Electrochemical Sensor Based on DNA Aptamers Immobilized on V2O5/rGO Nanocomposite for the Sensitive Detection of Hg(II)
Abstract
:Highlights
- A highly sensitive electrochemical aptasensor based on a V2O5/rGO nanocomposite was developed.
- A detailed characterization of the nanocomposite materials was performed by advanced physical methods.
- The aptasensor allowed for the sensitive and selective detection of Hg(II) below the maximum permissible limit of Hg(II).
- The sensor revealed a stable response for 40 days.
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Preparation of V2O5/rGO
2.3. Preparation of V2O5/rGO-Modified GCE and Immobilization of DNA Aptamers
2.4. The Methods of Nanocomposite Characterization
2.5. The Electrochemical Detection of Hg(II)
3. Results and Discussion
3.1. The Structural and Elemental Study of Nanocomposites
3.2. The Morphology Study and BET Analysis
3.3. The Spectroscopy Study of the Sensing Material
3.4. The Electrochemical Characterization of Nanocomposite Material
3.5. Detection of Hg(II)
3.6. Repeatability and Stability of the Aptasensor
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baltas, H.; Sirin, M.; Gökbayrak, E.; Ozcelik, A.E. A case study on pollution and a human health risk assessment of heavy metals in agricultural soils around Sinop province, Turkey. Chemosphere 2020, 241, 125015. [Google Scholar]
- Zaynab, M.; Al-Yahyai, R.; Ameen, A.; Sharif, Y.; Ali, L.; Fatima, M.; Khan, K.A.; Li, S. Health and environmental effects of heavy metals. J. King Saud Univ. -Sci. 2022, 34, 101653. [Google Scholar]
- Hoffman, D.J.; Rattner, B.A.; Burton, G.A., Jr.; Cairns, J., Jr. Handbook of Ecotoxicology, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2002. [Google Scholar]
- Zhou, Q.; Fu, L.; Zhu, J. Electrochemical sensors go nano: Carbon nanomaterials for ultrasensitivie heavy metal analysis. Current Nanosci. 2025, 21, 596–612. [Google Scholar]
- Shamsabadi, E.; Akhlaghi, H.; Baghayeri, M.; Motavalizadehkakhky, A. Preparation and application of a new ion-imprinted polymer for nanomolar detection of mercury (II) in environmental waters. Sci. Rep. 2024, 14, 25052. [Google Scholar]
- Rohanifar, A.; Alipourasiabi, N.; Shyam Sunder, G.S.; Lawrence, J.G.; Kirchhoff, J.R. Reversible chelating polymer for determination of heavy metals by dispersive micro solid-phase extraction with ICP-MS. Microchim. Acta 2020, 187, 1–10. [Google Scholar]
- Duan, X.; Liu, S.; Gao, W.; Sun, J. Determination of cadmium in water samples by fast pyrolysis—Chemical vapor generation atomic fluorescence spectrometry using titanium hydride powder as a hydrogen source. Spectrochim. Acta Part B At. Spectrosc. 2019, 162, 105720. [Google Scholar] [CrossRef]
- Souza, J.P.; Cerveira, C.; Miceli, T.M.; Moraes, D.P.; Mesko, M.F.; Pereira, J.S. Evaluation of sample preparation methods for cereal digestion for subsequent As, Cd, Hg and Pb determination by AAS-based techniques. Food Chem. 2020, 321, 126715. [Google Scholar]
- Gao, C.; Huang, X.-J. Voltammetric determination of mercury (II). TrAC Trends Anal. Chem. 2013, 51, 1–12. [Google Scholar]
