A Comparison of Quantum and Semiclassical Rabi Models Near Multiphoton Resonances in the Presence of Parametric Modulation
Abstract
1. Introduction
2. Semiclassical Rabi Model
2.1. Jacobi–Anger Expansion
2.2. Coarse-Grained Approximation
2.3. Approximate Description Under Resonances
3. Quantum Rabi Model
3.1. Dressed-States Expansion
3.2. Approximate Equations for First-Order and Second-Order Effects
4. Numeric Results
4.1. Three-Photon Qubit Excitation Without Modulation
4.2. Modulation: First-Order Effects
4.3. Modulation: Second-Order Effects
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A. Transition Rates in SRM
Appendix A.1. First-Order Coefficients in Equation (40)
Appendix A.2. Second-Order Coefficients in Equation (41)
References
- Rabi, I.I. On the process of space quantization. Phys. Rev. 1936, 49, 324–328. [Google Scholar] [CrossRef]
- Rabi, I.I. Space quantization in a gyrating magnetic field. Phys. Rev. 1937, 51, 652–654. [Google Scholar] [CrossRef]
- Bloch, F.; Siegert, A. Magnetic resonance for nonrotating fields. Phys. Rev. 1940, 57, 522–527. [Google Scholar] [CrossRef]
- Irish, E.K.; Armour, A.D. Defining the semiclassical limit of the quantum Rabi Hamiltonian. Phys. Rev. Lett. 2022, 129, 183603. [Google Scholar] [CrossRef]
- Allen, L.; Eberly, J.H. Optical Resonance and Two-Level Atoms; Dover Publications, Inc.: Mineola, NY, USA, 1987; Available online: https://store.doverpublications.com/products/9780486655338 (accessed on 20 August 2025).
- Cohen-Tannoudji, C.; Dupont-Roc, J.; Grynberg, G. Atom–Photon Interactions: Basic Processes and Applications; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2004. [Google Scholar] [CrossRef]
- Shore, B.W. The Theory of Coherent Atomic Excitation; John Wiley & Sons: New York, NY, USA, 1990; Volumes 1 & 2. [Google Scholar]
- Autler, S.H.; Townes, C.H. Stark Effect in rapidly varying fields. Phys. Rev. 1955, 100, 703–722. [Google Scholar] [CrossRef]
- Crisp, M.D. Propagation of small-area pulses of coherent light through a resonant medium. Phys. Rev. 1970, 1, 1604–1611. [Google Scholar] [CrossRef]
- Boyd, R.W. Nonlinear Optics; Academic Press: London, UK; Elsevier: London, UK, 2020. [Google Scholar] [CrossRef]
- Shirley, J.H. Solution of the Schrödinger equation with a Hamiltonian periodic in time. Phys. Rev. 1965, 138, B979–B987. [Google Scholar] [CrossRef]
- Duvall, R.E.; Valeo, E.J.; Oberman, C.R. Nonperturbative analysis of the two-level atom: Applications to multiphoton excitation. Phys. Rev. A 1988, 37, 4685–4693. [Google Scholar] [CrossRef]
- Beijersbergen, M.W.; Spreeuw, R.J.C.; Allen, L.; Woerdman, J.P. Multiphoton resonances and Bloch-Siegert shifts observed in a classical two-level system. Phys. Rev. A 1992, 45, 1810–1815. [Google Scholar] [CrossRef]
- Sainz, I.; Klimov, A.B.; Saavedra, C. Effective Hamiltonian approach to periodically perturbed quantum optical systems. Phys. Lett. A 2006, 351, 26–30. [Google Scholar] [CrossRef]
- Castaños, L.O. Simple, analytic solutions of the semiclassical Rabi model. Opt. Commun. 2019, 430, 176–188. [Google Scholar] [CrossRef]
- Saiko, A.P.; Markevich, S.A.; Fedaruk, R. Bloch-Siegert oscillations in the Rabi model with an amplitude-modulated driving field. Laser Phys. 2019, 29, 124004. [Google Scholar] [CrossRef]
