Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (223)

Search Parameters:
Keywords = electrochemical aptasensor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3248 KiB  
Article
Electrochemical Nanostructured Aptasensor for Direct Detection of Glycated Hemoglobin
by Luminita Fritea, Cosmin-Mihai Cotrut, Iulian Antoniac, Simona Daniela Cavalu, Luciana Dobjanschi, Angela Antonescu, Liviu Moldovan, Maria Domuta and Florin Banica
Int. J. Mol. Sci. 2025, 26(15), 7140; https://doi.org/10.3390/ijms26157140 - 24 Jul 2025
Viewed by 184
Abstract
Glycated hemoglobin (HbA1c) is an important biomarker applied for the diagnosis, evaluation, and management of diabetes; therefore, its accurate determination is crucial. In this study, an innovative nanoplatform was developed, integrating carbon nanotubes (CNTs) with enhanced hydrophilicity achieved through cyclodextrin (CD) functionalization, and [...] Read more.
Glycated hemoglobin (HbA1c) is an important biomarker applied for the diagnosis, evaluation, and management of diabetes; therefore, its accurate determination is crucial. In this study, an innovative nanoplatform was developed, integrating carbon nanotubes (CNTs) with enhanced hydrophilicity achieved through cyclodextrin (CD) functionalization, and combined with gold nanoparticles (AuNPs) electrochemically deposited onto a screen-printed carbon electrode. The nanomaterials significantly improved the analytical performance of the sensor due to their increased surface area and high electrical conductivity. This nanoplatform was employed as a substrate for the covalent attachment of thiolated ferrocene-labeled HbA1c specific aptamer through Au-S binding. The electrochemical signal of ferrocene was covered by a stronger oxidation peak of Fe2+ from the HbA1c structure, leading to the elaboration of a nanostructured aptasensor capable of the direct detection of HbA1c. The electrochemical aptasensor presented a very wide linear range (0.688–11.5%), an acceptable limit of detection (0.098%), and good selectivity and stability, being successfully applied on real samples. This miniaturized, simple, easy-to-use, and fast-responding aptasensor, requiring only a small sample volume, can be considered as a promising candidate for the efficient on-site determination of HbA1c. Full article
Show Figures

Figure 1

14 pages, 1587 KiB  
Article
Electrochemical Disposable Printed Aptasensor for Sensitive Ciprofloxacin Monitoring in Milk Samples
by Daniela Nunes da Silva, Thaís Cristina de Oliveira Cândido and Arnaldo César Pereira
Chemosensors 2025, 13(7), 235; https://doi.org/10.3390/chemosensors13070235 - 28 Jun 2025
Viewed by 407
Abstract
An electrochemical aptasensor was developed for the rapid and sensitive detection of ciprofloxacin (CPX) in milk samples. The device was fabricated on a polyethylene terephthalate (PET) substrate using a screen-printing technique with carbon-based conductive ink. Gold nanoparticles (AuNPs) were incorporated to enhance aptamer [...] Read more.
An electrochemical aptasensor was developed for the rapid and sensitive detection of ciprofloxacin (CPX) in milk samples. The device was fabricated on a polyethylene terephthalate (PET) substrate using a screen-printing technique with carbon-based conductive ink. Gold nanoparticles (AuNPs) were incorporated to enhance aptamer immobilization and facilitate electron transfer at the electrode surface. The sensor’s analytical performance was optimized by adjusting key parameters, including AuNP volume, DNA aptamer concentration, and incubation times for both the aptamer and the blocking agent (6-mercapto-1-hexanol, MCH). Differential pulse voltammetry (DPV) measurements demonstrated a linear response ranging from 10 to 50 nmol L−1 and a low detection limit of 3.0 nmol L−1. When applied to real milk samples, the method achieved high recovery rates (101.4–106.7%) with a relative standard deviation below 3.1%, confirming its robustness. This disposable and cost-effective aptasensor represents a promising tool for food safety monitoring, with potential for adaptation to detect other pharmaceutical residues in dairy products. Full article
Show Figures

