Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (31)

Search Parameters:
Keywords = electrohydraulic forming

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 3299 KB  
Project Report
On Control Synthesis of Hydraulic Servomechanisms in Flight Controls Applications
by Ioan Ursu, Daniela Enciu and Adrian Toader
Actuators 2025, 14(7), 346; https://doi.org/10.3390/act14070346 - 14 Jul 2025
Viewed by 297
Abstract
This paper presents some of the most significant findings in the design of a hydraulic servomechanism for flight controls, which were primarily achieved by the first author during his activity in an aviation institute. These results are grouped into four main topics. The [...] Read more.
This paper presents some of the most significant findings in the design of a hydraulic servomechanism for flight controls, which were primarily achieved by the first author during his activity in an aviation institute. These results are grouped into four main topics. The first one outlines a classical theory, from the 1950s–1970s, of the analysis of nonlinear automatic systems and namely the issue of absolute stability. The uninformed public may be misled by the adjective “absolute”. This is not a “maximalist” solution of stability but rather highlights in the system of equations a nonlinear function that describes, for the case of hydraulic servomechanisms, the flow-control dependence in the distributor spool. This function is odd, and it is therefore located in quadrants 1 and 3. The decision regarding stability is made within the so-called Lurie problem and is materialized by a matrix inequality, called the Lefschetz condition, which must be satisfied by the parameters of the electrohydraulic servomechanism and also by the components of the control feedback vector. Another approach starts from a classical theorem of V. M. Popov, extended in a stochastic framework by T. Morozan and I. Ursu, which ends with the description of the local and global spool valve flow-control characteristics that ensure stability in the large with respect to bounded perturbations for the mechano-hydraulic servomechanism. We add that a conjecture regarding the more pronounced flexibility of mathematical models in relation to mathematical instruments (theories) was used. Furthermore, the second topic concerns, the importance of the impedance characteristic of the mechano-hydraulic servomechanism in preventing flutter of the flight controls is emphasized. Impedance, also called dynamic stiffness, is defined as the ratio, in a dynamic regime, between the output exerted force (at the actuator rod of the servomechanism) and the displacement induced by this force under the assumption of a blocked input. It is demonstrated in the paper that there are two forms of the impedance function: one that favors the appearance of flutter and another that allows for flutter damping. It is interesting to note that these theoretical considerations were established in the institute’s reports some time before their introduction in the Aviation Regulation AvP.970. However, it was precisely the absence of the impedance criterion in the regulation at the appropriate time that ultimately led, by chance or not, to a disaster: the crash of a prototype due to tailplane flutter. A third topic shows how an important problem in the theory of automatic systems of the 1970s–1980s, namely the robust synthesis of the servomechanism, is formulated, applied and solved in the case of an electrohydraulic servomechanism. In general, the solution of a robust servomechanism problem consists of two distinct components: a servo-compensator, in fact an internal model of the exogenous dynamics, and a stabilizing compensator. These components are adapted in the case of an electrohydraulic servomechanism. In addition to the classical case mentioned above, a synthesis problem of an anti-windup (anti-saturation) compensator is formulated and solved. The fourth topic, and the last one presented in detail, is the synthesis of a fuzzy supervised neurocontrol (FSNC) for the position tracking of an electrohydraulic servomechanism, with experimental validation, in the laboratory, of this control law. The neurocontrol module is designed using a single-layered perceptron architecture. Neurocontrol is in principle optimal, but it is not free from saturation. To this end, in order to counteract saturation, a Mamdani-type fuzzy logic was developed, which takes control when neurocontrol has saturated. It returns to neurocontrol when it returns to normal, respectively, when saturation is eliminated. What distinguishes this FSNC law is its simplicity and efficiency and especially the fact that against quite a few opponents in the field, it still works very well on quite complicated physical systems. Finally, a brief section reviews some recent works by the authors, in which current approaches to hydraulic servomechanisms are presented: the backstepping control synthesis technique, input delay treated with Lyapunov–Krasovskii functionals, and critical stability treated with Lyapunov–Malkin theory. Full article
(This article belongs to the Special Issue Advanced Technologies in Actuators for Control Systems)
Show Figures