- Sainz, I.; García, A.; Klimov, A.B. Effective and efficient resonant transitions in periodically modulated quantum systems. Quantum Rep. 2021, 3, 173–195. [Google Scholar] [CrossRef]
- Chalkopiadis, L.; Simserides, C. Averaging method and coherence applied to Rabi oscillations in a two-level system. J. Phys. Commun. 2021, 5, 095006. [Google Scholar] [CrossRef]
- Marinho, A.; Dodonov, A.V. Approximate analytic solution of the dissipative semiclassical Rabi model under parametric multi-tone modulations. Phys. Scr. 2024, 99, 125117. [Google Scholar] [CrossRef]
- Marinho, A.; Dodonov, A. Analytic approach for dissipative semiclassical Rabi model under parametric modulation. In Proceedings of the Second International Workshop on Quantum Nonstationary Systems; Dodonov, A., Ribeiro, C.C.H., Eds.; LF Editorial: São Paulo, Brazil, 2024; pp. 195–210. [Google Scholar] [CrossRef]
- Marinho, A.; de Paula, M.V.S.; Dodonov, A.V. Approximate analytic solution of the dissipative semiclassical Rabi model near the three-photon resonance and comparison with the quantum behavior. Phys. Lett. A 2024, 513, 129608. [Google Scholar] [CrossRef]
- Scully, M.O.; Zubairy, M.S. Quantum Optics; Cambridge University Press: New York, NY, USA, 1997. [Google Scholar] [CrossRef]
- Shore, B.W. Coherent manipulation of atoms using laser light. Acta Phys. Slovaca 2008, 58, 243–486. Available online: http://www.physics.sk/aps/pub.php?y=2008&pub=aps-08-03 (accessed on 20 August 2025). [CrossRef]
- Yan, Y.; Lü, Z.; Luo, J.Y. Variational approach to light–matter interaction: Bridging quantum and semiclassical limits. Phys. Rev. A 2024, 110, 013706. [Google Scholar] [CrossRef]
- Costa, A.P.; Dodonov, A. Quantum Rabi oscillations in the semiclassical limit: Backreaction on the cavity field and entanglement. In Proceedings—QNS III International Workshop on Quantum Nonstationary Systems; Dodonov, A., Céleri, L.C., Eds.; LF Editorial: São Paulo, Brazil, 2025; pp. 71–88. [Google Scholar] [CrossRef]
- Braak, D. Integrability of the Rabi model. Phys. Rev. Lett. 2011, 107, 100401. [Google Scholar] [CrossRef]
- Xie, Q.; Zhong, H.; Batchelor, M.T.; Lee, C. The quantum Rabi model: Solution and dynamics. J. Phys. A Math. Theor. 2017, 50, 113001. [Google Scholar] [CrossRef]
- Larson, J.; Mavrogordatos, T.K. The Jaynes–Cummings model and its descendants. arXiv 2022, arXiv:2202.00330. [Google Scholar] [CrossRef]
- Klimov, A.B.; Sainz, I.; Chumakov, S.M. Resonance expansion versus the rotating-wave approximation. Phys. Rev. A 2003, 68, 063811. [Google Scholar] [CrossRef]
- Dodonov, A.V. Photon creation from vacuum and interactions engineering in nonstationary circuit QED. J. Phys. Conf. Ser. 2009, 161, 012029. [Google Scholar] [CrossRef]
- De Liberato, S.; Gerace, D.; Carusotto, I.; Ciuti, C. Extracavity quantum vacuum radiation from a single qubit. Phys. Rev. A 2009, 80, 053810. [Google Scholar] [CrossRef]
- Ma, K.K.W.; Law, C.K. Three-photon resonance and adiabatic passage in the large-detuning Rabi model. Phys. Rev. A 2015, 92, 023842. [Google Scholar] [CrossRef]
- Garziano, L.; Stassi, R.; Macrì, V.; Kockum, A.F.; Savasta, S.; Nori, F. Multiphoton quantum Rabi oscillations in ultrastrong cavity QED. Phys. Rev. A 2015, 92, 063830. [Google Scholar] [CrossRef]