- Lu, Y.; Liang, X.; Niyungeko, C.; Zhou, J.; Xu, J.; Tian, G. A review of the identification and detection of heavy metal ions in the environment by voltammetry. Talanta 2018, 178, 324–338. [Google Scholar]
- Erçarıkcı, E.; Alanyalıoğlu, M. Dual-functional graphene-based flexible material for membrane filtration and electrochemical sensing of heavy metal ions. IEEE Sens. J. 2020, 21, 2468–2475. [Google Scholar]
- Cheng, X.-L.; Xu, Q.-Q.; Li, S.-S.; Li, J.; Zhou, Y.; Zhang, Y.; Li, S. Oxygen vacancy enhanced Co3O4/ZnO nanocomposite with small sized and loose structure for sensitive electroanalysis of Hg (II) in subsidence area water. Sens. Actuators B Chem. 2021, 326, 128967. [Google Scholar] [CrossRef]
- Yang, M.; Chen, X.; Jiang, T.-J.; Guo, Z.; Liu, J.-H.; Huang, X.-J. Electrochemical detection of trace arsenic (III) by nanocomposite of nanorod-like α-MnO2 decorated with∼ 5 nm Au nanoparticles: Considering the change of arsenic speciation. Anal. Chem. 2016, 88, 9720–9728. [Google Scholar] [CrossRef] [PubMed]
- Liao, J.; Yang, F.; Wang, C.-Z.; Lin, S. The crystal facet-dependent electrochemical performance of TiO2 nanocrystals for heavy metal detection: Theoretical prediction and experimental proof. Sens. Actuators B Chem. 2018, 271, 195–202. [Google Scholar] [CrossRef]
- Sawan, S.; Maalouf, R.; Errachid, A.; Jaffrezic-Renault, N. Metal and metal oxide nanoparticles in the voltammetric detection of heavy metals: A review. TrAC Trends Anal. Chem. 2020, 131, 116014. [Google Scholar] [CrossRef]
- Babar, B.; Pisal, K.; Mujawar, S.; Patil, V.; Kadam, L.; Pawar, U.; Kadam, P.; Patil, P. Concentration modulated vanadium oxide nanostructures for NO2 gas sensing. Sen. Actuat. B Chem. 2022, 351, 130947. [Google Scholar] [CrossRef]
- Mu, J.; Wang, J.; Hao, J.; Cao, P.; Zhao, S.; Zeng, W.; Miao, B.; Xu, S. Hydrothermal synthesis and electrochemical properties of V2O5 nanomaterials with different dimensions. Ceram. Int. 2015, 41, 12626–12632. [Google Scholar] [CrossRef]
- Aragay, G.; Merkoci, A. Nanomaterials application in electrochemical detection of heavy metals. Electrochim. Acta 2012, 84, 49–61. [Google Scholar] [CrossRef]
- Cui, L.; Wu, J.; Ju, H. Electrochemical sensing of heavy metal ions with inorganic, organic and bio-materials. Biosens. Bioelectron. 2015, 63, 276–286. [Google Scholar] [CrossRef] [PubMed]
- Madadrang, C.J.; Kim, H.Y.; Gao, G.; Wang, N.; Zhu, J.; Feng, H.; Gorring, M.; Kasner, M.L.; Hou, S. Adsorption behavior of EDTA-graphene oxide for Pb (II) removal. ACS Appl. Mat. Interfaces 2012, 4, 1186–1193. [Google Scholar] [CrossRef]
- Xie, Y.-L.; Zhao, S.-Q.; Ye, H.-L.; Yuan, J.; Song, P.; Hu, S.-Q. Graphene/CeO2 hybrid materials for the simultaneous electrochemical detection of cadmium (II), lead (II), copper (II), and mercury (II). J. Electroanal. Chem. 2015, 757, 235–242. [Google Scholar] [CrossRef]
- Fu, W.; Huang, Z. Magnetic dithiocarbamate functionalized reduced graphene oxide for the removal of Cu (II), Cd (II), Pb (II), and Hg (II) ions from aqueous solution: Synthesis, adsorption, and regeneration. Chemosphere 2018, 209, 449–456. [Google Scholar] [CrossRef] [PubMed]