Figure 1

11 pages, 842 KB  
Article
Development of an Electric Pulse Device for Coal Grinding
by Ayanbergen Khassenov, Dana Karabekova, Madina Bolatbekova, Bekbolat Nussupbekov, Perizat Kissabekova and Rakhman Orazbayev
Appl. Sci. 2025, 15(10), 5548; https://doi.org/10.3390/app15105548 - 15 May 2025
Viewed by 423
Abstract
Efficient coal grinding is a crucial aspect of the energy and mining industries. However, traditional grinding methods are known to be energy-intensive and cause significant wear on equipment as well as negative environmental impacts due to the release of small particles that can [...] Read more.
Efficient coal grinding is a crucial aspect of the energy and mining industries. However, traditional grinding methods are known to be energy-intensive and cause significant wear on equipment as well as negative environmental impacts due to the release of small particles that can harm air quality and affect human health. In response to these challenges, we are conducting research to develop an electric pulse device for coal grinding. This device will use high-voltage discharges in a liquid medium to create shock waves that selectively destroy coal particles while minimizing mechanical damage. The electric pulse installation consisted of a control unit (for monitoring the operating modes of the installation), a generator (for converting the AC input voltage into DC output voltage), a capacitor (for energy storage), a protection system (for shutting down the installation in cases when a voltage exceeding the set safe operating discharge voltage occurs on the capacitor), a spark gap (forming a gap consisting of two conductive hemispherical electrodes separated by an air gap, designed to form an electric spark between conductors), and an electric pulse grinding device. The input material for each experiment had consistent parameters: the coal particles were diameter 8–10 mm and weighed 400 g. Coal was processed using the electric pulse method with various voltage values, numbers of pulses, capacitor capacities, and pulse frequencies. The yield of the final product depended on these parameters, and effective settings for producing coal powder were identified. The research results demonstrate that a flat metal mesh plate is effective as the negative electrode in the electric pulse grinding device. Full article
(This article belongs to the Section Applied Physics General)
Show Figures

Figure 1

18 pages, 17324 KB  
Article
Design and Performance Testing Analysis of Underground Electromagnetic Coupling Electro-Hydraulic Signal Wet Joint Scheme
by Min Wen, Renjun Xie, Hao Qiu, Yanfeng Cao, Zening Hou, Zhiyuan Qi, Hao Pan, Hui Huang and Gang Bi
Processes 2025, 13(2), 592; https://doi.org/10.3390/pr13020592 - 19 Feb 2025
Viewed by 543
Abstract
The electro-hydraulic composite intelligent completion technology is one of the most effective ways to solve the efficient development of oil and gas. The development of an electro-hydraulic composite wet joint tool that is compatible with the electro-hydraulic composite intelligent completion system can achieve [...] Read more.
The electro-hydraulic composite intelligent completion technology is one of the most effective ways to solve the efficient development of oil and gas. The development of an electro-hydraulic composite wet joint tool that is compatible with the electro-hydraulic composite intelligent completion system can achieve intelligent control between the upper and lower pipe columns of deepwater oil and gas wells and the pluggable transmission of monitoring signals. This article proposes a new type of electromagnetic coupling electro-hydraulic composite wet joint designed to address the defects of friction damage and poor contact in current wet joint direct contact power transmission. The joint uses claw docking and wireless energy transmission to achieve the composite transmission of hydraulic and electric power. Firstly, we independently designed a DC power supply inverter circuit, rectification circuit, and wireless power transmission coil assembly to form a wireless power transmission system. We also conducted testing and analysis on the wireless power transmission efficiency, which exceeded 60%. When the input voltage was above 80 V, the output power was greater than 60 W, meeting the design requirements. Secondly, the mechanical structure of the new electro-hydraulic signal wet joint tool was optimized and its strength was verified. The simulation results showed that the maximum stress was 891.8 MPa, and the maximum deformation of the wet joint docking overall structure was 0.123 mm. The strength and deformation met the design requirements. The hydraulic and electrical connectivity indoor tests were conducted on the electromagnetic coupling wet joint, and all aspects of transmission were normal, thus forming a design scheme for the underground electromagnetic coupling electro-hydraulic signal wet joint. The wireless transmission type electro-hydraulic signal wet joint designed in this article is of great significance for accelerating the promotion and application process of deepwater intelligent completion systems. Full article
(This article belongs to the Section Automation Control Systems)
Show Figures

