing four pumping and repumping lasers in the ultraviolet region with suitable experimentally accessible parameters is presented. These findings provide practical guidance for experimental spectroscopists exploring ultracold diatomic molecules and their applications. Full article
Show Figures

Figure 1

14 pages, 2195 KB  
Article
Lighting Up DNA in the Near-Infrared: An Os(II)–pydppn Complex with Light-Switch Behavior
by Emanuela Trovato, Salvatore Genovese, Maurilio Galletta, Sebastiano Campagna, Maria Letizia Di Pietro and Fausto Puntoriero
Molecules 2025, 30(24), 4671; https://doi.org/10.3390/molecules30244671 - 5 Dec 2025
Viewed by 419
Abstract
The osmium(II) polypyridyl complex [Os(tpy)(pydppn)]2+ (tpy = 2,2′:6′,2″-terpyridine; pydppn = 3-(pyrid-2′-yl)-4,5,9,16-tetraaza-dibenzo[a,c]naphthacene) was synthesized and characterized to evaluate the effect of an extended planar π-system on photophysical properties and DNA interactions. This complex represents the π-expanded analog of the previously studied [Os(tpy)(pydppz)]2+ [...] Read more.
The osmium(II) polypyridyl complex [Os(tpy)(pydppn)]2+ (tpy = 2,2′:6′,2″-terpyridine; pydppn = 3-(pyrid-2′-yl)-4,5,9,16-tetraaza-dibenzo[a,c]naphthacene) was synthesized and characterized to evaluate the effect of an extended planar π-system on photophysical properties and DNA interactions. This complex represents the π-expanded analog of the previously studied [Os(tpy)(pydppz)]2+ system. Electrochemical studies revealed a reversible Os(II)/Os(III) oxidation at +0.99 V vs. SCE and five ligand-centered reductions, generally less negative than those of the smaller pydppz analog, consistent with enhanced electron-accepting ability. In acetonitrile, the complex exhibits UV absorption bands at 328 and 473 nm and near-infrared emission at 840 nm, assigned to a long-lived 3MLCT state (τ = 110 ns, Φ = 0.02). Upon titration with calf-thymus DNA, [Os(tpy)(pydppn)]2+ shows a pronounced light-switch effect, hypochromism, red-shifted MLCT bands, induced circular dichroism, and an increase in DNA melting temperature (ΔTm = 8.9 ± 0.5 °C), consistent with intercalative binding. Viscometric titrations further support intercalation, with a binding constant KB ≈ 1.2 × 106 M−1. Transient absorption spectroscopy indicates that DNA binding prolongs the excited-state lifetime and modifies vibrational relaxation pathways. These results highlight how π-system extension in Os(II) complexes modulates photophysical behavior and DNA affinity, offering insights for the rational design of NIR-emitting, DNA-targeted luminescent probes and potential phototherapeutic agents. Full article
Show Figures

Figure 1

10 pages, 343 KB  
Article
Quantum Smell: Tunneling Mechanisms in Olfaction
by Dominik Szczȩśniak, Ewa A. Drzazga-Szczȩśniak, Adam Z. Kaczmarek and Sabre Kais
Molecules 2025, 30(24), 4663; https://doi.org/10.3390/molecules30244663 - 5 Dec 2025
Viewed by 681
Abstract
The mechanism by which odorants are recognized by olfactory receptors remains primarily unresolved. While charge transport is believed to play a significant role, its precise nature is still unclear. Here, we present a novel perspective by exploring the interplay between the intrinsic energy [...] Read more.
The mechanism by which odorants are recognized by olfactory receptors remains primarily unresolved. While charge transport is believed to play a significant role, its precise nature is still unclear. Here, we present a novel perspective by exploring the interplay between the intrinsic energy scales of odorant molecules and the gap states that facilitate intermolecular charge transport. We find that odorants act as weak tunneling conductors mainly because of the limited magnitude of electronic coupling between frontier molecular levels. This behavior is further connected to electron–phonon interaction and reorganization energy, suggesting that physically meaningful values for the latter parameter emerge only in the deep off-resonant tunneling regime. These findings complement the swipe card model of olfaction, in which an odorant needs both the right shape to bind to a receptor and the correct vibrational frequency to trigger signal transduction. Moreover, they reveal that the underlying mechanisms are much more complex than previously assumed. Full article
Show Figures