- Tao, Z.; Zhou, Y.; Duan, N.; Wang, Z. A colorimetric aptamer sensor based on the enhanced peroxidase activity of functionalized graphene/Fe3O4-AuNPs for detection of lead (II) ions. Catalysts 2020, 10, 600. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, D.; Ding, J.; Hayat, K.; Yang, X.; Zhan, X.; Zhang, D.; Lu, Y.; Zhou, P. Label-free and sensitive determination of cadmium ions using a Ti-modified Co3O4-based electrochemical aptasensor. Biosensors 2020, 10, 195. [Google Scholar] [CrossRef]
- Xu, S.; Chen, X.; Peng, G.; Jiang, L.; Huang, H. An electrochemical biosensor for the detection of Pb2+ based on G-quadruplex DNA and gold nanoparticles. Anal. Bioanal. Chem. 2018, 410, 5879–5887. [Google Scholar] [PubMed]
- He, L.-L.; Cheng, L.; Lin, Y.; Cui, H.-F.; Hong, N.; Peng, H.; Kong, D.-R.; Chen, C.-D.; Zhang, J.; Wei, G.-B. A sensitive biosensor for mercury ions detection based on hairpin hindrance by thymine-Hg(II)-thymine structure. J. Electroanal. Chem. 2018, 814, 161–167. [Google Scholar]
- Ulloa-Gomez, A.M.; Lucas, A.; Koneru, A.; Barui, A.; Stanciu, L. Simultaneous colorimetric and electrochemical detection of trace mercury (Hg2+) using a portable and miniaturized aptasensor. Biosens. Bioelectron. 2023, 221, 114419. [Google Scholar] [CrossRef]
- Su, X.; Tian, X.; Sun, Z.; Zou, X.; Zhang, W. Signal-on electrochemical aptasensor based on RGO-AuNPs and exonuclease-III with assistance of external probe for Hg2+ determination in shellfish. Microchem. J. 2023, 190, 108576. [Google Scholar]
- Tian, C.; Tang, F.; Guo, W.; Wei, M.; Wang, L.; Zhuang, X.; Luan, F. Electrochemiluminescence sensor based on CeO2 nanocrystalline for Hg2+ detection in environmental samples. Molecules 2024, 29, 1. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, C.; Hu, C.; Li, S.; Liu, Y.; Chen, Z.; Li, S.; Chen, H.; Sami, R.; Deng, Y. Electrochemical aptasensor based on black phosphorus-porous graphene nanocomposites for high-performance detection of Hg2+. Chin. Chem. Lett. 2024, 35, 109561. [Google Scholar] [CrossRef]
- Zeng, G.-C.; Huang, H.-W.; Lin, C.-K.; Chen, J.-C.; Dong, G.-C.; Hung, S.-C.; Wang, Y.-L. Design and demonstration of a temperature-resistant aptamer structure for highly sensitive mercury ion detection with BioFETs. Talanta 2025, 283, 127138. [Google Scholar]
- Edition, F. Guidelines for drinking-water quality. WHO Chron. 2011, 38, 104–108. [Google Scholar]
- Takte, M.A.; Ingle, N.N.; Dole, B.N.; Tsai, M.-L.; Hianik, T.; Shirsat, M.D. A stable and highly-sensitive flexible gas sensor based on Ceria (CeO2) nano-cube decorated rGO nanosheets for selective detection of NO2 at room temperature. Synth. Met. 2023, 297, 117411. [Google Scholar] [CrossRef]
- Su, D.; Zhao, Y.; Zhang, R.; Ning, M.; Zhao, Y.; Zhou, H.; Li, J.; Jin, H. Dimension meditated optic and catalytic performance over vanadium pentoxides. Appl. Surf. Sci. 2016, 389, 112–117. [Google Scholar]
- Karuppasamy, L.; Gurusamy, L.; Lee, G.-J.; Wu, J.J. Synthesis of metal/metal oxide supported reduced graphene oxide (RGO) for the applications of electrocatalysis and supercapacitors. In Graphene Functionalization Strategies. Carbon Nanostructures; Khan, A., Jawaid, M., Neppolian, B., Asiri, A., Eds.; Springer: Singapore, 2019; pp. 1–48. [Google Scholar]
