Carbon Quantum Dots Interactions with Pyrogallol, Benzoic Acid, and Gallic Acid: A Study on Their Non-Covalent Nature
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Results
3.1. Characterization of Potential Food Protective Molecules
3.2. CDs
3.3. CD-(FP) Systems
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dorđević, L.; Arcudi, F.; Cacioppo, M.; Prato, M. A multifunctional chemical toolbox to engineer carbon dots for biomedical and energy applications. Nat. Nanotechnol. 2022, 17, 112–130. [Google Scholar] [CrossRef]
- de Boever, R.; Town, J.R.; Li, X.; Claverie, J.P. Carbon Dots for Carbon Dummies: The Quantum and The Molecular Questions Among Some Others. Chem. Eur. J. 2022, 28, e202200748. [Google Scholar] [CrossRef]
- Xu, X.; Ray, R.; Gu, Y.; Ploehn, H.J.; Gearheart, L.; Raker, K.; Scrivens, W.A. Electrophoretic Analysis and Purification of Fluorescent Single-Walled Carbon Nanotube Fragments. J. Am. Chem. Soc. 2004, 126, 12736–12737. [Google Scholar] [CrossRef]
- Wang, B.; Lu, S. The light of carbon dots: From mechanism to applications. Matter 2022, 5, 110–149. [Google Scholar] [CrossRef]
- Shellaiah, M.; Sun, K.W. Review on Carbon Dot-Based Fluorescent Detection of Biothiols. Biosensors 2023, 13, 335. [Google Scholar] [CrossRef]
- Arora, G.; Sabran, N.S.; Ng, C.Y.; Low, F.W.; Jun, H.K. Applications of carbon quantum dots in electrochemical energy storage devices. Heliyon 2024, 10, e35543. [Google Scholar] [CrossRef] [PubMed]
- Rasal, A.S.; Yadav, S.; Yadav, A.; Kashale, A.A.; Manjunatha, S.T.; Altaee, A.; Chang, J.-Y. Carbon Quantum Dots for Energy Applications: A Review. ACS Appl. Nano Mater. 2021, 4, 6515–6541. [Google Scholar] [CrossRef]
- Benítez-Martínez, S.; Valcárcel, M. Graphene quantum dots in analytical science. TrAC Trends Anal. Chem. 2015, 72, 93–113. [Google Scholar] [CrossRef]
- Arcudi, F.; Dorđević, L. Supramolecular Chemistry of Carbon-Based Dots Offers Widespread Opportunities. Small 2023, 19, 2300906. [Google Scholar] [CrossRef]
- Mocci, F.; de Villiers Engelbrecht, L.; Olla, C.; Cappai, A.; Casula, M.F.; Melis, C.; Stagi, L.; Laaksonen, A.; Carbonaro, C.M. Carbon Nanodots from an In Silico Perspective. Chem. Rev. 2022, 122, 13709–13799. [Google Scholar] [CrossRef]
- Wang, B.; Cai, H.; Waterhouse, G.I.N.; Qu, X.; Yang, B.; Lu, S. Carbon Dots in Bioimaging, Biosensing and Therapeutics: A Comprehensive Review. Small Sci. 2022, 2, 2200012. [Google Scholar] [CrossRef] [PubMed]
- Fan, R.J.; Sun, Q.; Zhang, L.; Zhang, Y.; Lu, A.H. Photoluminescent carbon dots directly derived from polyethylene glycol and their application for cellular imaging. Carbon 2014, 71, 87–93. [Google Scholar] [CrossRef]
- Cadranel, A.; Strauss, V.; Margraf, J.T.; Winterfeld, K.A.; Vogl, C.; Dordević, L.; Arcudi, F.; Hoelzel, H.; Jux, N.; Prato, M.; et al. Screening Supramolecular Interactions between Carbon Nanodots and Porphyrins. J. Am. Chem. Soc. 2018, 140, 904–907. [Google Scholar] [CrossRef] [PubMed]
- Scharl, T.; Cadranel, A.; Haines, P.; Strauss, V.; Bernhardt, S.; Vela, S.; Atienza, C.; Grohn, F.; Martin, N.; Guldi, D.M. Fine-tuning the assemblies of carbon nanodots and porphyrins. Chem. Commun. 2018, 54, 11642–11644. [Google Scholar] [CrossRef] [PubMed]
