Aptamer and Oligonucleotide-Based Biosensors for Health Applications
Abstract
:1. Introduction
2. How to Select a Biomarker
3. How to Select an Aptamer
3.1. Design, Fabrication, and Modification of Aptamers
3.2. Getting Signal in Sensing Platforms Using Aptamers
3.3. Immobilization Strategies and Considerations
4. Challenges and Opportunities in the Use of Aptamers in Sensors
5. Diagnostic Applications of Aptamers
5.1. Integrated and Point-of-Care Aptasensors
5.2. Implantable Aptasensors
5.3. Wearable Aptasensors
6. Outlook and Future Directions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
SELEX | Systematic Evolution of Ligands by Exponential Enrichment |
E-ABs | Electrochemical aptasensors |
FRET | Förster Resonance Energy Transfer |
CF | Cerebrospinal fluid |
FDA | Food and Drug Administration |
ISF | Interstitial fluid |
CTCs | Circulating tumor cells |
PCR | Polymerase chain reaction |
MDs | Molecular dynamics |
CEA | Carcinoembryonic antigen |
PSA | Prostate-specific antigen |
LDL | Low-density lipoprotein |
rPfLDH | Plasmodium falciparum lactate dehydrogenase |
PD-L1 | Programmed death ligand-1 |
EVs | Extracellular vesicles |
CRP | C-reactive protein |
cTn-I | Cardiac troponin I |
MCH | Mercaptohexanol |
BBB | Blood–brain barrier |
POC | Point-of-care |
TDM | Therapeutic drug monitoring |
FET | Field-effect transistor |
PKU | Phenylketonuria |
ATP | Adenosine triphosphate |
References
- Bhalla, N.; Jolly, P.; Formisano, N.; Estrela, P. Introduction to Biosensors. Essays Biochem. 2016, 60, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Arroyo-Currás, N.; Dauphin-Ducharme, P.; Scida, K.; Chávez, J.L. From the Beaker to the Body: Translational Challenges for Electrochemical, Aptamer-Based Sensors. Anal. Methods 2020, 12, 1288–1310. [Google Scholar] [CrossRef]
- Nimjee, S.M.; White, R.R.; Becker, R.C.; Sullenger, B.A. Aptamers as Therapeutics. Annu. Rev. Pharmacol. Toxicol. 2017, 57, 61–79. [Google Scholar] [CrossRef]
- Yang, L.F.; Ling, M.; Kacherovsky, N.; Pun, S.H. Aptamers 101: Aptamer Discovery and in Vitro Applications in Biosensors and Separations. Chem. Sci. 2023, 14, 4961–4978. [Google Scholar] [CrossRef] [PubMed]
- Gelinas, A.D.; Davies, D.R.; Janjic, N. Embracing Proteins: Structural Themes in Aptamer–Protein Complexes. Curr. Opin. Struct. Biol. 2016, 36, 122–132. [Google Scholar] [CrossRef]
- Requena, M.D.; Gray, B.P.; Sullenger, B.A. Protocol for Purification of Cells in Their Native State Using Reversible Aptamer-Antidote Pairs. STAR Protoc. 2023, 4, 102348. [Google Scholar] [CrossRef]
- Gray, B.P.; Requena, M.D.; Nichols, M.D.; Sullenger, B.A. Aptamers as Reversible Sorting Ligands for Preparation of Cells in Their Native State. Cell Chem. Biol. 2020, 27, 232–244.e7. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Luo, H.; Gubu, A.; Yu, S.; Zhang, H.; Dai, H.; Zhang, Y.; Zhang, B.; Ma, Y.; Lu, A.; et al. Chemically Modified Aptamers for Improving Binding Affinity to the Target Proteins via Enhanced Non-Covalent Bonding. Front. Cell Dev. Biol. 2023, 11, 1091809. [Google Scholar] [CrossRef]
- Grabowska, I.; Zapotoczny, S.; Chlopicki, S. Multiplex Electrochemical Aptasensors for Detection of Endothelial Dysfunction: Ready for Prime Time? Trends Anal. Chem. 2023, 169, 117372. [Google Scholar] [CrossRef]
- Wang, T.; Chen, C.; Larcher, L.M.; Barrero, R.A.; Veedu, R.N. Three Decades of Nucleic Acid Aptamer Technologies: Lessons Learned, Progress and Opportunities on Aptamer Development. Biotechnol. Adv. 2019, 37, 28–50. [Google Scholar] [CrossRef]
- Yuhan, J.; Zhu, L.; Zhu, L.; Huang, K.; He, X.; Xu, W. Cell-Specific Aptamers as Potential Drugs in Therapeutic Applications: A Review of Current Progress. J. Control. Release 2022, 346, 405–420. [Google Scholar] [CrossRef] [PubMed]
- Ye, C.; Lukas, H.; Wang, M.; Lee, Y.; Gao, W. Nucleic Acid-Based Wearable and Implantable Electrochemical Sensors. Chem. Soc. Rev. 2024, 53, 7960–7982. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.E.; Zhang, Y.; Cai, J.; Cai, W.; Gao, T. Aptamer-Based Fluorescent Biosensors. Curr. Med. Chem. 2011, 18, 4175–4184. [Google Scholar] [CrossRef] [PubMed]
- Verma, A.K.; Noumani, A.; Yadav, A.K.; Solanki, P.R. FRET Based Biosensor: Principle Applications Recent Advances and Challenges. Diagnostics 2023, 13, 1375. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration. Focus Area: Biomarkers. Available online: https://www.fda.gov/science-research/focus-areas-regulatory-science-report/focus-area-biomarkers (accessed on 6 February 2025).
