Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (908)

Search Parameters:
Keywords = electromagnetic interaction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2559 KB  
Article
Quasi-Static and Dynamic Measurement Capabilities Provided by an Electromagnetic Field-Based Sensory Glove
by Giovanni Saggio, Luca Pietrosanti, I-Jung Lee and Bor-Shing Lin
Biosensors 2025, 15(10), 640; https://doi.org/10.3390/bios15100640 - 25 Sep 2025
Abstract
The sensory glove (also known as data or instrumented glove) plays a key role in measuring and tracking hand dexterity. It has been adopted in a variety of different domains, including medical, robotics, virtual reality, and human–computer interaction, to assess hand motor skills [...] Read more.
The sensory glove (also known as data or instrumented glove) plays a key role in measuring and tracking hand dexterity. It has been adopted in a variety of different domains, including medical, robotics, virtual reality, and human–computer interaction, to assess hand motor skills and to improve control accuracy. However, no particular technology has been established as the most suitable for all domains, so that different sensory gloves have been developed, adopting different sensors mainly based on optic, electric, magnetic, or mechanical properties. This work investigates the performances of the MANUS Quantum sensory glove that sources an electromagnetic field and measures its changing value at the fingertips during fingers’ flexion. Its performance is determined in terms of measurement repeatability, reproducibility, and reliability during both quasi-static and dynamic hand motor tests. Full article
Show Figures

Figure 1

21 pages, 3104 KB  
Article
Advanced Structural Assessment of a Bucked-and-Wedged Configuration for the EU DEMO Tokamak Under a 16.5 T Magnetic Field
by Andrea Chiappa and Corrado Groth
Energies 2025, 18(18), 5013; https://doi.org/10.3390/en18185013 - 21 Sep 2025
Viewed by 187
Abstract
The pursuit of compact and efficient fusion energy systems necessitates innovative structural concepts capable of withstanding extreme operational conditions. This study presents a preliminary structural evaluation and stress assessment of a bucked-and-wedged configuration for the EU DEMO tokamak, targeting a peak magnetic field [...] Read more.
The pursuit of compact and efficient fusion energy systems necessitates innovative structural concepts capable of withstanding extreme operational conditions. This study presents a preliminary structural evaluation and stress assessment of a bucked-and-wedged configuration for the EU DEMO tokamak, targeting a peak magnetic field of 16.5 T. The proposed concept leverages mutual wedging of the Toroidal Field (TF) coils and their interaction with the Central Solenoid (CS) to optimize stress distribution in the inner legs, a critical region in high-field fusion reactors. To address the significant tangential forces arising during plasma operation, the design integrates outer inter-coil structures and shear pins to enhance mechanical stability. A hybrid simulation approach—coupling 3D electromagnetic and structural finite element analyses—is employed to assess stress behavior and structural integrity under both in-plane and out-of-plane loading conditions. The results contribute to the optimization study of high-field fusion reactor components and offer insights into viable mechanical design strategies for next-generation nuclear energy systems. Full article
(This article belongs to the Special Issue Advanced Simulations for Nuclear Fusion Energy Systems)
Show Figures