Figure 1

11 pages, 2977 KiB  
Article
An Electrochemical Aptasensor for Accurate and Sensitive Detection of Exosomes Based on Dual-Probe Recognition and Hybridization Chain Reaction
by Haojie Ma, Jie Li, Mengjia Gao, Yan Dong, Yi Luo and Shao Su
Biosensors 2025, 15(5), 302; https://doi.org/10.3390/bios15050302 - 9 May 2025
Viewed by 624
Abstract
The accurate and sensitive detection of tumor-derived exosomes holds significant promise for the early diagnosis of cancer. In this study, an electrochemical aptasensor was developed for the high-performance detection of exosomes by integrating dual-probe recognition and hybridization chain reaction (HCR). A dual-probe recognition [...] Read more.
The accurate and sensitive detection of tumor-derived exosomes holds significant promise for the early diagnosis of cancer. In this study, an electrochemical aptasensor was developed for the high-performance detection of exosomes by integrating dual-probe recognition and hybridization chain reaction (HCR). A dual-probe recognition unit composed of a MUC1 aptamer (MUC1-Apt) probe and cholesterol probe was designed for capturing target exosomes and reducing the interference from free proteins, significantly improving the accuracy of exosome detection. It should be noted that the dual-probe recognition unit was formed in conjunction with the HCR. Moreover, a large number of biotins were also assembled on the HCR product, which were used to capture avidin–horseradish peroxidase (SA-HRP) for signal amplification. The CD63 aptamer (CD63-Apt) was immobilized on the surface of a gold electrode for specifically capturing exosomes to construct a classical sandwiched structure. The loaded SA-HRP can efficiently catalyze the reaction of 3, 3′, 5, 5′ tetramethylbenzidine (TMB) and hydrogen peroxide (H2O2) to generate a large electrochemical signal. According to this phenomenon, a linear relationship of this proposed aptasensor was achieved between the electrochemical response and 1 × 102–1 × 107 particles/mL exosomes, with a detection limit of 45 particles/mL. Moreover, the aptasensor exhibited accepted stability and potential clinical applicability. All results proved that this aptasensor has a promising application in exosome-based disease diagnostics. Full article
(This article belongs to the Special Issue Electrochemical Biosensing Platforms for Food, Drug and Health Safety)
Show Figures

Figure 1

52 pages, 5132 KiB  
Review
Early-Stage Pancreatic Cancer Diagnosis: Serum Biomarkers and the Potential for Aptamer-Based Biosensors
by Weisi He, Jingyu Cui, Xue-Yan Wang, Ryan H. P. Siu and Julian A. Tanner
Molecules 2025, 30(9), 2012; https://doi.org/10.3390/molecules30092012 - 30 Apr 2025
Viewed by 1482
Abstract
Pancreatic cancer has a high mortality rate, and both the incidence and mortality are continuing to increase in many countries globally. The poor prognosis of pancreatic cancer is in part due to the challenges in early diagnosis. Improving early-stage pancreatic cancer diagnosis would [...] Read more.
Pancreatic cancer has a high mortality rate, and both the incidence and mortality are continuing to increase in many countries globally. The poor prognosis of pancreatic cancer is in part due to the challenges in early diagnosis. Improving early-stage pancreatic cancer diagnosis would improve survival outcomes. Aptamer-based biosensors provide an alternative technological approach for the analysis of serum biomarkers with several potential advantages. This review summarizes the major pancreatic cancer serum biomarkers, as well as discusses recent progress in biomarker exploration and aptasensor development. Here, we review both established and novel serum biomarkers identified recently, emphasizing their potential for early-stage pancreatic cancer diagnosis. We also propose strategies for further expanding multiplex biomarker panels beyond the established CA19-9 biomarker to enhance diagnostic performance. We discuss technological advancements in aptamer-based sensors for pancreatic cancer-related biomarkers over the last decade. Optical and electrochemical sensors are highlighted as two primary modalities in aptasensor design, each offering unique advantages. Finally, we propose steps towards clinical application using aptamer-based sensors with multiplexed biomarker detection for improved pancreatic cancer diagnostics. Full article
Show Figures

