A Novel Methylene Blue Indicator-Based Aptasensor for Rapid Detection of Pseudomonas aeruginosa
Abstract
:1. Introduction
2. Results
2.1. Characterization of the Aptasensor
2.2. Electrochemical Detection of P. aeruginosa
2.3. Effect of Methylene Blue on Performance and Specificity of the Aptasensor
2.4. Evaluation of Tap Water Samples
3. Discussion
4. Materials and Methods
4.1. Bacterial Strains and Culture Conditions
4.2. Chemicals and Aptamer Sequence
4.3. Fabrication of Electrochemical Screen-Printed Electrodes
4.4. Electrochemical Measurements
4.5. Assessement of the Aptasensor Fabrication
4.6. Analytical Performance of the Aptasensor
4.7. Tap Water Analysis
4.8. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Kowalski, R.P.; Nayyar, S.V.; Romanowski, E.G.; Shanks, R.M.Q.; Mammen, A.; Dhaliwal, D.K.; Jhanji, V. The prevalence of bacteria, fungi, viruses, and acanthamoeba from 3004 cases of keratitis, endophthalmitis, and conjunctivitis. Eye Contact Lens 2020, 46, 265–268. [Google Scholar] [CrossRef] [PubMed]
- Schneider, S.; Ettenauer, J.; Pap, I.-J.; Aspöck, C.; Walochnik, J.; Brandl, M. Main metabolites of Pseudomonas aeruginosa: A study of electrochemical properties. Sensors 2022, 22, 4694. [Google Scholar] [CrossRef] [PubMed]
- Qin, S.; Xiao, W.; Zhou, C.; Pu, Q.; Deng, X.; Lan, L.; Liang, H.; Song, X.; Wu, M. Pseudomonas aeruginosa: Pathogenesis, virulence factors, antibiotic resistance, interaction with host, technology advances and emerging therapeutics. Signal Transduct. Target. Ther. 2022, 7, 199. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Ali, Z.; Zou, J.; Jin, G.; Zhu, J.; Yang, J.; Dai, J. Detection methods for Pseudomonas aeruginosa: History and future perspective. RSC Adv. 2017, 7, 51789–51800. [Google Scholar] [CrossRef]
- Aghamollaei, H.; Moghaddam, M.M.; Kooshki, H.; Heiat, M.; Mirnejad, R.; Barzi, N.S. Detection of Pseudomonas aeruginosa by a triplex polymerase chain reaction assay based on lasI/R and gyrB genes. J. Infect. Public Health 2015, 8, 314–322. [Google Scholar] [CrossRef]
- Sánchez, D.; Torres, I.; Giménez, E.; Albert, E.; Costa, R.M.; Padrón, C.; Carretero, D.; Colomina, J.; Navarro, D. A rapid MALDI-TOF mass spectrometry-based method for categorization of Pseudomonas aeruginosa from blood cultures as susceptible or resistant to meropenem. J. Microbiol. Methods 2023, 212, 106803. [Google Scholar] [CrossRef]
- Zheng, X.; Gao, S.; Wu, J.; Hu, X. Recent advances in aptamer-based biosensors for detection of Pseudomonas aeruginosa. Front. Microbiol. 2020, 11, 605229. [Google Scholar] [CrossRef]
- Karbelkar, A.A.; Furst, A.L. Electrochemical diagnostics for bacterial infectious diseases. ACS Infect. Dis. 2020, 6, 1567–1571. [Google Scholar] [CrossRef]
- McConnell, E.M.; Nguyen, J.; Li, Y. Aptamer-based biosensors for environmental monitoring. Front. Chem. 2020, 8, 434. [Google Scholar] [CrossRef]
- Baba, S.A.; Jain, S.; Navani, N.K. A reliable, quick and universally applicable method for monitoring aptamer SELEX progress. Gene 2021, 774, 145416. [Google Scholar] [CrossRef]
- Majdinasab, M.; Hayat, A.; Marty, J.L. Aptamer-based assays and aptasensors for detection of pathogenic bacteria in food samples. TrAC Trends Anal. Chem. 2018, 107, 60–77. [Google Scholar] [CrossRef]