- Zhang, B.; Ren, G.; Ran, L.; Liu, M.; Geng, P.; Yi, W. Green synthesis of biomass-derived porous carbon for electrochemical detection of heavy metal ions: Methods, properties, and applications. J. Environ. Chem. Eng. 2024, 12, 113903. [Google Scholar] [CrossRef]
- Awual, M.R.; Hasan, M.M.; Shahat, A. Functionalized novel mesoporous adsorbent for selective lead (II) ions monitoring and removal from wastewater. Sens. Actuators B Chem. 2014, 203, 854–863. [Google Scholar]
- Ossonon, B.D.; Bélanger, D. Synthesis and characterization of sulfophenyl-functionalized reduced graphene oxide sheets. RSC Adv. 2017, 7, 27224–27234. [Google Scholar]
- Gholizadeh, A.; Malekzadeh, A.; Pourarian, F. Rapid and efficient synthesis of reduced graphene oxide nano-sheets using CO ambient atmosphere as a reducing agent. J. Mater. Sci. Mater. Electron. 2018, 29, 19402–19412. [Google Scholar]
- Jayaraman, T.; Raja, S.A.; Priya, A.; Jagannathan, M.; Ashokkumar, M. Synthesis of a visible-light active V2O5–gC3N4 heterojunction as an efficient photocatalytic and photoelectrochemical material. New J. Chem. 2015, 39, 1367–1374. [Google Scholar]
- Alam, S.N.; Sharma, N.; Kumar, L. Synthesis of graphene oxide (GO) by modified hummers method and its thermal reduction to obtain reduced graphene oxide (rGO). Graphene 2017, 6, 1–18. [Google Scholar]
- Aswathi, R.; Sandhya, K. Ultrasensitive and selective electrochemical sensing of Hg (II) ions in normal and sea water using solvent exfoliated MoS2: Affinity matters. J. Mat. Chem. A 2018, 6, 14602–14613. [Google Scholar]
- Armbruster, D.A.; Pry, T. Limit of blank, limit of detection and limit of quantitation. Clin. Biochem. Rev. 2008, 29, S49–S52. [Google Scholar] [PubMed]
- Palanna, M.; Aralekallu, S.; Prabhu, C.K.; Sajjan, V.A.; Sannegowda, L.K. Nanomolar detection of mercury (II) using electropolymerized phthalocyanine film. Electrochim. Acta 2021, 367, 137519. [Google Scholar]
- East, G.A.; Marinho, E.P. Determination of mercury in hair by square-wave anodic stripping voltammetry at a rotating gold disk electrode after microwave digestion. Biol. Trace Elem. Res. 2005, 103, 261–276. [Google Scholar] [PubMed]
- Dutta, S.; Strack, G.; Kurup, P. Gold nanostar electrodes for heavy metal detection. Sens. Actuators B Chem. 2019, 281, 383–391. [Google Scholar]
- Bernalte, E.; Arévalo, S.; Pérez-Taborda, J.; Wenk, J.; Estrela, P.; Avila, A.; Di Lorenzo, M. Rapid and on-site simultaneous electrochemical detection of copper, lead and mercury in the Amazon river. Sens. Actuators B Chem. 2020, 307, 127620. [Google Scholar]
- Gao, F.; Zhan, F.; Li, S.; Antwi-Mensah, P.; Niu, L.; Wang, Q. Dual signal-based electrochemical aptasensor for simultaneous detection of lead (II) and mercury (II) in environmental water samples. Biosens. Bioelectr. 2022, 209, 114280. [Google Scholar] [CrossRef]
- Jiang, L.; Liu, N.; Li, D.; Yin, P.; Xu, X.; Shang, C.; Chen, F.; Qin, X.; Zhang, Z. A structure-switching electrochemical aptamer sensor for mercury ions based on an ordered assembled gold nanorods-modified electrode. Solid State Sci. 2024, 154, 107582. [Google Scholar]