- Bodaghi, A.; Fattahi, N.; Ramazani, A. Biomarkers: Promising and Valuable Tools towards Diagnosis, Prognosis and Treatment of COVID-19 and Other Diseases. Heliyon 2023, 9, e13323. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration. Biomarkers at FDA. Available online: https://www.fda.gov/science-research/about-science-research-fda/biomarkers-fda (accessed on 6 February 2025).
- Chen, L.; Yang, G.; Qu, F. Aptamer-Based Sensors for Fluid Biopsies of Protein Disease Markers. Talanta 2024, 276, 126246. [Google Scholar] [CrossRef]
- Salama, R.; Arshavsky-Graham, S.; Sella-Tavor, O.; Massad-Ivanir, N.; Segal, E. Design Considerations of Aptasensors for Continuous Monitoring of Biomarkers in Digestive Tract Fluids. Talanta 2022, 239, 123124. [Google Scholar] [CrossRef]
- Lu, J.K.; Wang, W.; Goh, J.; Maier, A.B. A Practical Guide for Selecting Continuous Monitoring Wearable Devices for Community-Dwelling Adults. Heliyon 2024, 10, e33488. [Google Scholar] [CrossRef]
- Ellison, J.M.; Stegmann, J.M.; Colner, S.L.; Michael, R.H.; Sharma, M.K.; Ervin, K.R.; Horwitz, D.L. Rapid Changes in Postprandial Blood Glucose Produce Concentration Differences at Finger, Forearm, and Thigh Sampling Sites. Diabetes Care 2002, 25, 961–964. [Google Scholar] [CrossRef]
- Caplin, A.; Chen, F.S.; Beauchamp, M.R.; Puterman, E. The Effects of Exercise Intensity on the Cortisol Response to a Subsequent Acute Psychosocial Stressor. Psychoneuroendocrinology 2021, 131, 105336. [Google Scholar] [CrossRef]
- Heikenfeld, J.; Jajack, A.; Feldman, B.; Granger, S.W.; Gaitonde, S.; Begtrup, G.; Katchman, B.A. Accessing Analytes in Biofluids for Peripheral Biochemical Monitoring. Nat. Biotechnol. 2019, 37, 407–419. [Google Scholar] [CrossRef] [PubMed]
- Wong, A.; Ye, M.; Levy, A.; Rothstein, J.; Bergles, D.; Searson, P.C. The Blood-Brain Barrier: An Engineering Perspective. Front. Neuroeng. 2013, 6, 7. [Google Scholar] [CrossRef]
- Wu, D.; Chen, Q.; Chen, X.; Han, F.; Chen, Z.; Wang, Y. The Blood–Brain Barrier: Structure, Regulation and Drug Delivery. Sig. Transduct. Target. Ther. 2023, 8, 217. [Google Scholar] [CrossRef]
- Ștefan, G.; Hosu, O.; De Wael, K.; Lobo-Castañón, M.J.; Cristea, C. Aptamers in Biomedicine: Selection Strategies and Recent Advances. Electrochim. Acta 2021, 376, 137994. [Google Scholar] [CrossRef]
- Li, Y.; TAM, W.W.; Yu, Y.; Zhuo, Z.; Xue, Z.; Tsang, C.; Qiao, X.; Wang, X.; Wang, W.; Li, Y.; et al. The Application of Aptamer in Biomarker Discovery. Biomark. Res. 2023, 11, 70. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhao, Y.; Di, Y.; Xiu, C.; He, L.; Liao, S.; Li, D.; Huang, B. DNA Aptamers from Whole-Serum SELEX as New Diagnostic Agents against Gastric Cancer. RSC Adv. 2019, 9, 950–957. [Google Scholar] [CrossRef]
- Zhou, L.; Ou, L.-J.; Chu, X.; Shen, G.-L.; Yu, R.-Q. Aptamer-Based Rolling Circle Amplification: A Platform for Electrochemical Detection of Protein. Anal. Chem. 2007, 79, 7492–7500. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Lai, R.Y. A Reagentless and Reusable Electrochemical Aptamer-Based Sensor for Rapid Detection of Ampicillin in Complex Samples. Talanta 2018, 176, 619–624. [Google Scholar] [CrossRef]