Figure 1

25 pages, 1706 KB  
Article
A Comparison of Quantum and Semiclassical Rabi Models Near Multiphoton Resonances in the Presence of Parametric Modulation
by Marcos V. S. de Paula, Marco A. Damasceno Faustino and Alexandre V. Dodonov
Physics 2025, 7(3), 42; https://doi.org/10.3390/physics7030042 - 16 Sep 2025
Viewed by 252
Abstract
We compare the semiclassical and quantum predictions for the unitary dynamics of a two-level atom interacting with a single-mode electromagnetic field under parametric modulation of the atomic parameters in the regime of multiphoton atom–field resonances. We derive approximate analytic solutions for the semiclassical [...] Read more.
We compare the semiclassical and quantum predictions for the unitary dynamics of a two-level atom interacting with a single-mode electromagnetic field under parametric modulation of the atomic parameters in the regime of multiphoton atom–field resonances. We derive approximate analytic solutions for the semiclassical Rabi model when the atomic transition frequency and the atom–field coupling strength undergo harmonic external modulations. These solutions are compared to the predictions of the quantum Rabi model, which we solve numerically for an initial coherent state with a large average photon number (on the order of 104), in the regime of three-photon resonance. We show that, for short enough times and sufficiently intense coherent states, the semiclassical dynamics agrees quite well with the quantum dynamics, although it inevitably fails at longer times due to the absence of collapse–revival behavior. Furthermore, we describe how the field state evolves throughout the interaction, presenting numerical results for the average photon number, entropies (related to atom–field entanglement), and other quantities characterizing the photon number statistics of the electromagnetic field. Full article
Show Figures

Figure 1

18 pages, 7904 KB  
Article
Microscopic Insight into Knudsen and Electromagnetic Effects on Thermal Conductivity of Closed Mesoporous Metal Gels
by Haiyan Yu, Ning Guo, Anqi Chen, Mingdong Li, Haochun Zhang and Mu Du
Gels 2025, 11(9), 739; https://doi.org/10.3390/gels11090739 - 15 Sep 2025
Viewed by 250
Abstract
Accurate thermal characterization of closed mesoporous metal gels is vital for high-temperature uses, yet microscale effects often ignored in macroscopic models significantly impact heat transfer. This study introduces a new predictive method based on an equivalent Voronoi model, accounting for the Knudsen effect [...] Read more.
Accurate thermal characterization of closed mesoporous metal gels is vital for high-temperature uses, yet microscale effects often ignored in macroscopic models significantly impact heat transfer. This study introduces a new predictive method based on an equivalent Voronoi model, accounting for the Knudsen effect and microscale electromagnetic interactions. Predicted thermal conductivity closely matched experimental results, with an average error of 5.35%. The results demonstrate that thermal conductivity decreases with porosity, increases with temperature, and varies with pore size, with a minimum of 17.47 W/(m·K) observed at ~1 μm. Variations in refractive index, extinction coefficient, and specific surface area exert negligible influence. Conductive heat transfer is suppressed under Knudsen-dominated conditions at small pore sizes. Electromagnetic analysis around the pore size corresponding to minimum conductivity reveals localized surface plasmon resonances and magnetic coupling at the gas–solid interface, which enhance radiative dissipation and further reduce thermal conductivity. Radiation dissipation efficiency increases with decreasing porosity and pore size. This model thus serves as a predictive tool for designing high-performance thermal insulation systems for elevated-temperature applications. Full article
(This article belongs to the Special Issue Characterization Techniques for Hydrogels and Their Applications)
Show Figures

Figure 1

21 pages, 4139 KB  
Article
A GPR Imagery-Based Real-Time Algorithm for Tunnel Lining Void Identification Using Improved YOLOv8
by Yujiao Wu, Fei Xu, Liming Zhou, Hemin Zheng, Yonghai He and Yichen Lian
Buildings 2025, 15(18), 3323; https://doi.org/10.3390/buildings15183323 - 14 Sep 2025
Viewed by 249
Abstract
Tunnel lining voids, a common latent defect induced by the coupling effects of complex geological, environmental, and load factors, pose severe threats to operational and personnel safety. Traditional detection methods relying on Ground-Penetrating Radar (GPR) combined with manual interpretation suffer from high subjectivity, [...] Read more.
Tunnel lining voids, a common latent defect induced by the coupling effects of complex geological, environmental, and load factors, pose severe threats to operational and personnel safety. Traditional detection methods relying on Ground-Penetrating Radar (GPR) combined with manual interpretation suffer from high subjectivity, low efficiency, frequent missed or false detections, and an inability to achieve real-time monitoring. Thus, this paper proposes an intelligent identification methodology for tunnel lining voids based on an improved version of YOLOv8. Key enhancements include integrating the RepVGGBlock module, dynamic upsampling, and a spatial context-aware module to address challenges from diverse void geometries—resulting from interactions between the environment, geology, and load—and complex GPR signals caused by heterogeneous underground media and the varying electromagnetic properties of materials, which obscure void–background boundaries, as well as interference signals from detection processes. Additionally, the C2f-Faster module reduces the computational complexity (GFLOPs), parameter count, and model size, facilitating edge deployment at detection sites to achieve real-time GPR signal interpretation for tunnel linings. Experimental results on a heavy-haul railway tunnel’s lining defect dataset show 11.57% lower GFLOPs, 14.55% fewer parameters, and 13.85% smaller weight files, with average accuracies of 94.1% and 94.4% in defect recognition and segmentation, respectively, meeting requirements for the real-time online detection of tunnel linings. Notably, the proposed model is specifically tailored for void identification and cannot handle other prevalent tunnel lining defects, which restricts its application in comprehensive tunnel health monitoring scenarios where multiple defects often coexist to threaten structural safety. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
Show Figures