Figure 1

17 pages, 3558 KB  
Article
Single Crystal X-Ray Structure Determination and Vibrational Spectroscopy of 2-Aminopyrimidinium Hydrogen Trioxofluorophosphate and bis(2-Aminopyrimidinium) Trioxofluorophosphate
by Irena Matulková, Jan Fábry and Ivana Císařová
Crystals 2025, 15(11), 952; https://doi.org/10.3390/cryst15110952 - 3 Nov 2025
Viewed by 396
Abstract
Two single-crystal X-ray structure determinations of 2-aminopyrimidinium hydrogen tri oxofluorophosphate, (C4H6N3)+·(HFO3P), (I), and bis(2-aminopyrimidinium) trioxofluorophosphate, 2(C4H6N3)+·(FO3P)2−, (II), as well [...] Read more.
Two single-crystal X-ray structure determinations of 2-aminopyrimidinium hydrogen tri oxofluorophosphate, (C4H6N3)+·(HFO3P), (I), and bis(2-aminopyrimidinium) trioxofluorophosphate, 2(C4H6N3)+·(FO3P)2−, (II), as well as their vibration spectra (FTIR on powder samples and the Raman spectra on unoriented single crystals) with a detailed assignment of vibrational modes are reported. The structure (I) consists of one independent 2-aminopyrimidinium cation and one hydrogen trioxofluorophosphate anion, while (II) consists of two symmetry independent 2-aminopyrimidinium cations and one trioxofluorophosphate anion. In (I), there is an O-H···O hydrogen bond of a moderate strength. A pair of these hydrogen bonds is situated about the symmetry centre and involved in the graph set motif R22(8). There are also N-H···O hydrogen bonds of a moderate strength, which are present in both structures while being involved in the graph set motifs R22(8), too. In addition, the N-H···O hydrogen bonds form R34(10) graph set motifs in (II). The latter motifs form ribbons which propagate parallel to the unit-cell axis a. In both structures, there are present π···π-electron ring interactions into which the primary amine groups are involved. In both structures, there are also present weak C-H···N hydrogen bonds with participation of the non-protonated ring N-atoms. The fluorine participates in the C-H···F hydrogen bonds in both title structures. The P-F distances are normal in both anions. The structure (I) differs from the known structure of 2-aminopyrimidinium hydrogen phosphite, the compositional isomer, though the main hydrogen bonds show similar geometry in both structures. The crystal of (I) was twinned. Full article
(This article belongs to the Section Organic Crystalline Materials)
Show Figures

Graphical abstract

14 pages, 2479 KB  
Article
Comparison of Quantum Transition Characteristics of Group II–VI (ZnO), Group III–V (GaN) Compound Semiconductors, and Intrinsic (Si) Semiconductors in Response to Externally Applied Energy
by Herie Park and Su-Ho Lee
Materials 2025, 18(20), 4709; https://doi.org/10.3390/ma18204709 - 14 Oct 2025
Viewed by 594
Abstract
In this paper, we study the line-shape (LS), which indicates the amount of absorbed energy, and the line-width (LW), which indicates the scattering factor, according to the vibrational direction of the externally applied energy in the electron–phonon potential interaction system of representative semiconductor [...] Read more.
In this paper, we study the line-shape (LS), which indicates the amount of absorbed energy, and the line-width (LW), which indicates the scattering factor, according to the vibrational direction of the externally applied energy in the electron–phonon potential interaction system of representative semiconductor bonding types, group II–VI (ZnO) and group III–V (GaN) bonded compound semiconductors and pure group IV (Si) bonded semiconductors. One of the two systems receives the externally applied energy of right-handed circular polarization vibration, and the other receives the externally applied energy of left-handed circular polarization vibration. To analyze the quantum transport, we first employ quantum transport theory (QTR) for an electron system confined within a square-well potential, where the projected Liouville equation is addressed using the balanced-average projection method. In analyzing quantum transitions, phonon emission is linked to the transition line-width (LW), whereas phonon absorption is evaluated through the transition line-shape (LS), highlighting its sensitivity to temperature and magnetic field variations. As a result of analyzing the line-width (LW), which is a quantum scattering coefficient, and the line-shape (LS), which represents the absorbed power, the absorbed power and scattering coefficient were higher for the left circularly polarized vibration under the influence of the external magnetic field. In contrast, the right polarization produced smaller values. In addition, the scattering coefficient (LW) and the absorbed power according to the bonding type of the semiconductor were the largest in Si, a group IV bonded semiconductor, followed by group III–V (GaN) and group II–VI (ZnO) bonded semiconductors. Full article
(This article belongs to the Special Issue Feature Papers in Materials Physics (2nd Edition))
Show Figures