- McKeague, M.; DeRosa, M.C. Challenges and Opportunities for Small Molecule Aptamer Development. J. Nucleic Acids 2012, 2012, 748913. [Google Scholar] [CrossRef]
- Sakamoto, T.; Ennifar, E.; Nakamura, Y. Thermodynamic Study of Aptamers Binding to Their Target Proteins. Biochimie 2018, 145, 91–97. [Google Scholar] [CrossRef]
- Mjaaland, S.; Fossum, S. Modulation of Immune Responses with Monoclonal Antibodies. I. Effects on Regional Lymph Node Morphology and on Anti-Hapten Responses to Haptenized Monoclonal Antibodies. Eur. J. Immunol. 1990, 20, 1457–1461. [Google Scholar] [CrossRef]
- Huang, P.-J.J.; Liu, J. Simultaneous Detection of L-Lactate and D-Glucose Using DNA Aptamers in Human Blood Serum. Angew. Chem. Int. Ed. 2023, 62, e202212879. [Google Scholar] [CrossRef] [PubMed]
- Karpova, E.V.; Shcherbacheva, E.V.; Galushin, A.A.; Vokhmyanina, D.V.; Karyakina, E.E.; Karyakin, A.A. Noninvasive Diabetes Monitoring through Continuous Analysis of Sweat Using Flow-Through Glucose Biosensor. Anal. Chem. 2019, 91, 3778–3783. [Google Scholar] [CrossRef] [PubMed]
- Tan, Q.C.; Xing, X.W.; Zhang, J.T.; He, M.W.; Ma, Y.B.; Wu, L.; Wang, X.; Wang, H.F.; Yu, S.Y. Correlation between Blood Glucose and Cerebrospinal Fluid Glucose Levels in Patients with Differences in Glucose Metabolism. Front. Neurol. 2023, 14, 1103026. [Google Scholar] [CrossRef]
- Schilde, L.M.; Kösters, S.; Steinbach, S.; Schork, K.; Eisenacher, M.; Galozzi, S.; Turewicz, M.; Barkovits, K.; Mollenhauer, B.; Marcus, K.; et al. Protein Variability in Cerebrospinal Fluid and Its Possible Implications for Neurological Protein Biomarker Research. PLoS ONE 2018, 13, e0206478. [Google Scholar] [CrossRef]
- Khadke, S.; MacDougall, F.; Islam, T. Chapter Five—Novel Formulation Approaches for Gastrointestinal Targeting: Characterization and Animal Model Considerations. In Oral Delivery of Therapeutic Peptides and Proteins; Tyagi, P., Subramony, J.A., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 167–198. ISBN 978-0-12-821061-1. [Google Scholar]
- Hwang, J.; Seo, Y.; Jo, Y.; Son, J.; Choi, J. Aptamer-Conjugated Live Human Immune Cell Based Biosensors for the Accurate Detection of C-Reactive Protein. Sci. Rep. 2016, 6, 34778. [Google Scholar] [CrossRef] [PubMed]
- Li, H.-H.; Wen, C.-Y.; Hong, C.-Y.; Lai, J.-C. Evaluation of Aptamer Specificity with or without Primers Using Clinical Samples for C-Reactive Protein by Magnetic-Assisted Rapid Aptamer Selection. RSC Adv. 2017, 7, 42856–42865. [Google Scholar] [CrossRef]
- Li, F.; Zhang, H.; Wang, Z.; Newbigging, A.M.; Reid, M.S.; Li, X.-F.; Le, X.C. Aptamers Facilitating Amplified Detection of Biomolecules. Anal. Chem. 2015, 87, 274–292. [Google Scholar] [CrossRef]
- Arshavsky-Graham, S.; Heuer, C.; Jiang, X.; Segal, E. Aptasensors versus Immunosensors—Which Will Prevail? Eng. Life Sci. 2022, 22, 319–333. [Google Scholar] [CrossRef]