Figure 1

21 pages, 10123 KB  
Article
Development of an FEM for the Combined Electromagnetic and Hydraulic Forming Process Based on Experimental Data
by Yoonho Jang and Jeong Kim
Processes 2024, 12(11), 2520; https://doi.org/10.3390/pr12112520 - 12 Nov 2024
Cited by 1 | Viewed by 954
Abstract
Electrohydraulic forming (EHF) which demonstrates reduced bouncing effect, formation in narrow areas, and no effect on the electrical conductivity of the blank can overcome the shortcomings of deep drawing and electromagnetic forming. However, considerable time is involved in evaluating the possibility of forming [...] Read more.
Electrohydraulic forming (EHF) which demonstrates reduced bouncing effect, formation in narrow areas, and no effect on the electrical conductivity of the blank can overcome the shortcomings of deep drawing and electromagnetic forming. However, considerable time is involved in evaluating the possibility of forming a specific part through experiments. Developing an accurate finite element model can reduce the opportunity costs of an experiment by reducing unnecessary trial and error in forming a specific part. In this study, the chamber, die, and blank components of the EHF experimental equipment in our laboratory were reverse-modeled using CATIA V5R18. Subsequently, the IGES format of the components was imported into LS-DYNA R12, and an FEM model to simulate the EHF experiment was constructed. The experimental and simulation results of nine cases, based on the SUS430 material, input voltage, and blank thickness, were compared for model verification. The forming results for all cases in the constructed finite element analysis model nearly matched the experimental results. Moreover, the linear increase in the blank thickness with input voltage and thickness was simultaneously confirmed. In a computing environment using a 4.3 GHz, 24-Core CPU and 64 GB memory, the time required for one finite element analysis was approximately 1 h. Full article
Show Figures

Figure 1

15 pages, 11002 KB  
Article
Modeling and Validation of the Sealing Performance of High-Pressure Vane Rotary Actuator
by Yi Wu, Junjie Zhou, Wenjie Ma and Wenbo Liao
Lubricants 2024, 12(11), 381; https://doi.org/10.3390/lubricants12110381 - 2 Nov 2024
Viewed by 1260
Abstract
The EHRA (Electro-Hydraulic Rotary Actuator), using a vane rotary actuator, has the advantages of a high torque density and integration and is expected to become a joint actuator for robots. This research focuses on the sealing characteristics of various parts of a vane [...] Read more.
The EHRA (Electro-Hydraulic Rotary Actuator), using a vane rotary actuator, has the advantages of a high torque density and integration and is expected to become a joint actuator for robots. This research focuses on the sealing characteristics of various parts of a vane rotary actuator. The average Reynolds equation was used to analyze the leakage characteristics at the gap. A detailed theoretical analysis was conducted on the internal leakage mechanism of a vane rotary actuator using an X-ring as the dynamic seal for the rotor vane. According to the path of internal leakage, different sealing forms are considered as a series or parallel, and the Newton iteration method is used to obtain the total internal leakage characteristics of a vane rotary actuator. It was also considered that the deformation of the vane rotary actuator caused a thicker gap, leading to an increase in internal leakage. The calculation results are consistent with the experimental data. The analysis results indicate that when estimating the internal leakage of a vane rotary actuator, it is necessary to take the pressure of the high-pressure chamber and output shaft position as inputs. This research provides a reference for an analysis of the method of internal leakage for vane rotary actuators. It provides theoretical support for designing a vane rotary actuator with more minor internal leakage and a higher volumetric efficiency. Full article
Show Figures