Figure 1

22 pages, 5891 KB  
Article
Investigation of the Effect of GFRP Reinforcement Bars on the Flexural Strength of Reinforced Concrete Beams Using the Finite Element Method
by Yusuf Sümer and Muhammed Öztemel
Fibers 2025, 13(9), 125; https://doi.org/10.3390/fib13090125 - 12 Sep 2025
Viewed by 340
Abstract
The use of environmentally friendly materials is becoming increasingly important in order to increase sustainability and reduce carbon emissions in reinforced concrete structures. In this context, glass fiber-reinforced polymer (GFRP) bars, which are proposed as an alternative to traditional steel reinforcements, are attracting [...] Read more.
The use of environmentally friendly materials is becoming increasingly important in order to increase sustainability and reduce carbon emissions in reinforced concrete structures. In this context, glass fiber-reinforced polymer (GFRP) bars, which are proposed as an alternative to traditional steel reinforcements, are attracting attention in engineering applications thanks to their advantages, such as high corrosion resistance, low weight, and electromagnetic permeability. However, the lower elasticity modulus of GFRP reinforcement compared to steel causes greater displacement and crack width under bending and shear effects, leading to certain limitations in structural performance. Due to the limited number of comprehensive analyses in the literature that simultaneously consider parameters such as reinforcement diameter, concrete strength, and stirrup spacing, this study aims to reveal the interactive effects of these parameters through numerical analyses and contribute to existing research. In this context, beam models using GFRP reinforcements with diameters of 10 mm and 12 mm, concrete strengths of 25 MPa and 40 MPa, and different stirrup spacings were analyzed using the ABAQUS (2022) software with a three-dimensional nonlinear finite element method. Full article
Show Figures

Figure 1

35 pages, 5920 KB  
Review
Advances in the Mechanism and Application of Nanoparticles in Concrete Property Modification
by Huaming Li, Yuhan Zhao, Yan Zhao, Min Zhang, Yanan Niu and Xi Cao
Inorganics 2025, 13(9), 305; https://doi.org/10.3390/inorganics13090305 - 12 Sep 2025
Viewed by 389
Abstract
Nanoparticles leverage their unique nanoscale effects to optimize concrete performance through synergistic multi-mechanism interactions. Core mechanisms include micro-filling effects (graded pore filling, optimized pore structure), nucleation (promoting crystallization of hydration products, refining microstructure), chemical reactivity (e.g., pozzolanic reaction of nano-SiO2, enhancing [...] Read more.
Nanoparticles leverage their unique nanoscale effects to optimize concrete performance through synergistic multi-mechanism interactions. Core mechanisms include micro-filling effects (graded pore filling, optimized pore structure), nucleation (promoting crystallization of hydration products, refining microstructure), chemical reactivity (e.g., pozzolanic reaction of nano-SiO2, enhancing interfacial transition zones), and interfacial strengthening (improving ITZ structure and stress transfer). Common nanomaterials (e.g., nano-SiO2, Al2O3, carbon nanotubes) significantly enhance concrete’s mechanical properties, durability, and functionalities (e.g., self-sensing, electromagnetic shielding). However, nano-modified concrete still faces challenges such as poor dispersion, high cost, and environmental/health risks. Future efforts should focus on multi-scale mechanism research, green low-cost synthesis processes, and intelligent composite systems development to advance the engineering applications pf nano-modified concrete. Full article
Show Figures