- Wang, K.-Y.; Zeng, Y.-L.; Yang, X.-Y.; Li, W.-B.; Lan, X.-P. Utility of aptamer-fluorescence in situ hybridization for rapid detection of Pseudomonas aeruginosa. Eur. J. Clin. Microbiol. Infect. Dis. 2011, 30, 273–278. [Google Scholar] [CrossRef] [PubMed]
- Soundy, J.; Day, D. Selection of DNA aptamers specific for live Pseudomonas aeruginosa. PLoS ONE 2017, 12, e0185385. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Chi, Z.; Cong, Y.; Wang, Z.; Jiang, F.; Geng, J.; Zhang, P.; Ju, P.; Dong, Q.; Liu, C. Development of a fluorescence assay for highly sensitive detection of Pseudomonas aeruginosa based on an aptamer-carbon dots/graphene oxide system. RSC Adv. 2018, 8, 32454–32460. [Google Scholar] [CrossRef] [PubMed]
- Khatami, S.H.; Karami, S.; Siahkouhi, H.R.; Taheri-Anganeh, M.; Fathi, J.; Aghazadeh Ghadim, M.B.; Taghvimi, S.; Shabaninejad, Z.; Tondro, G.; Karami, N.; et al. Aptamer-based biosensors for Pseudomonas aeruginosa detection. Mol. Cell. Probes 2022, 66, 101865. [Google Scholar] [CrossRef]
- Hu, J.; Fu, K.; Bohn, P.W. Whole-cell Pseudomonas aeruginosa localized surface plasmon resonance aptasensor. Anal. Chem. 2018, 90, 2326–2332. [Google Scholar] [CrossRef]
- Sarabaegi, M.; Roushani, M. A nano-sized chitosan particle based electrochemical aptasensor for sensitive detection of P. aeruginosa. Anal. Methods 2019, 11, 5591–5597. [Google Scholar] [CrossRef]
- Oberhaus, F.V.; Frense, D.; Beckmann, D. Immobilization techniques for aptamers on gold electrodes for the electrochemical detection of proteins: A Review. Biosensors 2020, 10, 45. [Google Scholar] [CrossRef]
- Taghdisi, S.M.; Danesh, N.M.; Nameghi, M.A.; Ramezani, M.; Alibolandi, M.; Hassanzadeh-Khayat, M.; Emrani, A.S.; Abnous, K. A novel electrochemical aptasensor based on nontarget-induced high accumulation of methylene blue on the surface of electrode for sensing of α-synuclein oligomer. Biosens. Bioelectron. 2019, 123, 14–18. [Google Scholar] [CrossRef]
- Tang, C.; Zou, Z.; Liang, T.; Yuan, C.; Gao, J.; Tang, K.; Li, C.M. Methylene blue intercalated aptamer to amplify signals toward sensitively electrochemical detection of dopamine released from living Parkinson’s disease model cells. Sens. Actuators Rep. 2022, 4, 100080. [Google Scholar] [CrossRef]
- Keighley, S.D.; Li, P.; Estrela, P.; Migliorato, P. Optimization of DNA immobilization on gold electrodes for label-free detection by electrochemical impedance spectroscopy. Biosens. Bioelectron. 2008, 23, 1291–1297. [Google Scholar] [CrossRef] [PubMed]
- Das, R.; Dhiman, A.; Kapil, A.; Bansal, V.; Sharma, T.K. Aptamer-mediated colorimetric and electrochemical detection of Pseudomonas aeruginosa utilizing peroxidase-mimic activity of gold NanoZyme. Anal. Bioanal. Chem. 2019, 411, 1229–1238. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Zhang, J.; He, F. A new aptamer/polyadenylated DNA interdigitated gold electrode piezoelectric sensor for rapid detection of Pseudomonas aeruginosa. Biosensors Bioelectron. 2019, 132, 224–229. [Google Scholar] [CrossRef] [PubMed]
- Yoo, S.M.; Kim, D.-K.; Lee, S.Y. Aptamer-functionalized localized surface plasmon resonance sensor for the multiplexed detection of different bacterial species. Talanta 2015, 132, 112–117. [Google Scholar] [CrossRef] [PubMed]