Figure 1

21 pages, 5120 KB  
Article
Effect of Sandstone Pore Morphology on Mechanics, Acoustic Emission, and Energy Evolution
by Gang Liu, Dongwei Wang, Shengxuan Wang, Yonglong Zan, Qiqi Zhang, Zhitao Yang, Jiazhen Li and Zhen Wei
Buildings 2024, 14(11), 3503; https://doi.org/10.3390/buildings14113503 - 31 Oct 2024
Viewed by 1007
Abstract
Roadway section form is an important part of the underground engineering structure, and it directly affects the overall stability of the roadway and the occurrence of underground disasters in coal mines. Based on this, this paper adopts a TYJ-500 electro-hydraulic servo rock shear [...] Read more.
Roadway section form is an important part of the underground engineering structure, and it directly affects the overall stability of the roadway and the occurrence of underground disasters in coal mines. Based on this, this paper adopts a TYJ-500 electro-hydraulic servo rock shear rheology testing machine to conduct a uniaxial compression test on sandstone containing different prefabricated hole section morphology and analyzes the damage characteristics seen during the damage evolution process, with the help of a high-speed camera and acoustic emission monitoring equipment. The test results show that the pore morphology is the main factor affecting the mechanical parameters of sandstone, and the peak stress and elastic modulus of sandstone with pore sections have the characteristics of increasing and decreasing at the same time, except for the intact rock samples. The pore morphology exhibits central symmetry (circular holes and rectangular holes) damage, more pressure-shear cracks and shear cracks, and the acoustic emission characteristics of high-energy–low-amplitude–low-count of the “two low-trend and one high-trend characteristic curves” attributes; moreover, due to the special existence of its pore morphology, it leads to the rock samples having less energy accumulation and release. The axisymmetric hole types (trapezoidal holes and straight-wall domed holes) are damaged by tensile cracks and shear cracks, and their acoustic emission characteristics show the characteristic properties of “three high-trend characteristic curves” of high-energy–high-amplitude–high-count, and there is a strong elastic energy accumulation and output. The conclusions of this article can provide a certain theoretical basis for the design of coal mine roadway sections in underground structures, failure analysis, and stability evaluation of roadway structures. Full article
(This article belongs to the Special Issue Structural Analysis of Underground Space Construction)
Show Figures

Figure 1

21 pages, 11805 KB  
Article
Design and Preliminary Experiment of Track Width Adjustment System for Sprayer Based on Integral Separated Fuzzy Proportional Integral Derivative Control Strategy
by Lu Tan, Mei Jia, Jin He, Xintong Su, Quanyu Wang, Hanyu Yang and Hang Li
Agriculture 2024, 14(8), 1247; https://doi.org/10.3390/agriculture14081247 - 28 Jul 2024
Viewed by 1492
Abstract
Different agronomic requirements, production conditions, and crop species result in varying row spacings. To address the issue of seedling damage caused by pressure when a fixed track width sprayer operates in different row spacings and enhance the accuracy of track width adjustment, this [...] Read more.
Different agronomic requirements, production conditions, and crop species result in varying row spacings. To address the issue of seedling damage caused by pressure when a fixed track width sprayer operates in different row spacings and enhance the accuracy of track width adjustment, this study designed a track width adjustment system for a sprayer based on the agronomic requirements for field management during the early and mid-stages of corn growth and the entire growth period of wheat in Henan Province, China. The designed track width adjustment system for the sprayer comprised transmission mechanisms, telescopic track width adjustment mechanisms, and an electro-hydraulic control system. The control system achieved a precise track width adjustment by controlling the movement of the hydraulic cylinders through electrical signals, forming a closed-loop adjustment system with the aid of sensors. Four control schemes are proposed: classical PID, integral separated PID, fuzzy adaptive PID, and integral separated fuzzy PID. Simulation experiments were conducted using MATLAB to compare these schemes. The results indicated that the integral separated fuzzy PID exhibited the fastest response and highest steady-state accuracy. The performance of the track width adjustment system was validated through field experiments. The results demonstrate that the stability coefficient of variation for the track width adjustment was 3.04%, which is below the 10% threshold required by agricultural machinery standards. Additionally, the average error of the track width adjustment was 13.42 mm, indicating high precision and effectively reducing seedling compression damage during plant protection operations. Full article
Show Figures