Figure 1

29 pages, 3459 KiB  
Review
Aptamer and Oligonucleotide-Based Biosensors for Health Applications
by Beatriz Mayol, I. Zeina Qubbaj, Julieta Nava-Granados, Katherine Vasquez, Scott T. Keene and Juliane R. Sempionatto
Biosensors 2025, 15(5), 277; https://doi.org/10.3390/bios15050277 - 29 Apr 2025
Cited by 1 | Viewed by 2126
Abstract
Aptamers have emerged as powerful molecular recognition elements for biosensing applications, offering high specificity, stability, and adaptability. This review explores key considerations in designing aptamer-based sensors (aptasensors), with a focus on biomarker selection, aptamer design, and detection and immobilization strategies. However, challenges such [...] Read more.
Aptamers have emerged as powerful molecular recognition elements for biosensing applications, offering high specificity, stability, and adaptability. This review explores key considerations in designing aptamer-based sensors (aptasensors), with a focus on biomarker selection, aptamer design, and detection and immobilization strategies. However, challenges such as biofluid stability and reversibility must be addressed to improve biosensor performance. In this study, the potential of aptamer-based platforms in diagnostics is explored, emphasizing their advantages and future applications. Looking ahead, advances in multifunctional aptamers, integration with nanomaterials, and computational optimization are highlighted as promising directions for enhancing their effectiveness in biosensing. Full article
Show Figures

Graphical abstract

16 pages, 2942 KiB  
Article
Electrochemical Sensor Based on DNA Aptamers Immobilized on V2O5/rGO Nanocomposite for the Sensitive Detection of Hg(II)
by Mahesh A. Takte, Shubham S. Patil, Akash V. Fulari, Tibor Hianik and Mahendra D. Shirsat
Sensors 2025, 25(7), 2334; https://doi.org/10.3390/s25072334 - 7 Apr 2025
Cited by 1 | Viewed by 793
Abstract
We developed a sensor consisting of V2O5 nanorods and a reduced graphene oxide (rGO) nanocomposite (V2O5/rGO) with immobilized DNA aptamers (Apt-NH@V2O5/rGO) for the sensitive electrochemical detection of Hg (II). The V2 [...] Read more.
We developed a sensor consisting of V2O5 nanorods and a reduced graphene oxide (rGO) nanocomposite (V2O5/rGO) with immobilized DNA aptamers (Apt-NH@V2O5/rGO) for the sensitive electrochemical detection of Hg (II). The V2O5 nanorods anchored on rGO nanosheets were synthesized using a hydrothermal method. The nanocomposite was analyzed by various powerful physical methods that include X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), field emission scanning electron microscopy (FE-SEM), Raman spectroscopy, the Brunauer–Emmett–Teller (BET) method, and Fourier transform infrared spectroscopy (FTIR). The FE-SEM of V2O5 disclosed the nanorod-like structure and uniform anchoring of V2O5 on the rGO nanosheet. Moreover, the BET results showed that the V2O5/rGO nanocomposite possesses excellent porosity. Furthermore, a glassy carbon electrode (GCE) was modified with Apt-NH@V2O5/rGO and used for the electrochemical detection of Hg(II) by differential pulse voltammetry (DPV). The aptasensor exhibited excellent sensitivity and selectivity toward Hg(II) detection, with a limit of detection (LOD) of 5.57 nM, which is below the maximum permissible limit established by WHO for rivers (30 nM). The sensor also exhibited significant stability and good repeatability. Full article
Show Figures