- Bartolomei, B.; Sbacchi, M.; Rosso, C.; Günay-Gürer, A.; Zdražil, L.; Cadranel, A.; Kralj, S.; Guldi, D.M.; Prato, M. Synthetic Strategies for the Selective Functionalization of Carbon Nanodots Allow Optically Communicating Suprastructures. Angew. Chem. Int. Ed. 2024, 63, e202316915. [Google Scholar] [CrossRef]
- Li, D.; Qu, Y.; Zhang, X.; Zheng, W.; Rogach, A.L.; Qu, S. Supra-(carbon dots) with versatile morphologies and promising optical properties. Chem. Eng. J. 2023, 454, 140069. [Google Scholar] [CrossRef]
- Vercelli, B. Carbon Quantum Dots: Green Nano-biomaterials in the Future of Biosensing. In Handbook of Nanobioelectrochemistry; Azad, U.P., Chandra, P., Eds.; Springer: Singapore, 2023; pp. 283–306. [Google Scholar] [CrossRef]
- Ghezzi, F.; Donnini, R.; Sansonetti, A.; Giovanella, U.; La Ferla, B.; Vercelli, B. Nitrogen-Doped Carbon Quantum Dots for Biosensing Applications: The Effect of the Thermal Treatments on Electrochemical and Optical Properties. Molecules 2023, 28, 72. [Google Scholar] [CrossRef]
- Ma, P.; Jia, X.; He, Y.; Tao, J.; Wang, Q.; Wei, C.-I. Recent progress of quantum dots for food safety assessment: A review. Trends Food Sci. Technol. 2024, 143, 104310. [Google Scholar] [CrossRef]
- Park, S.Y.; Tan, J.K.S.; Mo, X.; Song, Y.; Lim, J.; Liew, X.R.; Chung, H.; Kim, S. Carbon Quantum Dots with Tunable Size and Fluorescence Intensity for Development of a Nano-biosensor. Small 2025, 21, e2404524. [Google Scholar] [CrossRef]
- Guo, H.; Yuhao Lu, Y.; Lei, Z.; Bao, H.; Mingwan, M.; Wang, Z.; Guan, C.; Tang, B.; Liu, Z.; Wang, L. Machine learning-guided realization of full-color high-quantum-yield carbon quantum dots. Nat. Commun. 2024, 15, 4843. [Google Scholar] [CrossRef] [PubMed]
- Hussain, A.; Pu, H.; Sun, D.-W. SERS detection of sodium thiocyanate and benzoic acid preservatives in liquid milk using cysteamine functionalized core-shelled nanoparticles. Spectrochim. Acta A 2020, 229, 117994. [Google Scholar] [CrossRef]
- Tian, L.; Fu, J.; Wu, M.; Liao, S.; Jia, X.; Wang, J.; Yang, S.; Liu, Z.; Liu, Z.; Xue, Z.; et al. Evaluation of gallic acid on membrane damage of Yersinia enterocolitica and its application as a food preservative in pork. Int. J. Food Microbiol. 2022, 374, 109720. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yang, Y.; Li, Y.; Zhao, P.; Fei, J.; Xie, Y. Detection of gallic acid in food using an ultra-sensitive electrochemical sensor based on glass carbon electrode modified by bimetal doped carbon nanopolyhedras. Food Chem. 2023, 429, 136900. [Google Scholar] [CrossRef]
- Khan, A.; Ajab, H.; Yaqub, A.; Ayub, K.; Yar, M.; Ullah, H. An experimental and theoretical aided 2D MoS2 nanoflowers strategy for rapid visual sensing of Gallic acid in food and clinical matrixes. Appl. Surf. Sci. Adv. 2024, 20, 100581. [Google Scholar] [CrossRef]
- Amayreh, M.; Esaifan, M.; Hourani, M.K. A sensitive and selective voltammetric method for the detection of pyrogallol in tomato and water samples using platinum electrode modified with alizarin red S film. Anal. Sci. 2024, 40, 1671–1681. [Google Scholar] [CrossRef]
- WHO. Concise International Chemical Assessment Document 26; World Health Organization: Geneva, Switzerland, 2000. [Google Scholar]