Figure 1

18 pages, 7869 KB  
Article
Research on AGC Nonlinear Compensation Control for Electro-Hydraulic Servo Pump Control of a Lithium Battery Pole Strip Mill
by Kai Wang, Gexin Chen, Cheng Zhang, Keyi Liu and Fei Wang
Processes 2024, 12(1), 158; https://doi.org/10.3390/pr12010158 - 9 Jan 2024
Cited by 2 | Viewed by 1560
Abstract
Electrode roll forming involves rolling a battery electrode into a preset thickness using a hydraulic roll gap thickness automatic control system (hydraulic AGC for short). The pump-controlled AGC is a highly nonlinear servo system, which is a combination of mechanical, hydraulic and electronic [...] Read more.
Electrode roll forming involves rolling a battery electrode into a preset thickness using a hydraulic roll gap thickness automatic control system (hydraulic AGC for short). The pump-controlled AGC is a highly nonlinear servo system, which is a combination of mechanical, hydraulic and electronic control disciplines; thus, as a new technology, it still faces many challenges in the field of pole plate rolling. In this paper, electro-hydraulic servo pump-controlled AGC technology is replaced by electro-hydraulic servo valve-controlled AGC technology. With pump-controlled AGC high-precision thickness control as the research objective, the fuzzy control method is selected to deal with complex nonlinear systems based on pump-controlled AGC nonlinear stiffness characteristics and nonlinear transmission characteristics. A characteristic compensation control strategy is proposed. At the same time, considering the load fluctuation caused by the uneven thickness of the electrode plate under the intermittent coating rolling condition of a lithium battery, the fuzzy internal model (IMC) compensation control strategy was proposed to compensate the structural characteristics of the electrode plate rolling. Comparative experiments show that the position control accuracy of the pump-controlled AGC system can be improved significantly by using a fuzzy IMC compensation control strategy. The steady-state accuracy of the slope signal can reach ±0.7 μm, and the position-following accuracy of the sinusoidal signal can reach ±1.8 μm. In addition, this study will assist technological upgrades to lithium battery electrode roll forming and fixed-roll-gap rolling, laying a theoretical foundation for the promotion of pump control technology in the field of electrode rolling. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

16 pages, 5441 KB  
Article
Pump-Controlled AGC Micro-Displacement Position Control of Lithium Battery Pole Strip Mill Based on Friction Model
by Kai Wang, Gexin Chen and Tiangui Zhang
Processes 2023, 11(9), 2587; https://doi.org/10.3390/pr11092587 - 29 Aug 2023
Cited by 1 | Viewed by 1221
Abstract
Electrode roll-forming refers to rolling a battery electrode into a preset thickness through the electro-hydraulic servo pump-controlled hydraulic roll gap thickness automatic control system (known to as pump-controlled AGC). Compared with the motor servo system, the friction problem of the electro-hydraulic servo system [...] Read more.
Electrode roll-forming refers to rolling a battery electrode into a preset thickness through the electro-hydraulic servo pump-controlled hydraulic roll gap thickness automatic control system (known to as pump-controlled AGC). Compared with the motor servo system, the friction problem of the electro-hydraulic servo system is more serious and the friction problem of the actuator itself is very prominent. Moreover, low-speed performance is one of its core indicators, the friction phenomenon is the most abundant during the low-speed stage and the impact on the servo system is also the most obvious. Therefore, for high-performance electro-hydraulic servo control, friction compensation is not only unavoidable, but also a very difficult problem. Aiming to influence the friction on the position control of the pump-controlled system of a lithium battery pole strip mill, the rolling mechanism and process procedure under micro-displacement position control based on the friction model were studied and compared from the perspective of considering friction factors, and a friction compensation controller based on the LuGre model was designed. The control precision of a pump-controlled AGC system was improved through combination with an adaptive robust controller. Because of the diversity of unmeasurable states of the system, a dual observer was designed, and the known model of the system was added to the observer. In the final comparative experiment, the steady-state accuracy of the friction adaptive robust compensation controller system based on the LuGre model reached ±0.3 μm, which is superior to the fuzzy IMC compensation and traditional PID control strategies. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