Figure 1

2 pages, 140 KiB  
Correction
Correction: Tao et al. Development of a Label-Free Electrochemical Aptasensor for the Detection of Tau381 and its Preliminary Application in AD and Non-AD Patients’ Sera. Biosensors 2019, 9, 84
by Dan Tao, Bingqing Shui, Yingying Gu, Jing Cheng, Weiying Zhang, Nicole Jaffrezic-Renault, Shizhen Song and Zhenzhong Guo
Biosensors 2025, 15(4), 234; https://doi.org/10.3390/bios15040234 - 7 Apr 2025
Viewed by 266
Abstract
In the original publication [...] Full article
14 pages, 4058 KiB  
Article
Homogeneous Aptasensor with Electrochemical and Electrochemiluminescence Dual Detection Channels Enabled by Nanochannel-Based Probe Enrichment and DNase I Cleavage for Tumor Biomarker Detection
by Jiong Gao, Shiyue Zhang and Fengna Xi
Molecules 2025, 30(3), 746; https://doi.org/10.3390/molecules30030746 - 6 Feb 2025
Cited by 6 | Viewed by 1011
Abstract
Homogeneous aptasensors that eliminate the need for probe labeling or immobilization hold significant potential for the rapid detection of tumor biomarkers. Herein, a homogeneous aptasensor with electrochemical (EC) and electrochemiluminescence (ECL) dual detection channels was developed by integrating nanochannel-based probe enrichment and DNase [...] Read more.
Homogeneous aptasensors that eliminate the need for probe labeling or immobilization hold significant potential for the rapid detection of tumor biomarkers. Herein, a homogeneous aptasensor with electrochemical (EC) and electrochemiluminescence (ECL) dual detection channels was developed by integrating nanochannel-based probe enrichment and DNase I cleavage for selective detection of the tumor biomarker, carbohydrate antigen 125 (CA125). A two-dimensional (2D) composite probe was prepared by assembling the CA125-specific aptamer and the cationic probe tris(2,2′-bipyridyl)Ru(II) (Ru(bpy)32+), which exhibited both EC and ECL properties, onto graphene oxide (GO) nanosheets (Ru(bpy)32+/Apt@GO). A vertically ordered mesoporous silica film (VMSF) with ultrasmall, uniform, and vertically aligned nanochannel arrays was rapidly grown on the inexpensive and disposable indium tin oxide (ITO) electrode, forming the detection interface. Due to the size exclusion effect of the ultrasmall nanochannels in VMSF, the Ru(bpy)32+/Apt@GO probe was unable to penetrate the nanochannels, resulting in no detectable Ru(bpy)32+ signal on the electrode. Upon specific recognition of CA125 by the aptamer, an aptamer-CA125 complex was formed and subsequently detached from GO. DNase I then cleaved the aptamer-CA125 complex, releasing CA125 and allowing Ru(bpy)32+ to dissociate into the solution. This enzymatic cleavage enabled CA125 to re-enter the binding cycle, amplifying the release of Ru(bpy)32+ into the solution. The electrostatic adsorption of the cationic Ru(bpy)32+ by VMSF significantly enhanced both the EC and ECL signals. The constructed aptasensor exhibited a linear EC detection range for CA125 from 0.1 U/mL to 100 ng/mL, with a limit of detection (LOD) of 91 mU/mL. For ECL detection, CA125 was detected over a range from 0.001 to 100 U/mL, with a LOD as low as 0.4 mU/mL. The developed aptasensor demonstrated excellent selectivity and was successfully applied to the dual-mode EC/ECL detection of CA125 in fetal bovine serum samples. Full article
Show Figures

Figure 1

23 pages, 4325 KiB  
Article
Parametric Cyclic Voltammetric Analysis of an Electrochemical Aptasensor for Staphylococcus aureus Iron-Regulated Surface Determinant Protein A Detection
by Shokoufeh Soleimani, Tracy Ann Bruce-Tagoe, Najeeb Ullah and Michael K. Danquah
Micromachines 2025, 16(2), 162; https://doi.org/10.3390/mi16020162 - 30 Jan 2025
Viewed by 888
Abstract
Rapid and reliable detection of pathogens requires precise and optimized analytical techniques to address challenges in food safety and public health. This study focuses on the parametric characterization of an electrochemical aptasensor for Staphylococcus aureus (S. aureus) iron-regulated surface determinant protein [...] Read more.
Rapid and reliable detection of pathogens requires precise and optimized analytical techniques to address challenges in food safety and public health. This study focuses on the parametric characterization of an electrochemical aptasensor for Staphylococcus aureus (S. aureus) iron-regulated surface determinant protein A (IsdA) using cyclic voltammetry (CV) analysis, which offers a robust method for evaluating electrode modifications and electrochemical responses. Key parameters were optimized to ensure maximum sensitivity, including an aptamer concentration of 5 μM, an incubation time of 4 h, a potential range from −0.1 to 0.9 V, and a scan rate of 0.05 V/s. The aptasensor achieved stability and peak performance at pH 7.5 and 25 °C. These conditions were critical for detecting the IsdA protein as a biomarker of S. aureus. The aptasensor applicability was demonstrated by successfully detecting S. aureus in food samples such as milk and apple juice with high specificity and reliability. Zeta potential measurements confirmed the layer-by-layer charge dynamics of the AuNPs-aptamer-IsdA system. This work emphasizes the importance of CV in understanding the performance of the electrochemical sensor, and supports the aptasensor as a practical, sensitive, and portable tool for addressing critical gaps in foodborne pathogen detection. Full article
(This article belongs to the Section B1: Biosensors)
Show Figures