- Hermann, T.; Patel, D.J. Adaptive Recognition by Nucleic Acid Aptamers. Science 2000, 287, 820–825. [Google Scholar] [CrossRef]
- Davies, D.R.; Gelinas, A.D.; Zhang, C.; Rohloff, J.C.; Carter, J.D.; O’Connell, D.; Waugh, S.M.; Wolk, S.K.; Mayfield, W.S.; Burgin, A.B.; et al. Unique Motifs and Hydrophobic Interactions Shape the Binding of Modified DNA Ligands to Protein Targets. Proc. Natl. Acad. Sci. USA 2012, 109, 19971–19976. [Google Scholar] [CrossRef] [PubMed]
- Domsicova, M.; Korcekova, J.; Poturnayova, A.; Breier, A. New Insights into Aptamers: An Alternative to Antibodies in the Detection of Molecular Biomarkers. Int. J. Mol. Sci. 2024, 25, 6833. [Google Scholar] [CrossRef]
- Challier, L.; Mavré, F.; Moreau, J.; Fave, C.; Schöllhorn, B.; Marchal, D.; Peyrin, E.; Noël, V.; Limoges, B. Simple and Highly Enantioselective Electrochemical Aptamer-Based Binding Assay for Trace Detection of Chiral Compounds. Anal. Chem. 2012, 84, 5415–5420. [Google Scholar] [CrossRef]
- Jenison, R.D.; Gill, S.C.; Pardi, A.; Polisky, B. High-Resolution Molecular Discrimination by RNA. Science 1994, 263, 1425–1429. [Google Scholar] [CrossRef] [PubMed]
- Gaster, R.S.; Hall, D.A.; Wang, S.X. Autoassembly Protein Arrays for Analyzing Antibody Cross-Reactivity. Nano Lett. 2011, 11, 2579–2583. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Chen, Z.; Liu, D.; Jiang, H.; Zhang, Z.-K.; Lu, A.; Zhang, B.-T.; Yu, Y.; Zhang, G. Structural Biology for the Molecular Insight between Aptamers and Target Proteins. Int. J. Mol. Sci. 2021, 22, 4093. [Google Scholar] [CrossRef]
- Adachi, T.; Nakamura, Y. Aptamers: A Review of Their Chemical Properties and Modifications for Therapeutic Application. Molecules 2019, 24, 4229. [Google Scholar] [CrossRef]
- Zhou, J.; Rossi, J.J. Cell-Type-Specific, Aptamer-Functionalized Agents for Targeted Disease Therapy. Mol. Ther. Nucleic Acids 2014, 3, e169. [Google Scholar] [CrossRef]
- Lin, D.; Shen, L.; Luo, M.; Zhang, K.; Li, J.; Yang, Q.; Zhu, F.; Zhou, D.; Zheng, S.; Chen, Y.; et al. Circulating Tumor Cells: Biology and Clinical Significance. Sig. Transduct. Target. Ther. 2021, 6, 404. [Google Scholar] [CrossRef]
- Kolovskaya, O.S.; Zyuzyukina, A.V.; Dassie, J.P.; Zamay, G.S.; Zamay, T.N.; Boyakova, N.V.; Khorzhevskii, V.A.; Kirichenko, D.A.; Lapin, I.N.; Shchugoreva, I.A.; et al. Monitoring of Breast Cancer Progression via Aptamer-Based Detection of Circulating Tumor Cells in Clinical Blood Samples. Front. Mol. Biosci. 2023, 10, 1184285. [Google Scholar] [CrossRef]
- Kolm, C.; Cervenka, I.; Aschl, U.J.; Baumann, N.; Jakwerth, S.; Krska, R.; Mach, R.L.; Sommer, R.; DeRosa, M.C.; Kirschner, A.K.T.; et al. DNA Aptamers against Bacterial Cells Can Be Efficiently Selected by a SELEX Process Using State-of-the Art qPCR and Ultra-Deep Sequencing. Sci. Rep. 2020, 10, 20917. [Google Scholar] [CrossRef] [PubMed]