36 pages, 10507 KB  
Article
Dynamic Prediction of Performance Degradation Characteristics of Direct-Drive Electro-Hydraulic Servo Valves
by Juncheng Mi and Guoqin Huang
Appl. Sci. 2023, 13(12), 7231; https://doi.org/10.3390/app13127231 - 16 Jun 2023
Cited by 7 | Viewed by 1935
Abstract
Direct-drive electro-hydraulic servo valves are widely used in the aerospace industry, in the military, and in remote sensing control, but there is little research and discussion on their performance degradation and service life prediction. Based on previous research, erosion wear is the primary [...] Read more.
Direct-drive electro-hydraulic servo valves are widely used in the aerospace industry, in the military, and in remote sensing control, but there is little research and discussion on their performance degradation and service life prediction. Based on previous research, erosion wear is the primary physical failure form of direct-drive electro-hydraulic servo valves, and parameters such as opening, oil contamination, and pressure difference are used as influencing factors of direct-drive electro-hydraulic servo valves. Pressure gain and leakage are used as performance degradation indicators of servo valves, and multiple types of sensors are used for data monitoring. Experimental benches are arranged and verified through experiments. Based on the data and laws obtained from the experiments, the exponential smoothing algorithm and the ARIMA model algorithm were used to establish a prediction model for the servo valve, and the dynamic prediction of the performance indexes was carried out. The error calculation and analysis of the prediction results and the experimental results were then carried out using the Copula function and other mathematical knowledge to verify the accuracy and applicability of this prediction model. This study provides theoretical support and practical guidance for applying and designing direct-drive electro-hydraulic servo valves in industrial applications such as aerospace, sensor experiments, and remote sensing control. Full article
Show Figures

Figure 1

16 pages, 4300 KB  
Article
Energy and Infrared Radiation Characteristics of the Sandstone Damage Evolution Process
by Hai Sun, Hong-Yan Zhu, Jie Han, Chun Fu, Mi-Mi Chen and Kun Wang
Materials 2023, 16(12), 4342; https://doi.org/10.3390/ma16124342 - 13 Jun 2023
Cited by 7 | Viewed by 1442
Abstract
The mechanical characteristics and mechanisms of rock failure involve complex rock mass mechanics problems involving parameters such as energy concentration, storage, dissipation, and release. Therefore, it is important to select appropriate monitoring technologies to carry out relevant research. Fortunately, infrared thermal imaging monitoring [...] Read more.
The mechanical characteristics and mechanisms of rock failure involve complex rock mass mechanics problems involving parameters such as energy concentration, storage, dissipation, and release. Therefore, it is important to select appropriate monitoring technologies to carry out relevant research. Fortunately, infrared thermal imaging monitoring technology has obvious advantages in the experimental study of rock failure processes and energy dissipation and release characteristics under load damage. Therefore, it is necessary to establish the theoretical relationship between the strain energy and infrared radiation information of sandstone and to reveal its fracture energy dissipation and disaster mechanism. In this study, an MTS electro-hydraulic servo press was used to carry out uniaxial loading experiments on sandstone. The characteristics of dissipated energy, elastic energy, and infrared radiation during the damage process of sandstone were studied using infrared thermal imaging technology. The results show that (1) the transition of sandstone loading from one stable state to another occurs in the form of an abrupt change. This sudden change is characterized by the simultaneous occurrence of elastic energy release, dissipative energy surging, and infrared radiation count (IRC) surging, and it has the characteristics of a short duration and large amplitude variation. (2) With the increase in the elastic energy variation, the surge in the IRC of sandstone samples presents three different development stages, namely fluctuation (stage Ⅰ), steady rise (stage Ⅱ), and rapid rise (stage Ⅲ). (3) The more obvious the surge in the IRC, the greater the degree of local damage of the sandstone and the greater the range of the corresponding elastic energy change (or dissipation energy change). (4) A method of sandstone microcrack location and propagation pattern recognition based on infrared thermal imaging technology is proposed. This method can dynamically generate the distribution nephograph of tension-shear microcracks of the bearing rock and accurately evaluate the real-time process of rock damage evolution. Finally, this study can provide a theoretical basis for rock stability, safety monitoring, and early warning. Full article
Show Figures