Figure 1

17 pages, 2133 KiB  
Article
A Truncated Multi-Thiol Aptamer-Based SARS-CoV-2 Electrochemical Biosensor: Towards Variant-Specific Point-of-Care Detection with Optimized Fabrication
by Sergio Roberto Molina Ramirez, Nafiseh Samiseresht, Mateo Alejandro Martínez-Roque, Ferdinando Catania, Kevin Graef, Martin Rabe, Andreas Offenhäusser, Dirk Mayer and Gabriela Figueroa-Miranda
Biosensors 2025, 15(1), 24; https://doi.org/10.3390/bios15010024 - 6 Jan 2025
Cited by 1 | Viewed by 2088
Abstract
With the goal of fast and accurate diagnosis of infectious diseases, this study presents a novel electrochemical biosensor that employs a refined aptamer (C9t) for the detection of spike (S) protein SARS-CoV-2 variants in a flexible multielectrode aptasensor array with PoC capabilities. Two [...] Read more.
With the goal of fast and accurate diagnosis of infectious diseases, this study presents a novel electrochemical biosensor that employs a refined aptamer (C9t) for the detection of spike (S) protein SARS-CoV-2 variants in a flexible multielectrode aptasensor array with PoC capabilities. Two aptamer modifications were employed: removing the primer binding sites and including two dithiol phosphoramidite anchor molecules. Thus, reducing fabrication time from 24 to 3 h and increasing the stability and sparseness for multi-thiol aptasensors compared to a standard aptasensor using single thiols, without a reduction in aptamer density. The biosensor fabrication, optimization, and detection were verified in detail by electrochemistry, QCM-D, SPR, and XPS. The analyte–receptor binding was further confirmed spectroscopically at the level of individual molecules by AFM-IR. The aptasensor possesses a low limit of detection (8.0 fg/mL), the highest sensitivity reported for S protein (209.5 signal per concentration decade), and a wide dynamic detection range (8.0 fg/mL–38 ng/mL) in nasopharyngeal samples, covering the clinically relevant range. Furthermore, the C9t aptasensor showed high selectivity for SARS-CoV-2 S proteins over biomarkers for MERS-CoV, RSV, and Influenza. Even more, it showed a three times higher sensitivity for the Omicron in comparison to the Wuhan strain (wild type), alpha, and beta variants of the SARS-CoV-2 virus. Those results demonstrate the creation of an affordable and variant-selective refined C9t aptasensor that outperformed current rapid diagnosis tests. Full article
Show Figures

Graphical abstract

12 pages, 2650 KiB  
Article
A Sensitive and Selective Electrochemical Aptasensor for Carbendazim Detection
by Suthira Pushparajah, Mahnaz Shafiei and Aimin Yu
Biosensors 2025, 15(1), 15; https://doi.org/10.3390/bios15010015 - 3 Jan 2025
Cited by 1 | Viewed by 1120
Abstract
Carbendazim (CBZ) is used to prevent fungal infections in agricultural crops. Given its high persistence and potential for long-term health effects, it is crucial to quickly identify pesticide residues in food and the environment in order to mitigate excessive exposure. Aptamer-based sensors offer [...] Read more.
Carbendazim (CBZ) is used to prevent fungal infections in agricultural crops. Given its high persistence and potential for long-term health effects, it is crucial to quickly identify pesticide residues in food and the environment in order to mitigate excessive exposure. Aptamer-based sensors offer a promising solution for pesticide detection due to their exceptional selectivity, design versatility, ease of use, and affordability. Herein, we report the development of an electrochemical aptasensor for CBZ detection. The sensor was fabricated through a one-step electrodeposition of platinum nanoparticles (Pt NPs) and reduced graphene oxide (rGO) on a glassy carbon electrode (GCE). Then, a CBZ-specific aptamer was attached via Pt-sulfur bonds. Upon combining CBZ with the aptamer on the electrode surface, the redox reaction of the electrochemical probe K4[Fe(CN)6] is hindered, resulting in a current drop. Under optimized conditions (pH of 7.5 and 25 min of incubation time), the proposed aptasensor showed a linear current reduction to CBZ concentrations between 0.5 and 15 nM. The limit of detection (LOD) for this proposed aptasensor is 0.41 nM. Along with its repeatable character, the aptasensor demonstrated better selectivity for CBZ compared to other potential compounds. The recovery rates for detecting CBZ in skim milk and tap water using the standard addition method were 98% and 96%, respectively. The proposed aptasensor demonstrated simplicity, sensitivity, and selectivity for detecting CBZ with satisfactory repeatability. It establishes a strong foundation for environmental monitoring of CBZ. Full article
Show Figures