- Nagar, D.N.; Yathirajarao, T.; Kumar, P.; Kushwaha, P.; Suman, P. Bead-Based SELEX for Aptamers Selection and Their Application in Detection of Diverse Antigens. In Immunodiagnostic Technologies from Laboratory to Point-Of-Care Testing; Suman, P., Chandra, P., Eds.; Springer: Singapore, 2021; pp. 125–139. ISBN 9789811558238. [Google Scholar]
- Kohlberger, M.; Gadermaier, G. SELEX: Critical Factors and Optimization Strategies for Successful Aptamer Selection. Biotechnol. Appl. Biochem. 2022, 69, 1771–1792. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Zhu, J.; Shen, G.; Deng, Y.; Geng, X.; Wang, L. Improving Aptamer Performance: Key Factors and Strategies. Microchim. Acta 2023, 190, 255. [Google Scholar] [CrossRef]
- Vorobyeva, M.A.; Davydova, A.S.; Vorobjev, P.E.; Pyshnyi, D.V.; Venyaminova, A.G. Key Aspects of Nucleic Acid Library Design for in Vitro Selection. Int. J. Mol. Sci. 2018, 19, 470. [Google Scholar] [CrossRef]
- Gopinath, S.C.B. Methods Developed for SELEX. Anal. Bioanal. Chem. 2007, 387, 171–182. [Google Scholar] [CrossRef]
- Olsen, T.; Zhu, J.; Kim, J.; Pei, R.; Stojanovic, M.N.; Lin, Q. An Integrated Microfluidic SELEX Approach Using Combined Electrokinetic and Hydrodynamic Manipulation. SLAS Technol. 2017, 22, 63–72. [Google Scholar] [CrossRef] [PubMed]
- Yu, F.; Li, H.; Sun, W.; Xu, D.; He, F. Rapid Selection of Aptamers Based on Protein Microarray. RSC Adv. 2019, 9, 9762–9768. [Google Scholar] [CrossRef]
- Niu, C.; Zhang, C.; Liu, J. Capture-SELEX of DNA Aptamers for Estradiol Specifically and Estrogenic Compounds Collectively. Environ. Sci. Technol. 2022, 56, 17702–17711. [Google Scholar] [CrossRef]
- Takenaka, M.; Okumura, Y.; Amino, T.; Miyachi, Y.; Ogino, C.; Kondo, A. DNA-Duplex Linker for AFM-SELEX of DNA Aptamer against Human Serum Albumin. Bioorganic Med. Chem. Lett. 2017, 27, 954–957. [Google Scholar] [CrossRef]
- Gordon, C.K.L.; Wu, D.; Pusuluri, A.; Feagin, T.A.; Csordas, A.T.; Eisenstein, M.S.; Hawker, C.J.; Niu, J.; Soh, H.T. Click-Particle Display for Base-Modified Aptamer Discovery. ACS Chem. Biol. 2019, 14, 2652–2662. [Google Scholar] [CrossRef]
- Li, L.; Zhou, J.; Wang, K.; Chen, X.; Fu, L.; Wang, Y. Screening and Identification of Specific Aptamers for Shellfish Allergen Tropomyosin with Capillary Electrophoresis-SELEX. Food Anal. Methods 2022, 15, 1535–1544. [Google Scholar] [CrossRef]
- Nelissen, F.H.T.; Peeters, W.J.M.; Roelofs, T.P.; Nagelkerke, A.; Span, P.N.; Heus, H.A. Improving Breast Cancer Treatment Specificity Using Aptamers Obtained by 3D Cell-SELEX. Pharmaceuticals 2021, 14, 349. [Google Scholar] [CrossRef] [PubMed]
- Civit, L.; Theodorou, I.; Frey, F.; Weber, H.; Lingnau, A.; Gröber, C.; Blank, M.; Dambrune, C.; Stunden, J.; Beyer, M.; et al. Targeting Hormone Refractory Prostate Cancer by in Vivo Selected DNA Libraries in an Orthotopic Xenograft Mouse Model. Sci. Rep. 2019, 9, 4976. [Google Scholar] [CrossRef]
- Buglak, A.A.; Samokhvalov, A.V.; Zherdev, A.V.; Dzantiev, B.B. Methods and Applications of In Silico Aptamer Design and Modeling. Int. J. Mol. Sci. 2020, 21, 8420. [Google Scholar] [CrossRef]