Figure 1

18 pages, 6843 KB  
Article
Investigation of Pressure Fields Generated by Two Simultaneous Discharges in Liquid Initiated by Wires
by Mykhaylo Knyazyev, Maik Holzmüller and Werner Homberg
J. Manuf. Mater. Process. 2023, 7(1), 40; https://doi.org/10.3390/jmmp7010040 - 2 Feb 2023
Cited by 2 | Viewed by 2009
Abstract
The pressure fields generated by two simultaneous discharges have not been investigated on any notable scale for the electrohydraulic impulse forming method. In this study, the synchronicity of two discharges is ensured by the sequential connection of two wires mounted in two spark [...] Read more.
The pressure fields generated by two simultaneous discharges have not been investigated on any notable scale for the electrohydraulic impulse forming method. In this study, the synchronicity of two discharges is ensured by the sequential connection of two wires mounted in two spark gaps in a common volume of liquid. The objective is to experimentally confirm the equilibrium of the energies evolved in two spark gaps by means of pressure measurements. In addition, multipoint membrane pressure gauges demonstrated the feasibility of easily recording detailed pressure maps. Based on the membrane deformation mechanism and material strengthening under static and impulse conditions, the processing procedure is further developed so as to achieve better accuracy in the determination of pressure field parameters. The practical equality of the pressure fields on the left and right halves of the flat-loaded area confirms the equality of energies evolved in the two spark gaps. The direct shock waves create zones with the most intensive loading. These results provide a basis for the development of new electrohydraulic technologies involving the application of two simultaneous discharges with equal energy and pressure parameters. Full article
Show Figures

Figure 1

22 pages, 17420 KB  
Article
Failure Behavior of Cuboid Granite Sample with a Circular Hole beneath a Bonding Fracture under Biaxial Compression
by Diyuan Li, Jingtai Jiang and Feihong Gao
Minerals 2022, 12(10), 1328; https://doi.org/10.3390/min12101328 - 20 Oct 2022
Cited by 3 | Viewed by 2011
Abstract
Ore bodies incubating within fault zones are a common phenomenon in geological strata and pose a huge challenge for underground mining. To effectively exploit mineral resources, the layout of the mining roadway and the interaction between the roadway and geological fault must be [...] Read more.
Ore bodies incubating within fault zones are a common phenomenon in geological strata and pose a huge challenge for underground mining. To effectively exploit mineral resources, the layout of the mining roadway and the interaction between the roadway and geological fault must be considered. In this paper, a bonding fracture was formed on granite samples to simulate a closed fault, under which a circular hole was fabricated to simulate the roadway of the gold mine. We performed a biaxial compression test at a true-triaxial electrohydraulic servo testing system for granite samples with a combined fracture-hole structure. It is worth noting that the fracture inclination β and relative distance between fracture and hole L were taken into account. The digital image correlation (DIC) technique was used to observe the displacement and strain field evolution around the fracture-hole structure. Our results demonstrate that (1) the strength of the granite sample decreases with increasing bonding fracture dip angle β, and the displacement drops between the hanging wall and foot wall raised in both the horizontal and vertical displacement directions. Macroscopic cracks become dense, and the failure degree becomes severe around simulated fault areas. (2) With the increase in the distance L, the strength of the granite sample increases, the influence of the hole on the slip of the fracture plane is weakened, and the discontinuity of displacement becomes less obvious. (3) The maximum principal strain field quantitatively reveals the details of the crack initiation, propagation, and coalescence around the fracture-hole structure, and displacement nucleation is observed in the vertical displacement field. Full article
(This article belongs to the Special Issue Failure Characteristics of Deep Rocks)
Show Figures