Figure 1

18 pages, 5794 KiB  
Article
Competitive Electrochemical Apta-Assay Based on cDNA–Ferrocene and MXenes for Staphylococcus aureus Surface Protein A Detection
by Ana-Maria Tătaru, Alexandra Canciu, Alin-Dan Chiorean, Ioana Runcan, Alexandru Radu, Mădălina Adriana Bordea, Maria Suciu, Mihaela Tertiș, Andreea Cernat and Cecilia Cristea
Biosensors 2024, 14(12), 636; https://doi.org/10.3390/bios14120636 - 21 Dec 2024
Viewed by 1391
Abstract
Staphylococcus aureus (S. aureus) represents one of the most frequent worldwide causes of morbidity and mortality due to an infectious agent. It is a part of the infamous ESKAPE group, which is highly connected with increased rates of healthcare-associated infections and [...] Read more.
Staphylococcus aureus (S. aureus) represents one of the most frequent worldwide causes of morbidity and mortality due to an infectious agent. It is a part of the infamous ESKAPE group, which is highly connected with increased rates of healthcare-associated infections and antimicrobial resistance. S. aureus can cause a large variety of diseases. Protein A (PrA) is a cell-wall-anchored protein of S. aureus with multiple key roles in colonization and pathogenesis and can be considered as a marker of S. aureus. The development of aptasensors, having an aptamer as a specific biorecognition element, increases selectivity, especially when working with complex matrices. The association with state-of-the-art materials, such as MXenes, can further improve the analytical performance. A competitive aptasensor configuration based on a ferrocene (Fc)-labeled cDNA hybridized (cDNA-Fc S13) on a specific aptamer (APT) for PrA in the presence of MXene nanosheets was designed for the indirect detection of S. aureus. The aptasensor displayed a linear range of 10–125 nM, an LOD of 3.33 nM, and a response time under 40 min. This configuration has been tested in real samples from volunteers diagnosed with S. aureus infections with satisfactory results, enabling the perspective to develop decentralized devices for the rapid detection of bacterial strains. Full article
(This article belongs to the Special Issue Feature Paper in Biosensor and Bioelectronic Devices 2024)
Show Figures

Figure 1

16 pages, 1401 KiB  
Review
Recent Developments in Aptamer-Based Sensors for Diagnostics
by Muhammad Sheraz, Xiao-Feng Sun, Yongke Wang, Jiayi Chen and Le Sun
Sensors 2024, 24(23), 7432; https://doi.org/10.3390/s24237432 - 21 Nov 2024
Cited by 6 | Viewed by 3432
Abstract
Chronic and non-communicable diseases (NCDs) account for a large proportion of global disorders and mortality, posing significant burdens on healthcare systems. Early diagnosis and timely interference are critical for effective management and disease prevention. However, the traditional methods of diagnosis still suffer from [...] Read more.
Chronic and non-communicable diseases (NCDs) account for a large proportion of global disorders and mortality, posing significant burdens on healthcare systems. Early diagnosis and timely interference are critical for effective management and disease prevention. However, the traditional methods of diagnosis still suffer from high costs, time delays in processing, and infrastructure requirements that are usually unaffordable in resource-constrained settings. Aptamer-based biosensors have emerged as promising alternatives to offer enhanced specificity, stability, and cost-effectiveness for disease biomarker detection. The SELEX (Systematic Evolution of Ligands by Exponential Enrichment) methodology allows developing aptamers with high-affinity binding capabilities to a variety of targets, for instance proteins, cells, or even small molecules, hence rendering them suitable for NCD diagnosis. Aptasensors—recent developments in the electrochemical and optical dominion—offer much enhanced sensitivity, selectivity, and stability of detection across a diverse range of diseases from lung cancer and leukemia to diabetes and chronic respiratory disorders. This study provides a comprehensive review of progress in aptamer-based sensors, focusing on their role in point-of-care diagnostics and adaptability in a real-world environment with future directions in overcoming current limitations. Full article
(This article belongs to the Section Biosensors)
Show Figures