Graphical abstract

14 pages, 1673 KB  
Article
Approximate Analytical Approach for Fast Prediction of Microwave Sensor Response: Numerical Analysis and Results
by Antonio Cuccaro, Raffaele Solimene and Sandra Costanzo
Sensors 2025, 25(18), 5683; https://doi.org/10.3390/s25185683 - 11 Sep 2025
Viewed by 344
Abstract
In medical applications, microwave sensors are usually employed to work in direct contact with the human body, therefore requiring an accurate prediction of the electromagnetic interactions with biological tissues. While full-wave simulations can be useful to achieve the above task, they are computationally [...] Read more.
In medical applications, microwave sensors are usually employed to work in direct contact with the human body, therefore requiring an accurate prediction of the electromagnetic interactions with biological tissues. While full-wave simulations can be useful to achieve the above task, they are computationally expensive, especially for iterative sensor optimization. Analytical models may offer a more efficient alternative, but they are often complex, and they must be formulated in a practical way to be useful. As a result, approximate approaches can be advantageous. Traditional approaches, such as plane-wave approximations and transmission-line models, often fail to capture key sensing features. This paper presents an approximate analytical model for standard-aperture sensor configurations to predict the sensor response in terms of the reflection coefficient when placed above a layered medium. The model is based on the assumption that the electromagnetic interaction is primarily governed by the sensor’s dominant mode. Full-wave simulations in the 2–3 GHz frequency range (relevant for medical applications) demonstrate strong agreement with the analytical model, thereby validating its effectiveness as a first-order approximation for sensor–tissue interactions. This provides a reliable and computationally efficient tool to properly manage microwave sensors design in medical applications. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Graphical abstract

13 pages, 1644 KB  
Article
Modeling and Simulation of Highly Efficient and Eco-Friendly Perovskite Solar Cells Enabled by 2D Photonic Structuring and HTL-Free Design
by Ghada Yassin Abdel-Latif
Electronics 2025, 14(18), 3607; https://doi.org/10.3390/electronics14183607 - 11 Sep 2025
Viewed by 336
Abstract
A novel, eco-friendly perovskite solar cell design is investigated using numerical simulations based on the finite-difference time-domain (FDTD) method. The proposed structure incorporates a two-dimensional (2D) photonic crystal (PhC) architecture featuring a titanium dioxide (TiO2) cylindrical electron extraction layer. To reduce [...] Read more.
A novel, eco-friendly perovskite solar cell design is investigated using numerical simulations based on the finite-difference time-domain (FDTD) method. The proposed structure incorporates a two-dimensional (2D) photonic crystal (PhC) architecture featuring a titanium dioxide (TiO2) cylindrical electron extraction layer. To reduce fabrication complexity and overall production costs, a hole-transport-layer-free (HTL-free) configuration is employed. Simulation results reveal a significant enhancement in photovoltaic performance compared to conventional planar structures, achieving an ultimate efficiency of 42.3%, compared to 36.6% for the traditional design—an improvement of over 16%. Electromagnetic field distributions are analyzed to elucidate the physical mechanisms behind the enhanced absorption. The improved optical performance is attributed to strong coupling between photonic modes and surface plasmon polaritons (SPPs), which enhances light–matter interaction. Furthermore, the device exhibits polarization-insensitive and angle-independent absorption characteristics, maintaining high performance for both transverse magnetic (TM) and transverse electric (TE) polarizations at incidence angles up to 60°. These findings highlight a promising pathway toward the development of cost-effective, lead-free perovskite solar cells with high efficiency and simplified fabrication processes. Full article
Show Figures