Figure 1

20 pages, 5419 KB  
Article
CFD-Based Physical Failure Modeling of Direct-Drive Electro-Hydraulic Servo Valve Spool and Sleeve
by Guoqin Huang, Juncheng Mi, Cheng Yang and Jin Yu
Sensors 2022, 22(19), 7559; https://doi.org/10.3390/s22197559 - 6 Oct 2022
Cited by 10 | Viewed by 2922
Abstract
Direct-drive electro-hydraulic servo valves are used extensively in aerospace, military and control applications, but little research has been conducted on their service life and physical failure wear. Based on computational fluid dynamics, the main failure forms of direct-drive electro-hydraulic servo valves are explored [...] Read more.
Direct-drive electro-hydraulic servo valves are used extensively in aerospace, military and control applications, but little research has been conducted on their service life and physical failure wear. Based on computational fluid dynamics, the main failure forms of direct-drive electro-hydraulic servo valves are explored using their continuous phase flow and discrete phase motion characteristics, and then combined with the theory of erosion for calculation. A mathematical model of the direct-drive electro-hydraulic servo valve is established by using Solidworks software, and then imported into Fluent simulation software to establish its physical failure model and carry out simulation. Finally, the physical failure form of the direct drive electro-hydraulic servo valve is verified by the simulation results, and the performance degradation law is summarized. The results show that temperature, differential pressure, solid particle diameter and concentration, and opening degree all have an impact on the erosion and wear of direct-drive electro-hydraulic servo valves, in which differential pressure and solid particle diameter have a relatively large impact, and the servo valve must avoid working in the range of high differential pressure and solid particle diameter of 20–40 um as far as possible. This also provides further theoretical support and experimental guidance for the industrial application and life prediction of electro-hydraulic servo valves. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

18 pages, 3102 KB  
Article
Research on Position Control of an Electro–Hydraulic Servo Closed Pump Control System
by Fei Wang, Gexin Chen, Huilong Liu, Guishan Yan, Tiangui Zhang, Keyi Liu, Yan Liu and Chao Ai
Processes 2022, 10(9), 1674; https://doi.org/10.3390/pr10091674 - 23 Aug 2022
Cited by 5 | Viewed by 3413
Abstract
A control strategy combining adaptive backstep sliding mode control and dead-zone inverse compensation control in a series was proposed to solve the problem of system parameter uncertainty and system dead-zone in the process of position control in an electro–hydraulic servo closed pump control [...] Read more.
A control strategy combining adaptive backstep sliding mode control and dead-zone inverse compensation control in a series was proposed to solve the problem of system parameter uncertainty and system dead-zone in the process of position control in an electro–hydraulic servo closed pump control system. Firstly, an adaptive backstepping sliding mode controller was designed by introducing the sliding mode control principle. Secondly, the smooth dead-zone inverse function was constructed by using the smooth continuous index function to design the dead-zone inverse compensation controller, which is combined with the adaptive sliding mode controller to form a series controller. Finally, the feasibility of the controller was verified by using the pump control servo system of a lithium battery pole strip mill. The experimental results show that, compared with traditional PID control, the control strategy displayed no excessive overshoot before the steady state, the steady-state control accuracy could reach ±0.002 mm, and the time required to reach the steady state was 1 s to 2 s shorter, which shows this method’s ability to effectively improve the position control accuracy of the pump control system, as well as its dynamic response performance. Full article
Show Figures

Figure 1

Back to TopTop