- Paimard, G.; Ghasali, E.; Baeza, M. Screen-printed electrodes: Fabrication, modification, and biosensing applications. Chemosensors 2023, 11, 113. [Google Scholar] [CrossRef]
- Pham, M.-L.; Maghsoomi, S.; Brandl, M. An electrochemical aptasensor for the detection of freshwater Cyanobacteria. Biosensors 2024, 14, 28. [Google Scholar] [CrossRef]
- Roushani, M.; Sarabaegi, M.; Pourahmad, F. Impedimetric aptasensor for Pseudomonas aeruginosa by using a glassy carbon electrode modified with silver nanoparticles. Microchim. Acta 2019, 186, 725. [Google Scholar] [CrossRef]
- Abedi, R.; Bakhsh Raoof, J.; Mohseni, M.; Bagheri Hashkavayi, A. Sandwich-type electrochemical aptasensor for highly sensitive and selective detection of Pseudomonas aeruginosa bacteria using a dual signal amplification strategy. Bioelectrochemistry 2023, 150, 108332. [Google Scholar] [CrossRef]
- Liu, Y.; Canoura, J.; Alkhamis, O.; Xiao, Y. Immobilization strategies for enhancing sensitivity of electrochemical aptamer-based sensors. ACS Appl. Mater. Interfaces 2021, 13, 9491–9499. [Google Scholar] [CrossRef]
ΔI (µA) a | Signal Gain (%) b | ||
---|---|---|---|
Without MB | With MB | ||
P. aeruginosa | 133.931 ± 5.155 | 280.387 ± 12.633 | 47.633 ± 2.175 |
Bacterial mixture c | 134.272 ± 4.714 | 283.433 ± 9.776 | 47.346 ± 1.651 |
E. coli | 173.531 ± 5.879 | 358.644 ± 9.699 | 48.389 ± 1.347 |
E. faecalis | 172.001 ± 6.148 | 357.479 ± 10.363 | 48.121 ± 1.349 |
S. aureus | 178.024 ± 5.606 | 362.551 ± 10.466 | 49.112 ± 1.309 |
P. putida | 176.440 ± 5.66 | 361.563 ± 10.066 | 48.807 ± 1.314 |
Contaminated Tap Water Samples | Bacterial Concentration by Plate Counting [Log (CFU·mL−1)] | Measured Concentration by Aptasensor [Log (CFU·mL−1)] ** | Recovery Rate (%) * |
---|---|---|---|
With P. aeruginosa only | 9.204 | 10.305 ± 0.147 | 112 ± 1.602 |
With bacterial mixture | 9.204 | 10.017 ± 0.159 | 109 ± 1.737 |
Method | Material | LOD (CFU·mL–1) | References |
---|---|---|---|
LSPR | Nanosphere lithography | 10 | [16] |
LSPR | MG-NPA | 104 | [24] |
Aptamer–nanozyme–electrochemical | Gold nanoparticles | 60 | [22] |
Piezoelectric/magnetoresistive | Au IDE-MSPQC | 52 (in blood samples) 9 (in buffer) | [23] |
Electrochemical | AgNPs/GCE | 33 | [27] |
Electrochemical | CSPEs/MIL-101 (Cr)/MWCNT | 1 | [28] |
Electrochemical | Au-SPEs | 8 | In this study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maghsoomi, S.; Walochnik, J.; Brandl, M.; Pham, M.-L. A Novel Methylene Blue Indicator-Based Aptasensor for Rapid Detection of Pseudomonas aeruginosa. Int. J. Mol. Sci. 2024, 25, 11682. https://doi.org/10.3390/ijms252111682
Maghsoomi S, Walochnik J, Brandl M, Pham M-L. A Novel Methylene Blue Indicator-Based Aptasensor for Rapid Detection of Pseudomonas aeruginosa. International Journal of Molecular Sciences. 2024; 25(21):11682. https://doi.org/10.3390/ijms252111682
Chicago/Turabian StyleMaghsoomi, Somayeh, Julia Walochnik, Martin Brandl, and Mai-Lan Pham. 2024. "A Novel Methylene Blue Indicator-Based Aptasensor for Rapid Detection of Pseudomonas aeruginosa" International Journal of Molecular Sciences 25, no. 21: 11682. https://doi.org/10.3390/ijms252111682