Figure 1

18 pages, 4475 KB  
Article
Electromagnetic Continuously Variable Transmission (EMCVT) System for Precision Torque Control in Human-Centered Robotic Applications
by Ishara Madusankha, Prageeth Nimantha Jayaweera, Nipun Shantha Kahatapitiya, Peshan Sampath, Ashan Weeraratne, Kasun Subasinghage, Chamara Liyanage, Akila Wijethunge, Naresh Kumar Ravichandran and Ruchire Eranga Wijesinghe
Appl. Mech. 2025, 6(3), 69; https://doi.org/10.3390/applmech6030069 - 8 Sep 2025
Viewed by 718
Abstract
In human-centered robotic applications, safety, efficiency, and adaptability are critical for enabling effective interaction and performance. Incorporating electromagnetic continuously variable transmission (EM-CVT) systems into robotic designs enhances both safety and precise, adaptable motion control. The flexible power transmission offered by CVTs allows robots [...] Read more.
In human-centered robotic applications, safety, efficiency, and adaptability are critical for enabling effective interaction and performance. Incorporating electromagnetic continuously variable transmission (EM-CVT) systems into robotic designs enhances both safety and precise, adaptable motion control. The flexible power transmission offered by CVTs allows robots to operate across diverse environments, supporting various tasks, human interaction, and safe collaboration. This study presents a CVT-based mechanical subsystem developed using two cones and an intermediate belt-driven transmission mechanism, providing efficient power and motion transfer. The control subsystem consists of six strategically positioned electromagnets energized by signals from a microcontroller. This electromagnetic actuation enables rapid and precise adjustments to the transmission ratio, enhancing overall system performance. A linear relationship between slip percentage and gear ratio was observed, indicating that the control system achieves stable and efficient operation, with a measured power consumption of 2.95 W per electromagnet. Future work will focus on validating slip performance under dynamic loading conditions, integrating the system into robotic platforms, and optimizing materials and control strategies to enable broader real-world deployment. Full article
Show Figures

Figure 1

20 pages, 1690 KB  
Article
3V-GM: A Tri-Layer “Point–Line–Plane” Critical Node Identification Algorithm for New Power Systems
by Yuzhuo Dai, Min Zhao, Gengchen Zhang and Tianze Zhao
Entropy 2025, 27(9), 937; https://doi.org/10.3390/e27090937 - 7 Sep 2025
Viewed by 485
Abstract
With the increasing penetration of renewable energy, the stochastic and intermittent nature of its generation increases operational uncertainty and vulnerability, posing significant challenges for grid stability. However, traditional algorithms typically identify critical nodes by focusing solely on the network topology or power flow, [...] Read more.
With the increasing penetration of renewable energy, the stochastic and intermittent nature of its generation increases operational uncertainty and vulnerability, posing significant challenges for grid stability. However, traditional algorithms typically identify critical nodes by focusing solely on the network topology or power flow, or by combining the two, which leads to the inaccurate and incomplete identification of essential nodes. To address this, we propose the Three-Dimensional Value-Based Gravity Model (3V-GM), which integrates structural and electrical–physical attributes across three layers. In the plane layer, we combine each node’s global topological position with its real-time supply–demand voltage state. In the line layer, we introduce an electrical coupling distance to quantify the strength of electromagnetic interactions between nodes. In the point layer, we apply eigenvector centrality to detect latent hub nodes whose influence is not immediately apparent. The performance of our proposed method was evaluated by examining the change in the load loss rate as nodes were sequentially removed. To assess the effectiveness of the 3V-GM approach, simulations were conducted on the IEEE 39 system, as well as six other benchmark networks. The simulations were performed using Python scripts, with operational parameters such as bus voltages, active and reactive power flows, and branch impedances obtained from standard test cases provided by MATPOWER v7.1. The results consistently show that removing the same number of nodes identified by 3V-GM leads to a greater load loss compared to the six baseline methods. This demonstrates the superior accuracy and stability of our approach. Additionally, an ablation experiment, which decomposed and recombined the three layers, further highlights the unique contribution of each component to the overall performance. Full article
(This article belongs to the Section Complexity)
Show Figures