Figure 1

31 pages, 5301 KB  
Article
Comprehensive Computational Study of a Novel Chromene-Trione Derivative Bioagent: Integrated Molecular Docking, Dynamics, Topology, and Quantum Chemical Analysis
by P. Sivaprakash, A. Viji, S. Krishnaveni, K. M. Kavya, Deokwoo Lee and Ikhyun Kim
Int. J. Mol. Sci. 2025, 26(19), 9661; https://doi.org/10.3390/ijms26199661 - 3 Oct 2025
Viewed by 870
Abstract
This work thoroughly investigated the compound 4-(2,5-Dimethoxyphenyl)-3,4-dihydrobenzo[g]chromene-2,5,10-trione (DMDCT) using molecular docking, quantum chemical analysis, and vibrational spectroscopy methodology. The medicinal chemistry group has been particularly interested in chromene and benzochromene derivatives due to their wide range of pharmacological actions, including anticancer, antibacterial, anti-inflammatory, [...] Read more.
This work thoroughly investigated the compound 4-(2,5-Dimethoxyphenyl)-3,4-dihydrobenzo[g]chromene-2,5,10-trione (DMDCT) using molecular docking, quantum chemical analysis, and vibrational spectroscopy methodology. The medicinal chemistry group has been particularly interested in chromene and benzochromene derivatives due to their wide range of pharmacological actions, including anticancer, antibacterial, anti-inflammatory, antioxidant, antiviral, and neuroprotective capabilities. In this connection, DMDCT has been explored to evaluate its biological, electrical, and structural properties. DFT using the B3LYP functional and 6–31G basis was established to conduct theoretical computations with the Gaussian 09 program. The findings from these computations provide insight into the following topics: NBO interactions, optimal molecular geometry, Mulliken charge distribution, frontier molecular orbitals, and MEP. Second-order perturbation theory has been used to assess stabilization energies arising from donor–acceptor interactions. Furthermore, general features such as chemical hardness, softness, and electronegativity were studied. The results suggest that DMDCT has stable electronic configurations and biologically relevant active sites. This integrated experimental and theoretical study supports the potential of DMDCT as a practical scaffold for future therapeutic applications and contributes valuable information regarding its vibrational and electronic behavior. Full article
Show Figures

Graphical abstract

11 pages, 1473 KB  
Article
Carbon Quantum Dots Interactions with Pyrogallol, Benzoic Acid, and Gallic Acid: A Study on Their Non-Covalent Nature
by Laura Andria, Giancarlo Capitani, Barbara La Ferla, Heiko Lange, Melissa Saibene, Luca Zoia and Barbara Vercelli
Nanomaterials 2025, 15(18), 1457; https://doi.org/10.3390/nano15181457 - 22 Sep 2025
Cited by 1 | Viewed by 764
Abstract
Understanding the interactions between carbon quantum dots (CDs) and promising food preservatives (FPs), like pyrogallol (PG), benzoic acid (BA), and gallic acid (GA), is highly relevant. This knowledge is crucial for designing CD [...] Read more.
Understanding the interactions between carbon quantum dots (CDs) and promising food preservatives (FPs), like pyrogallol (PG), benzoic acid (BA), and gallic acid (GA), is highly relevant. This knowledge is crucial for designing CD-based sensors capable of determining the safe levels of these molecules in food and beverages. Additionally, such sensors could be exploited in the development of sustainable, intelligent packaging that controls food shelf life. Based on those considerations, in this study, we post-functionalized blue-emitting CDs, prepared according to a synthetic approach previously developed, with the FP molecules PG, BA, and GA to obtain CD-(FP) systems. UV-vis absorption and FTIR spectroscopy confirmed the presence of the FP molecules on the CD surface. The appearance of a new vibrational band at 1196 cm−1 in the FTIR spectra of all CD-(FP) systems suggested that the three FP molecules interact with the CD surface via electronic interactions between the aromatic and delocalized electron systems. Further electrochemical analyses of the CD-(PG) and CD-(GA) systems show that the interactions between PG and GA benzene rings and CDs prevent their oxidation to the corresponding quinone forms. Full article
Show Figures