- Li, L.; Yan, X.; Liu, Y.; Xing, Y.; Zhao, P.; Zhu, Y.; Liu, N.; Sun, K.; Zhang, Z.; Zhai, S. Electrochemical/fluorescent dual-mode aptasensor based on 3D porous AuNPs/MXene for detection of ultra-trace mercury (Hg2+). Bioelectrochemistry 2025, 161, 108833. [Google Scholar] [CrossRef]
- Meng, W.; Han, X.; Han, R.; Zhang, X.; Zeng, X.; Duan, J.; Luo, X. A highly stable electrochemical sensor with antifouling and antibacterial capabilities for mercury ion detection in seawater. Anal. Chim. Acta 2024, 1309, 342685. [Google Scholar] [CrossRef]
- Patil, S.S.; Narwade, V.N.; Sontakke, K.S.; Hianik, T.; Shirsat, M.D. Layer-by-layer immobilization of DNA aptamers on Ag-incorporated co-succinate metal–organic framework for Hg (II) detection. Sensors 2024, 24, 346. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, Y.; Zhu, X.; Ling, G.; Zhang, P. Two-mode sensing strategies based on tunable cobalt metal organic framework active sites to detect Hg2+. J. Hazard. Mat. 2024, 465, 133424. [Google Scholar] [CrossRef] [PubMed]
- Raina, J.; Kaur, G.; Singh, I. Recent progress in nanomaterial-based aptamers as biosensors for point of care detection of Hg2+ ions and its environmental applications. Talanta 2024, 277, 126372. [Google Scholar] [PubMed]
Electrode Material | Linear Range | LOD | References |
---|---|---|---|
Ps-AuNP-decorated ssDNA | 2.5–100 nM | 24.9 nM | [27] |
rGO-AuNPs | 17 nM–2.8 µM | 6 nM | [28] |
CeO2-Apt/GCE | Log (10 pM–100 µM) | 0.35 pM | [29] |
PLL/BP-PG | Log (1 nM–10 µM) | 45 pM | [30] |
Au surface of FET | Log (10 pM–10 µM) | 4.68 pM | [31] |
GCE/poly(CoTABImPc) | 10–400 nM | 3 nM | [44] |
Rotating Au disk electrode | 33–233 nM | 1.92 nM | [45] |
Gold nanostars | 1–500 nM | 2.5 nM | [46] |
Screen-printed gold electrode | 25 nM–1.5 µM | 6.5 nM | [47] |
MCH/HBA/PBA/Au * | Log (0.1–100 nM) | 19 pM | [48] |
AuNRs/SPE | 1 pM to 1 μM | 0.3 pM | [49] |
3D porous AuNPs/MXene | 10 fM–0.1 nM | 2.69 fM | [50] |
Apt-pep-Au/Ag/PEDOT/GCE | Log (0.01–100 nM) | 2.3 pM | [51] |
Ag@Co-Succinate-MOF | 0.7–10 nM | 0.3 nM | [52] |
Co-MOF@T-COOH | 1–60 nM | 3.69 nM | [53] |
Apt-NH@V2O5/rGO | 10–50 nM | 5.57 nM | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takte, M.A.; Patil, S.S.; Fulari, A.V.; Hianik, T.; Shirsat, M.D. Electrochemical Sensor Based on DNA Aptamers Immobilized on V2O5/rGO Nanocomposite for the Sensitive Detection of Hg(II). Sensors 2025, 25, 2334. https://doi.org/10.3390/s25072334
Takte MA, Patil SS, Fulari AV, Hianik T, Shirsat MD. Electrochemical Sensor Based on DNA Aptamers Immobilized on V2O5/rGO Nanocomposite for the Sensitive Detection of Hg(II). Sensors. 2025; 25(7):2334. https://doi.org/10.3390/s25072334
Chicago/Turabian StyleTakte, Mahesh A., Shubham S. Patil, Akash V. Fulari, Tibor Hianik, and Mahendra D. Shirsat. 2025. "Electrochemical Sensor Based on DNA Aptamers Immobilized on V2O5/rGO Nanocomposite for the Sensitive Detection of Hg(II)" Sensors 25, no. 7: 2334. https://doi.org/10.3390/s25072334
APA StyleTakte, M. A., Patil, S. S., Fulari, A. V., Hianik, T., & Shirsat, M. D. (2025). Electrochemical Sensor Based on DNA Aptamers Immobilized on V2O5/rGO Nanocomposite for the Sensitive Detection of Hg(II). Sensors, 25(7), 2334. https://doi.org/10.3390/s25072334