Figure 1

19 pages, 2685 KB  
Article
Sharp Bounds and Electromagnetic Field Applications for a Class of Meromorphic Functions Introduced by a New Operator
by Abdelrahman M. Yehia, Atef F. Hashem, Samar M. Madian and Mohammed M. Tharwat
Axioms 2025, 14(9), 684; https://doi.org/10.3390/axioms14090684 - 5 Sep 2025
Viewed by 359
Abstract
In this paper, we present a new integral operator that acts on a class of meromorphic functions on the punctured unit disc U*. This operator enables the definition of a new subclass of meromorphic univalent functions. We obtain sharp bounds for [...] Read more.
In this paper, we present a new integral operator that acts on a class of meromorphic functions on the punctured unit disc U*. This operator enables the definition of a new subclass of meromorphic univalent functions. We obtain sharp bounds for the Fekete–Szegö inequality and the second Hankel determinant for this class. The theoretical approach is based on differential subordination. Furthermore, we link these theoretical insights to applications in 2D electromagnetic field theory by outlining a physical framework in which the operator functions as a field transformation kernel. We show that the operator’s parameters correspond to physical analogs of field regularization and spectral redistribution, and we use subordination theory to simulate the design of vortex-free fields. The findings provide new insights into the interaction between geometric function theory and physical field modeling. Full article
(This article belongs to the Special Issue New Developments in Geometric Function Theory, 4th Edition)
Show Figures

Figure 1

13 pages, 4472 KB  
Article
Design and Optimization of a Broadband Stripline Kicker for Low Beam Emittance Ring Accelerators
by Sakdinan Naeosuphap, Sarunyu Chaichuay, Siriwan Jummunt and Porntip Sudmuang
Particles 2025, 8(3), 78; https://doi.org/10.3390/particles8030078 - 29 Aug 2025
Viewed by 288
Abstract
The performance and beam quality of the new fourth-generation synchrotron light source with ultra-low emittance are highly susceptible to coupled-bunch instabilities. These instabilities arise from the interaction between the bunched electron beam and the surrounding vacuum chamber installations. To mitigate these effects, the [...] Read more.
The performance and beam quality of the new fourth-generation synchrotron light source with ultra-low emittance are highly susceptible to coupled-bunch instabilities. These instabilities arise from the interaction between the bunched electron beam and the surrounding vacuum chamber installations. To mitigate these effects, the installation of a transverse bunch-by-bunch feedback system is planned. This system will comprise a button-type beam position monitor (BPM) for beam signal detection, a digital feedback controller, a broadband power amplifier, and a broadband stripline kicker as the primary actuator. One of the critical challenges lies in the development of the stripline kicker, which must be optimized for high shunt impedance and wide bandwidth while minimizing beam-coupling impedance. This work focuses on the comprehensive design of the stripline kicker intended for transverse (horizontal and vertical) bunch-by-bunch feedback in the Siam Photon Source II (SPS-II) storage ring. The stripline kicker design also incorporates features to enable its use for beam excitation in the SPS-II tune measurement system. The optimization process involves analytical approximations and detailed numerical electromagnetic field analysis of the stripline’s 3D geometry, focusing on impedance matching, field homogeneity, power transmission, and beam-coupling impedance. The details of engineering design are discussed to ensure that it meets the fabrication possibilities and stringent requirements of the SPS-II accelerator. Full article
(This article belongs to the Special Issue Generation and Application of High-Power Radiation Sources 2025)
Show Figures