Graphical abstract

24 pages, 3339 KB  
Article
DFT-Based Functionalization of Graphene with Lithium-Modified Groups for Enhanced Hydrogen Detection: Thermodynamic, Electronic, and Spectroscopic Properties
by Norma A. Rangel-Vázquez, Adrián Bonilla-Petriciolet, Edgar A. Márquez-Brazón, Yectli Huerta, Rosa Zavala-Arce and Juan D. Rodríguez-Macías
Nanomaterials 2025, 15(16), 1234; https://doi.org/10.3390/nano15161234 - 13 Aug 2025
Cited by 2 | Viewed by 1565
Abstract
This study investigates the impact of oxygen-containing functional groups (COO-Li, CO-Li, and O-Li) on the electronic and optical properties of graphene, with a focus on hydrogen sensing applications. Using density functional theory (DFT) calculations, we evaluated the thermodynamic feasibility of the functionalization and [...] Read more.
This study investigates the impact of oxygen-containing functional groups (COO-Li, CO-Li, and O-Li) on the electronic and optical properties of graphene, with a focus on hydrogen sensing applications. Using density functional theory (DFT) calculations, we evaluated the thermodynamic feasibility of the functionalization and hydrogen adsorption processes. The Gibbs free energy changes (ΔG) for the functionalization of pristine graphene were calculated as −1233, −1157, and −1119 atomic units (a.u.) for COO-Li, CO-Li, and O-Li, respectively. These negative values indicate that the functionalization processes are spontaneous (ΔG < 0), with COO-Li being the most thermodynamically favorable. Furthermore, hydrogen adsorption on the functionalized graphene surfaces also exhibited spontaneous behavior, with ΔG values of −1269, −1204, and −1175 a.u., respectively. These results confirm that both functionalization and subsequent hydrogen adsorption are energetically favorable, enhancing the potential of these materials for hydrogen sensing applications. Among the functional groups we simulated, COO-Li exhibited the largest surface area and volume, which were attributed to the high electronegativity and steric influence of the carboxylate moiety. Based on the previously described results, we analyzed the interaction of these functionalized graphene systems with molecular hydrogen. The adsorption of two H2 molecules per system demonstrated favorable thermodynamics, with lithium atoms serving as active sites for external adsorption. The presence of lithium atoms significantly enhanced hydrogen affinity, suggesting strong potential for sensing applications. Further, electronic structure analysis revealed that all functionalized systems exhibit semiconducting behavior, with band gap values modulated by the nature of the functional group. FTIR (Fourier-Transform Infrared Spectroscopy) and Raman spectroscopy confirmed the presence of characteristic vibrational modes associated with Li-H interactions, particularly in the 659–500 cm−1 range. These findings underscore the promise of lithium-functionalized graphene, especially with COO-Li, as a tunable platform for hydrogen detection, combining favorable thermodynamics, tailored electronic properties, and spectroscopic detectability. Full article
(This article belongs to the Special Issue The Interaction of Electron Phenomena on the Mesoscopic Scale)
Show Figures