- Qi, P.; Hong, H.; Liang, X.; Liu, D. Assessment of benzoic acid levels in milk in China. Food Control 2009, 20, 414–418. [Google Scholar] [CrossRef]
- Cai, L.; Dong, J.; Wang, Y.; Chen, X. Thin-film microextraction coupled to surface enhanced Raman scattering for the rapid detection of benzoic acid in carbonated beverages. Talanta 2018, 178, 268–273. [Google Scholar] [CrossRef]
- Fujiyoshi, T.; Ikami, T.; Kikukawa, K.; Kobayashi, K.; Takai, R.; Kozaki, D.; Yamamoto, A. Direct quantitation of the preservatives benzoic and sorbic acid in processed foods using derivative spectrophotometry combined with micro dialysis. Food Chem. 2018, 240, 386–390. [Google Scholar] [CrossRef] [PubMed]
- AL Zahrani, N.A.; El-Shishtawy, R.M.; MAsiri, A.M. Recent developments of gallic acid derivatives and their hybrids in medicinal chemistry: A review. Eur. J. Med. Chem. 2020, 204, 112609. [Google Scholar] [CrossRef] [PubMed]
- Uddin, S.J.; Afroz, M.; Zihad, S.M.N.K.; Rahman, M.S.; Akter, S.; Khan, I.N.; Al-Rabbi, S.M.S.; Rouf, R.; Islam, M.T.; Shilpi, J.A.; et al. A Systematic Review on Anti-diabetic and Cardioprotective Potential of Gallic Acid: A Widespread Dietary Phytoconstituent. Food Rew. Int. 2022, 38, 420–439. [Google Scholar] [CrossRef]
- Shabani, S.; Rabiei, Z.; Amini-Khoei, H. Exploring the multifaceted neuroprotective actions of gallic acid: A review. Int. J. Food Prop. 2020, 23, 736–752. [Google Scholar] [CrossRef]
- Sivakumar, M.; Pandi, K.; Chen, S.M.; Yadav, S.; Chen, T.W.; Veeramani, V. Highly Sensitive Detection of Gallic Acid in Food Samples by Using Robust NiAl2O4 Nanocomposite Materials. J. Electrochem. Soc. 2019, 166, B29. [Google Scholar] [CrossRef]
- Kadosh, E.; Snir-Alkalay, I.; Venkatachalam, A.; May, S.; Lasry, A.; Elyada, E.; Zinger, A.; Shaham, M.; Vaalani, G.; Mernberger, M.; et al. The gut microbiome switches mutant p53 from tumour-suppressive to oncogenic. Nature 2020, 586, 133–138. [Google Scholar] [CrossRef]
- Upadhyay, G.; Gupta, S.P.; Prakash, O.; Singh, M.P. Pyrogallol-mediated toxicity and natural antioxidants: Triumphs and pitfalls of preclinical findings and their translational limitations. Chem. Biol. Int. 2010, 183, 333–340. [Google Scholar] [CrossRef] [PubMed]
- Vercelli, B.; De Micheli, E.; Donnini, R.; Losurdo, M.; Lange, H.; La Ferla, B.; Pavan, A.; Saibene, M.; Capitani, G.; Ghezzi, F.; et al. Hydrothermal Approach for the Preparation of Blue-Emitting Carbon Quantum Dots: An Insight into the Influence of the Reaction Parameters. Small Struct. 2025, 6, 2400481. [Google Scholar] [CrossRef]
- Zotti, G.; Vercelli, B.; Berlin, A. Gold Nanoparticles Linked by Pyrrole- and Thiophene-Based Thiols. Electrochemical, Optical, and Conductive Properties. Chem. Mater. 2008, 20, 397–412. [Google Scholar] [CrossRef]
- Silverstein, R.M.; Bassler, G.C. Spectrometric Identification of Organic Compounds, 2nd ed.; John Wiley & Sons, Inc.: New York, NY, USA, 1967; pp. 64–78. [Google Scholar]
- Selvaraj, S.; Rajkumar, P.; Thirunavukkarasu, K.; Gunasekaran, S.; Kumaresan, S. Vibrational (FT-IR and FT-Raman), electronic (UV–vis) and quantum chemical investigations on pyrogallol: A study on benzenetriol dimers. Vibr. Spectr. 2018, 95, 16–22. [Google Scholar] [CrossRef]