- Ni, X.; Castanares, M.; Mukherjee, A.; Lupold, S.E. Nucleic Acid Aptamers: Clinical Applications and Promising New Horizons. Curr. Med. Chem. 2011, 18, 4206–4214. [Google Scholar] [CrossRef]
- Sola, M.; Menon, A.P.; Moreno, B.; Meraviglia-Crivelli, D.; Soldevilla, M.M.; Cartón-García, F.; Pastor, F. Aptamers Against Live Targets: Is In Vivo SELEX Finally Coming to the Edge? Mol. Ther. Nucleic Acids 2020, 21, 192–204. [Google Scholar] [CrossRef] [PubMed]
- Dickey, D.D.; Giangrande, P.H.; Thiel, W.H. 744. Optimizing Conditions for Aptamer Folding Using a High-Throughput Aptamer Fluorescence Binding and Internalization (AFBI) Assay. Mol. Ther. 2016, 24, S293. [Google Scholar] [CrossRef]
- Ma, P.; Ye, H.; Guo, H.; Ma, X.; Yue, L.; Wang, Z. Aptamer Truncation Strategy Assisted by Molecular Docking and Sensitive Detection of T-2 Toxin Using SYBR Green I as a Signal Amplifier. Food Chem. 2022, 381, 132171. [Google Scholar] [CrossRef]
- Ji, D.; Feng, H.; Liew, S.W.; Kwok, C.K. Modified Nucleic Acid Aptamers: Development, Characterization, and Biological Applications. Trends Biotechnol. 2023, 41, 1360–1384. [Google Scholar] [CrossRef]
- Shum, K.T.; Tanner, J.A. Differential Inhibitory Activities and Stabilisation of DNA Aptamers against the SARS Coronavirus Helicase. ChemBioChem 2008, 9, 3037–3045. [Google Scholar] [CrossRef]
- Haruta, K.; Otaki, N.; Nagamine, M.; Kayo, T.; Sasaki, A.; Hiramoto, S.; Takahashi, M.; Hota, K.; Sato, H.; Yamazaki, H. A Novel PEGylation Method for Improving the Pharmacokinetic Properties of Anti-Interleukin-17A RNA Aptamers. Nucleic Acid Ther. 2017, 27, 36–44. [Google Scholar] [CrossRef] [PubMed]
- Amaya-González, S.; López-López, L.; Miranda-Castro, R.; de-los-Santos-Álvarez, N.; Miranda-Ordieres, A.J.; Lobo-Castañón, M.J. Affinity of Aptamers Binding 33-Mer Gliadin Peptide and Gluten Proteins: Influence of Immobilization and Labeling Tags. Anal. Chim. Acta 2015, 873, 63–70. [Google Scholar] [CrossRef]
- Alves Ferreira-Bravo, I.; Cozens, C.; Holliger, P.; DeStefano, J.J. Selection of 2′-Deoxy-2′-Fluoroarabinonucleotide (FANA) Aptamers That Bind HIV-1 Reverse Transcriptase with Picomolar Affinity. Nucleic Acids Res. 2015, 43, 9587–9599. [Google Scholar] [CrossRef]
- Kasahara, Y.; Irisawa, Y.; Fujita, H.; Yahara, A.; Ozaki, H.; Obika, S.; Kuwahara, M. Capillary Electrophoresis–Systematic Evolution of Ligands by Exponential Enrichment Selection of Base- and Sugar-Modified DNA Aptamers: Target Binding Dominated by 2′-O,4′-C-Methylene-Bridged/Locked Nucleic Acid Primer. Anal. Chem. 2013, 85, 4961–4967. [Google Scholar] [CrossRef]
- Abeydeera, N.D.; Egli, M.; Cox, N.; Mercier, K.; Conde, J.N.; Pallan, P.S.; Mizurini, D.M.; Sierant, M.; Hibti, F.-E.; Hassell, T.; et al. Evoking Picomolar Binding in RNA by a Single Phosphorodithioate Linkage. Nucleic Acids Res. 2016, 44, 8052–8064. [Google Scholar] [CrossRef] [PubMed]