- Dodonov, A.V. Dynamical Casimir effect via four- and five-photon transitions using a strongly detuned atom. Phys. Rev. A 2019, 100, 032510. [Google Scholar] [CrossRef]
- Ma, K.K.W. Multiphoton resonance and chiral transport in the generalized Rabi model. Phys. Rev. A 2020, 102, 053709. [Google Scholar] [CrossRef]
- Cong, L.; Felicetti, S.; Casanova, J.; Lamata, L.; Solano, E.; Arrazola, I. Selective interactions in the quantum Rabi model. Phys. Rev. A 2020, 101, 032350. [Google Scholar] [CrossRef]
- Blais, A.; Grimsmo, A.L.; Girvin, S.M.; Wallraff, A. Circuit quantum electrodynamics. Rev. Mod. Phys. 2021, 93, 025005. [Google Scholar] [CrossRef]
- Beaudoin, F.; da Silva, M.P.; Dutton, Z.; Blais, A. First-order sidebands in circuit QED using qubit frequency modulation. Phys. Rev. A 2012, 86, 022305. [Google Scholar] [CrossRef]
- Strand, J.D.; Ware, M.; Beaudoin, F.; Ohki, T.A.; Johnson, B.R.; Blais, A.; Plourde, B.L.T. First-order sideband transitions with flux-driven asymmetric transmon qubits. Phys. Rev. B 2013, 87, 220505. [Google Scholar] [CrossRef]
- Reagor, M.; Osborn, C.B.; Tezak, N.; Staley, A.; Prawiroatmodjo, G.; Scheer, M.; Alidoust, N.; Sete, E.A.; Didier, N.; da Silva, M.P.; et al. Demonstration of universal parametric entangling gates on a multi-qubit lattice. Sci. Adv. 2018, 4, eaao3603. [Google Scholar] [CrossRef]
- Didier, N.; Bourassa, J.; Blais, A. Fast quantum nondemolition readout by parametric modulation of longitudinal qubit-oscillator interaction. Phys. Rev. Lett. 2015, 115, 203601. [Google Scholar] [CrossRef]
- Leung, N.; Lu, Y.; Chakram, S.; Naik, R.K.; Earnest, N.; Ma, R.; Jacobs, K.; Clel, A.N.; Schuster, D.I. Deterministic bidirectional communication and remote entanglement generation between superconducting qubits. npj Quantum Inf. 2019, 5, 18. [Google Scholar] [CrossRef]
- Caldwell, S.A.; Didier, N.; Ryan, C.A.; Sete, E.A.; Hudson, A.; Karalekas, P.; Manenti, R.; da Silva, M.P.; Sinclair, R.; Acala, E.; et al. Parametrically activated entangling gates using transmon qubits. Phys. Rev. Appl. 2018, 10, 034050. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, Z.; Yin, Z.; Huai, S.; Gu, X.; Xu, X.; Allcock, J.; Liu, F.; Xi, G.; Yu, Q.; et al. Rapid and unconditional parametric reset protocol for tunable superconducting qubits. Nat. Commun. 2021, 12, 5924. [Google Scholar] [CrossRef]
- Gavrielov, N.; Oviedo-Casado, S.; Retzker, A. Spectrum analysis with parametrically modulated transmon qubits. Phys. Rev. Res. 2025, 7, L012056. [Google Scholar] [CrossRef]
- Silva, E.L.S.; Dodonov, A.V. Analytical comparison of the first- and second-order resonances for implementation of the dynamical Casimir effect in nonstationary circuit QED. J. Phys. A Math. Theor. 2016, 49, 495304. [Google Scholar] [CrossRef]
- Dodonov, A.V.; Militello, B.; Napoli, A.; Messina, A. Effective Landau–Zener transitions in the circuit dynamical Casimir effect with time-varying modulation frequency. Phys. Rev. A 2016, 93, 052505. [Google Scholar] [CrossRef]
- Dodonov, A.V.; Napoli, A.; Militello, B. Emulation of n-photon Jaynes–Cummings and anti-Jaynes–Cummings models via parametric modulation of a cyclic qutrit. Phys. Rev. A 2019, 99, 033823. [Google Scholar] [CrossRef]