- Siddika, M.; Ahmed, J.; Aoki, K.; Faisal, M.; Algethami, J.S.; Harraz, F.A.; Nagao, Y.; Hasnat, M.A. Kinetics of Electrocatalytic Oxidation of Gallic Acid by Activated Glassy Carbon Electrode in Acidic Medium. Chem. Select. 2023, 8, e202302074. [Google Scholar] [CrossRef]
- Perikala, M.; Bardwaj, A. Engineering Photo-Luminescent Centers of Carbon Dots to Achieve Higher Quantum Yields. ACS Appl. Electron. Mat. 2020, 2, 2470–2478. [Google Scholar] [CrossRef]
- Vercelli, B.; Donnini, R.; Ghezzi, F.; Sansonetti, A.; Giovanella, U.; La Ferla, B. Nitrogen-doped carbon quantum dots obtained hydrothermally from citric acid and urea: The role of the specific nitrogen centers in their electrochemical and optical responses. Electrochim. Acta 2021, 387, 138557. [Google Scholar] [CrossRef]
- Yeniyurt, Y.; Kilic, S.; Güner-Yılmaz, Ö.Z.; Bozoglu, S.; Meran, M.; Baysak, E.; Kurkcuoglu1, O.; Hizal, G.; Karatepe, N.; Batirel, S.; et al. Fmoc-PEG Coated Single-Wall Carbon Nanotube Carriers by Non-covalent Functionalization: An Experimental and Molecular Dynamics Study. Front. Bioeng. Biotechnol. 2021, 9, 648366. [Google Scholar] [CrossRef] [PubMed]
- Fei, Z.-G.; Rumeng, L.; Lifeng, W. Symmetry breaking and dynamic characteristics of post-buckling in bilayer van der Waals structures. Int. J. Solids Struct. 2025, 309, 113190. [Google Scholar]
- Fei, Z.-G.; Rumeng, L.; Chun, T.; Lifeng, W. Dynamic tuning of moiré superlattice morphology by out-of-plane deformation. Appl. Phys. Lett. 2024, 124, 173508. [Google Scholar] [CrossRef]
- Rumeng, L.; Jiaye, H.; Jicheng, Z.; Lifeng, W. Moiré Tuning of the Dynamic Behavior of a Twisted Bilayer van der Waals Material Resonator. J. Appl. Mech. 2022, 89, 121001. [Google Scholar] [CrossRef]






| Sample | λmax (nm) | ε (M−1 cm−1) | Eox (V) | ΔE (mv) |
|---|---|---|---|---|
| PG | 200, 223(s); 267, 277(s) | 1 × 103 | 0.56 | 47 |
| BA | 228; 272 | 1.8 × 103 | - | - |
| GA | 217; 272 | 9.6 × 103 | 0.64 | 31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andria, L.; Capitani, G.; La Ferla, B.; Lange, H.; Saibene, M.; Zoia, L.; Vercelli, B. Carbon Quantum Dots Interactions with Pyrogallol, Benzoic Acid, and Gallic Acid: A Study on Their Non-Covalent Nature. Nanomaterials 2025, 15, 1457. https://doi.org/10.3390/nano15181457
Andria L, Capitani G, La Ferla B, Lange H, Saibene M, Zoia L, Vercelli B. Carbon Quantum Dots Interactions with Pyrogallol, Benzoic Acid, and Gallic Acid: A Study on Their Non-Covalent Nature. Nanomaterials. 2025; 15(18):1457. https://doi.org/10.3390/nano15181457
Chicago/Turabian StyleAndria, Laura, Giancarlo Capitani, Barbara La Ferla, Heiko Lange, Melissa Saibene, Luca Zoia, and Barbara Vercelli. 2025. "Carbon Quantum Dots Interactions with Pyrogallol, Benzoic Acid, and Gallic Acid: A Study on Their Non-Covalent Nature" Nanomaterials 15, no. 18: 1457. https://doi.org/10.3390/nano15181457
APA StyleAndria, L., Capitani, G., La Ferla, B., Lange, H., Saibene, M., Zoia, L., & Vercelli, B. (2025). Carbon Quantum Dots Interactions with Pyrogallol, Benzoic Acid, and Gallic Acid: A Study on Their Non-Covalent Nature. Nanomaterials, 15(18), 1457. https://doi.org/10.3390/nano15181457