- Kohn, E.M.; Konovalov, K.; Gomez, C.A.; Hoover, G.N.; Yik, A.K.; Huang, X.; Martell, J.D. Terminal Alkyne-Modified DNA Aptamers with Enhanced Protein Binding Affinities. ACS Chem. Biol. 2023, 18, 1976–1984. [Google Scholar] [CrossRef]
- Matsunaga, K.-I.; Kimoto, M.; Lim, V.W.; Tan, H.P.; Wong, Y.Q.; Sun, W.; Vasoo, S.; Leo, Y.S.; Hirao, I. High-Affinity Five/Six-Letter DNA Aptamers with Superior Specificity Enabling the Detection of Dengue NS1 Protein Variants beyond the Serotype Identification. Nucleic Acids Res. 2021, 49, 11407–11424. [Google Scholar] [CrossRef] [PubMed]
- Minagawa, H.; Kataoka, Y.; Kuwahara, M.; Horii, K.; Shiratori, I.; Waga, I. A High Affinity Modified DNA Aptamer Containing Base-Appended Bases for Human β-Defensin. Anal. Biochem. 2020, 594, 113627. [Google Scholar] [CrossRef]
- Morihiro, K.; Hasegawa, O.; Kasahara, Y.; Mori, S.; Kasai, T.; Kuwahara, M.; Obika, S. Azobenzene-Modified DNA Aptamers Evolved by Capillary Electrophoresis (CE)-SELEX Method. Bioorganic Med. Chem. Lett. 2021, 31, 127607. [Google Scholar] [CrossRef]
- Kulkarni, O.; Pawar, R.D.; Purschke, W.; Eulberg, D.; Selve, N.; Buchner, K.; Ninichuk, V.; Segerer, S.; Vielhauer, V.; Klussmann, S.; et al. Spiegelmer Inhibition of CCL2/MCP-1 Ameliorates Lupus Nephritis in MRL-(Fas)Lpr Mice. J. Am. Soc. Nephrol. 2007, 18, 2350–2358. [Google Scholar] [CrossRef]
- Oberthür, D.; Achenbach, J.; Gabdulkhakov, A.; Buchner, K.; Maasch, C.; Falke, S.; Rehders, D.; Klussmann, S.; Betzel, C. Crystal Structure of a Mirror-Image L-RNA Aptamer (Spiegelmer) in Complex with the Natural L-Protein Target CCL2. Nat. Commun. 2015, 6, 6923. [Google Scholar] [CrossRef] [PubMed]
- Ren, S.; Cho, S.; Lin, R.; Gedi, V.; Park, S.; Ahn, C.W.; Lee, D.-K.; Lee, M.-H.; Lee, S.; Kim, S. Nonbiodegradable Spiegelmer-Driven Colorimetric Biosensor for Bisphenol A Detection. Biosensors 2022, 12, 864. [Google Scholar] [CrossRef]
- Litke, J.L.; Jaffrey, S.R. Designing and Expressing Circular RNA Aptamers to Regulate Mammalian Cell Biology. Methods Mol. Biol. 2023, 2570, 223–234. [Google Scholar] [CrossRef]
- Liang, H.; Yan, Z.; Tong, Y.; Chen, S.; Li, J.; Chen, L.; Yang, H. Circular Bivalent Aptamers Enhance the Activation of the Regenerative Signaling Pathway for Repairing Liver Injury In Vivo. Chem. Commun. 2023, 59, 1621–1624. [Google Scholar] [CrossRef]
- Ding, C.; Zhang, C.; Cheng, S.; Xian, Y. Multivalent Aptamer Functionalized Ag2S Nanodots/Hybrid Cell Membrane-Coated Magnetic Nanobioprobe for the Ultrasensitive Isolation and Detection of Circulating Tumor Cells. Adv. Funct. Mater. 2020, 30, 1909781. [Google Scholar] [CrossRef]
- Zhang, Z.; Pandey, R.; Li, J.; Gu, J.; White, D.; Stacey, H.D.; Ang, J.C.; Steinberg, C.-J.; Capretta, A.; Filipe, C.D.M.; et al. High-Affinity Dimeric Aptamers Enable the Rapid Electrochemical Detection of Wild-Type and B.1.1.7 SARS-CoV-2 in Unprocessed Saliva. Angew. Chem. Int. Ed. 2021, 60, 24266–24274. [Google Scholar] [CrossRef] [PubMed]
- Nie, J.; Yuan, L.; Jin, K.; Han, X.; Tian, Y.; Zhou, N. Electrochemical Detection of Tobramycin Based on Enzymes-Assisted Dual Signal Amplification by Using a Novel Truncated Aptamer with High Affinity. Biosens. Bioelectron. 2018, 122, 254–262. [Google Scholar] [CrossRef]