Figure 1

20 pages, 4010 KB  
Article
Transient Stability Analysis and Enhancement Strategies for AC Side of Hydro-Wind-PV VSC-HVDC Transmission System
by Xinwei Li, Yanjun Ma, Jie Fang, Kai Ma, Han Jiang, Zheren Zhang and Zheng Xu
Appl. Sci. 2025, 15(17), 9456; https://doi.org/10.3390/app15179456 - 28 Aug 2025
Viewed by 329
Abstract
To analyze and enhance the transient stability of a hydro-wind-PV VSC-HVDC transmission system, this paper establishes a transient stability analytical model and proposes strategies for stability improvement. Based on the dynamic interaction mechanisms of multiple types of power sources, an analytical model integrating [...] Read more.
To analyze and enhance the transient stability of a hydro-wind-PV VSC-HVDC transmission system, this paper establishes a transient stability analytical model and proposes strategies for stability improvement. Based on the dynamic interaction mechanisms of multiple types of power sources, an analytical model integrating GFM converters, GFL converters, and SGs is first developed. The EAC is employed to investigate how the factors such as current-limiting thresholds and fault locations influence transient stability. Subsequently, a parameter tuning method based on optimal phase angle calculation and delayed control of current-limiting modes is proposed. Theoretical analysis and PSCAD simulations demonstrate that various factors affect transient stability by influencing the PLL of converters and the electromagnetic power of synchronous machines. The energy transfer path during transient processes is related to fault locations, parameter settings of current-limiting modes in converters, and the operational states of equipment. The proposed strategy significantly improves the transient synchronization stability of multi-source coupled systems. The research findings reveal the transient stability mechanisms of hydro-wind-PV VSC-HVDC transmission systems, and the proposed stability enhancement method combines theoretical innovation with engineering practicality, providing valuable insights for the planning and design of such scenarios. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

36 pages, 10529 KB  
Review
Tapered Optical Fiber Optofluidics: Bridging In-Fiber and Outside-Fiber Architectures Toward Autonomous Lab-on-Fiber Biosensing
by Alba Lako and Marzhan Sypabekova
Sensors 2025, 25(17), 5229; https://doi.org/10.3390/s25175229 - 22 Aug 2025
Viewed by 1117
Abstract
Optical fiber-based biosensors have proven to be a powerful platform for chemical and biological analysis due to their compact size, fast response, high sensitivity, and immunity to electromagnetic interference. Among the various fiber designs, tapered optical fibers have gained prominence due to the [...] Read more.
Optical fiber-based biosensors have proven to be a powerful platform for chemical and biological analysis due to their compact size, fast response, high sensitivity, and immunity to electromagnetic interference. Among the various fiber designs, tapered optical fibers have gained prominence due to the increased evanescent fields that significantly improve light–analyte interactions, making them well-suited for advanced sensing applications. At the same time, advances in microfluidics have allowed for the precise control of small-volume fluids, supporting integration with optical fiber sensors to create compact and multifunctional optofluidic systems. This review explores recent developments in optical fiber optofluidic sensing, with a focus on two primary architectures: in-fiber and outside-fiber platforms. The advantages, limitations, and fabrication strategies for each are discussed, along with their compatibility with various sensing mechanisms. Special emphasis is placed on tapered optical fibers, focusing on design strategies, fabrication, and integration with microfluidics. While in-fiber systems offer compactness and extended interaction lengths, outside-fiber platforms offer greater mechanical stability, modularity, and ease of functionalization. The review highlights the growing interest in tapered fiber-based optofluidic biosensors and their potential to serve as the foundation for autonomous lab-on-a-fiber technologies. Future pathways for achieving self-contained, multiplexed, and reconfigurable sensing platforms are also discussed. Full article
(This article belongs to the Special Issue Recent Advances in Microfluidic Sensing Devices)
Show Figures

Figure 1

Back to TopTop