Graphical abstract

16 pages, 3171 KB  
Article
A Simple and Rapid Synthesis of Spherical Silver Phosphate (Ag3PO4) and Its Antimicrobial Activity in Plant Tissue Culture
by Nongnuch Laohavisuti, Banjong Boonchom, Pesak Rungrojchaipon, Wimonmat Boonmee, Somkiat Seesanong and Sirichet Punthipayanon
Int. J. Mol. Sci. 2025, 26(15), 7371; https://doi.org/10.3390/ijms26157371 - 30 Jul 2025
Viewed by 1615
Abstract
A simple and rapid precipitation process was successfully employed to prepare silver phosphate (SP, Ag3PO4). Two different phosphate sources: diammonium hydrogen phosphate ((NH4)2HPO4) and dipotassium hydrogen phosphate (K2HPO4) were [...] Read more.
A simple and rapid precipitation process was successfully employed to prepare silver phosphate (SP, Ag3PO4). Two different phosphate sources: diammonium hydrogen phosphate ((NH4)2HPO4) and dipotassium hydrogen phosphate (K2HPO4) were applied separately as the precursor, obtaining ((NH4)2HPO4) and K2HPO4 derived SP powders, named SP-A or SP-P, respectively. Fourier transform infrared (FTIR) spectra pointed out the vibrational characteristics of P–O and O–P–O interactions, confirming the presence of the PO43– functional group for SP. X-ray diffraction (XRD) patterns revealed that the SP crystallized in a cubic crystal structure. Whereas the field emission scanning electron microscope (FESEM) exposed spherical SP particles. The potentially antibacterial activity of SP-A and SP-P against bacterial Bacillus stratosphericus, yeast Meyerozyma guilliermondii, and fungal Phanerodontia chrysosporium was subsequently investigated. All studied microorganisms were recovered and isolated from the aquatic plant during the tissue culture process. The preliminary result of the antimicrobial test revealed that SP-A has higher antimicrobial activity than SP-P. The superior antimicrobial efficiency of SP-A compared to SP-P may be attributed to its purity and crystallite size, which provide a higher surface area and more active sites. In addition, the presence of potassium-related impurities in SP-P could have negatively affected its antimicrobial performance. These findings suggest that SP holds potential as an antimicrobial agent for maintaining sterility in tissue cultures, particularly in aquatic plant systems. The growth of both B. stratosphericus and M. guilliermondii was suppressed effectively at 30 ppm SP-A, whereas 10 ppm of SP-A can suppress P. chrysosporium development. This present work also highlights the potential of SP at very low concentrations (10–30 ppm) for utilization as an effective antimicrobial agent in tissue culture, compared to a commercial antimicrobial agent, viz., acetic acid, at the same concentration. Full article
(This article belongs to the Special Issue Antimicrobial Materials: Molecular Developments and Applications)
Show Figures

Figure 1

19 pages, 2243 KB  
Article
Theoretical Calculation of Ground and Electronically Excited States of MgRb+ and SrRb+ Molecular Ions: Electronic Structure and Prospects of Photo-Association
by Mohamed Farjallah, Hela Ladjimi, Wissem Zrafi and Hamid Berriche
Atoms 2025, 13(8), 69; https://doi.org/10.3390/atoms13080069 - 25 Jul 2025
Viewed by 1262
Abstract
In this work, a comprehensive theoretical investigation is carried out to explore the electronic and spectroscopic properties of selected diatomic molecular ions MgRb+ and SrRb+. Using high-level ab initio calculations based on a pseudopotential approach, along with large Gaussian basis [...] Read more.
In this work, a comprehensive theoretical investigation is carried out to explore the electronic and spectroscopic properties of selected diatomic molecular ions MgRb+ and SrRb+. Using high-level ab initio calculations based on a pseudopotential approach, along with large Gaussian basis sets and full valence configuration interaction (FCI), we accurately determine adiabatic potential energy curves, spectroscopic constants, transition dipole moments (TDMs), and permanent electric dipole moments (PDMs). To deepen our understanding of these systems, we calculate radiative lifetimes for vibrational levels in both ground and low-lying excited electronic states. This includes evaluating spontaneous and stimulated emission rates, as well as the effects of blackbody radiation. We also compute Franck–Condon factors and analyze photoassociation processes for both ions. Furthermore, to explore low-energy collisional dynamics, we investigate elastic scattering in the first excited states (21Σ+) describing the collision between the Ra atom and Mg+ or Sr+ ions. Our findings provide detailed insights into the theoretical electronic structure of these molecular ions, paving the way for future experimental studies in the field of cold and ultracold molecular ion physics. Full article
Show Figures

Figure 1

Back to TopTop