Figure 1

12 pages, 2643 KiB  
Article
A Novel Methylene Blue Indicator-Based Aptasensor for Rapid Detection of Pseudomonas aeruginosa
by Somayeh Maghsoomi, Julia Walochnik, Martin Brandl and Mai-Lan Pham
Int. J. Mol. Sci. 2024, 25(21), 11682; https://doi.org/10.3390/ijms252111682 - 30 Oct 2024
Cited by 1 | Viewed by 1847
Abstract
Pseudomonas aeruginosa is a significant opportunistic pathogen highly prevalent in the environment, requiring early detection methods to prevent infections in vulnerable individuals. The most specific aptamer for P. aeruginosa, F23, has been used for the development of various assays and sensors for [...] Read more.
Pseudomonas aeruginosa is a significant opportunistic pathogen highly prevalent in the environment, requiring early detection methods to prevent infections in vulnerable individuals. The most specific aptamer for P. aeruginosa, F23, has been used for the development of various assays and sensors for early diagnosis and monitoring. In this study, a novel F23-based electrochemical aptasensor was designed using disposal gold screen-printed electrodes (Au-SPEs) with high reproducibility. Methylene blue (MB) was used as an exogenous indicator, which significantly amplified the electrochemical signal and improved the sensitivity of detection. The aptasensor explored a limit of detection (LOD) of 8 CFU·mL−1 and high selectivity for P. aeruginosa over other interfering bacteria. Furthermore, it showed potential to detect P. aeruginosa in tap water samples, offering a point-of-care tool for rapidly controlling the growth of this bacterium in various applications. Full article
(This article belongs to the Special Issue Recent Advances on Bioreceptors and Nanomaterial-Based Biosensors)
Show Figures

Figure 1

13 pages, 2510 KiB  
Article
Sandwich-Type Electrochemical Aptasensor with Supramolecular Architecture for Prostate-Specific Antigen
by Anabel Villalonga, Raúl Díaz, Irene Ojeda, Alfredo Sánchez, Beatriz Mayol, Paloma Martínez-Ruiz, Reynaldo Villalonga and Diana Vilela
Molecules 2024, 29(19), 4714; https://doi.org/10.3390/molecules29194714 - 5 Oct 2024
Cited by 3 | Viewed by 1381
Abstract
A novel sandwich-type electrochemical aptasensor based on supramolecularly immobilized affinity bioreceptor was prepared via host–guest interactions. This method utilizes an adamantane-modified, target-responsive hairpin DNA aptamer as a capture molecular receptor, along with a perthiolated β-cyclodextrin (CD) covalently attached to a gold-modified electrode surface [...] Read more.
A novel sandwich-type electrochemical aptasensor based on supramolecularly immobilized affinity bioreceptor was prepared via host–guest interactions. This method utilizes an adamantane-modified, target-responsive hairpin DNA aptamer as a capture molecular receptor, along with a perthiolated β-cyclodextrin (CD) covalently attached to a gold-modified electrode surface as the transduction element. The proposed sensing strategy employed an enzyme-modified aptamer as the signalling element to develop a sandwich-type aptasensor for detecting prostate-specific antigen (PSA). To achieve this, screen-printed carbon electrodes (SPCEs) with electrodeposited reduced graphene oxide (RGO) and gold nanoferns (AuNFs) were modified with the CD derivative to subsequently anchor the adamantane-modified anti-PSA aptamer via supramolecular associations. The sensing mechanism involves the affinity recognition of PSA molecules on the aptamer-enriched electrode surface, followed by the binding of an anti-PSA aptamer–horseradish peroxidase complex as a labelling element. This sandwich-type arrangement produces an analytical signal upon the addition of H2O2 and hydroquinone as enzyme substrates. The aptasensor successfully detected the biomarker within a concentration range of 0.5 ng/mL to 50 ng/mL, exhibiting high selectivity and a detection limit of 0.11 ng/mL in PBS. Full article
(This article belongs to the Special Issue Nano-Functional Materials for Sensor Applications)
Show Figures

Graphical abstract

Back to TopTop