- Costa, A.P.; Schelb, H.R.; Dodonov, A.V. Metrological power of single-qubit dynamical Casimir effect in circuit QED. arXiv 2025, arXiv:2508.10182. [Google Scholar] [CrossRef]
- Dodonov, A.V.; Valente, D.; Werlang, T. Quantum power boost in a nonstationary cavity-QED quantum heat engine. J. Phys. A Math. Theor. 2018, 51, 365302. [Google Scholar] [CrossRef]
- Milul, O.; Guttel, B.; Goldblatt, U.; Hazanov, S.; Joshi, L.M.; Chausovsky, D.; Kahn, N.; Çiftyürek, E.; Lafont, F.; Rosenblum, S. Superconducting cavity qubit with tens of milliseconds single-photon coherence time. PRX Quantum 2023, 4, 030336. [Google Scholar] [CrossRef]
- Kockum, A.F.; Miranowicz, A.; De Liberato, S.; Savasta, S.; Nori, F. Ultrastrong coupling between light and matter. Nat. Rev. Phys. 2019, 1, 19–40. [Google Scholar] [CrossRef]
- Forn-Díaz, P.; Lamata, L.; Rico, E.; Kono, J.; Solano, E. Ultrastrong coupling regimes of light-matter interaction. Rev. Mod. Phys. 2019, 91, 025005. [Google Scholar] [CrossRef]
- Rossatto, D.Z.; Villas-Bôas, C.J.; Sanz, M.; Solano, E. Spectral classification of coupling regimes in the quantum Rabi model. Phys. Rev. A 2017, 96, 013849. [Google Scholar] [CrossRef]
- Zacharenko, P.V.; Tsarev, D.V.; Nikitina, M.M.; Alodjants, A.P. Quantum metamaterials with complete graph interfaces in the ultrastrong coupling regime. Laser Phys. Lett. 2024, 21, 115203. [Google Scholar] [CrossRef]
- Coleman, H.F.A.; Twyeffort, E.K. Spectral and dynamical validity of the rotating-wave approximation in the quantum and semiclassical Rabi models. J. Opt. Soc. Am. B 2024, 41, C188–C198. [Google Scholar] [CrossRef]
- Qin, W.; Kockum, A.F.; Muñoz, C.S.; Miranowicz, A.; Nori, F. Quantum amplification and simulation of strong and ultrastrong coupling of light and matter. Phys. Rep. 2024, 1078, 1–59. [Google Scholar] [CrossRef]
- Perforce IMSL Numerical Libraries. Available online: https://www.perforce.com/products/imsl (accessed on 20 August 2025).
- Eberly, J.H.; Narozhny, N.B.; Sanchez-Mondragon, J.J. Periodic spontaneous collapse and revival in a simple quantum model. Phys. Rev. Lett. 1980, 44, 1323–1326. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Paula, M.V.S.; Faustino, M.A.D.; Dodonov, A.V. A Comparison of Quantum and Semiclassical Rabi Models Near Multiphoton Resonances in the Presence of Parametric Modulation. Physics 2025, 7, 42. https://doi.org/10.3390/physics7030042
de Paula MVS, Faustino MAD, Dodonov AV. A Comparison of Quantum and Semiclassical Rabi Models Near Multiphoton Resonances in the Presence of Parametric Modulation. Physics. 2025; 7(3):42. https://doi.org/10.3390/physics7030042
Chicago/Turabian Stylede Paula, Marcos V. S., Marco A. Damasceno Faustino, and Alexandre V. Dodonov. 2025. "A Comparison of Quantum and Semiclassical Rabi Models Near Multiphoton Resonances in the Presence of Parametric Modulation" Physics 7, no. 3: 42. https://doi.org/10.3390/physics7030042
APA Stylede Paula, M. V. S., Faustino, M. A. D., & Dodonov, A. V. (2025). A Comparison of Quantum and Semiclassical Rabi Models Near Multiphoton Resonances in the Presence of Parametric Modulation. Physics, 7(3), 42. https://doi.org/10.3390/physics7030042