- Dhiman, A.; Anand, A.; Malhotra, A.; Khan, E.; Santra, V.; Kumar, A.; Sharma, T.K. Rational Truncation of Aptamer for Cross-Species Application to Detect Krait Envenomation. Sci. Rep. 2018, 8, 17795. [Google Scholar] [CrossRef]
- Mei, H.; Bing, T.; Yang, X.; Qi, C.; Chang, T.; Liu, X.; Cao, Z.; Shangguan, D. Functional-Group Specific Aptamers Indirectly Recognizing Compounds with Alkyl Amino Group. Anal. Chem. 2012, 84, 7323–7329. [Google Scholar] [CrossRef]
- Sequeira-Antunes, B.; Ferreira, H.A. Nucleic Acid Aptamer-Based Biosensors: A Review. Biomedicines 2023, 11, 3201. [Google Scholar] [CrossRef]
- Wolfe, M.; Cramer, A.; Webb, S.; Goorskey, E.; Chushak, Y.; Mirau, P.; Arroyo-Currás, N.; Chávez, J.L. Rational Approach to Optimizing Conformation-Switching Aptamers for Biosensing Applications. ACS Sens. 2024, 9, 717–725. [Google Scholar] [CrossRef] [PubMed]
- Seo, H.B.; Gu, M.B. Aptamer-Based Sandwich-Type Biosensors. J. Biol. Eng. 2017, 11, 11. [Google Scholar] [CrossRef] [PubMed]
- Han, K.; Liang, Z.; Zhou, N. Design Strategies for Aptamer-Based Biosensors. Sensors 2010, 10, 4541–4557. [Google Scholar] [CrossRef]
- Feagin, T.A.; Maganzini, N.; Soh, H.T. Strategies for Creating Structure-Switching Aptamers. ACS Sens. 2018, 3, 1611–1615. [Google Scholar] [CrossRef]
- Akgönüllü, S.; Özgür, E.; Denizli, A. Quartz Crystal Microbalance-Based Aptasensors for Medical Diagnosis. Micromachines 2022, 13, 1441. [Google Scholar] [CrossRef]
- Ning, Y.; Hu, J.; Lu, F. Aptamers Used for Biosensors and Targeted Therapy. Biomed. Pharmacother. 2020, 132, 110902. [Google Scholar] [CrossRef]
- Zhan, H.; Yang, S.; Li, C.; Liu, R.; Chen, W.; Wang, X.; Zhao, Y.; Xu, K. A Highly Sensitive Competitive Aptasensor for AFB1 Detection Based on an Exonuclease-Assisted Target Recycling Amplification Strategy. Anal. Methods 2022, 15, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Debiais, M.; Lelievre, A.; Smietana, M.; Müller, S. Splitting Aptamers and Nucleic Acid Enzymes for the Development of Advanced Biosensors. Nucleic Acids Res. 2020, 48, 3400–3422. [Google Scholar] [CrossRef]
- Chang, C.-C.; Yeh, C.-Y. Using Simple-Structured Split Aptamer for Gold Nanoparticle-Based Colorimetric Detection of Estradiol. Anal. Sci. 2021, 37, 479–483. [Google Scholar] [CrossRef]
- Chen, C.-H.; Jong, Y.-J.; Chao, Y.-Y.; Wang, C.-C.; Chen, Y.-L. Fluorescent Aptasensor Based on Conformational Switch–Induced Hybridization for Facile Detection of β-Amyloid Oligomers. Anal. Bioanal. Chem. 2022, 414, 8155–8165. [Google Scholar] [CrossRef]
- Pei, X.; Wu, X.; Xiong, J.; Wang, G.; Tao, G.; Ma, Y.; Li, N. Competitive Aptasensor for the Ultrasensitive Multiplexed Detection of Cancer Biomarkers by Fluorescent Nanoparticle Counting. Analyst 2020, 145, 3612–3619. [Google Scholar] [CrossRef] [PubMed]
- Serebrennikova, K.V.; Samokhvalov, A.V.; Zherdev, A.V.; Dzantiev, B.B. A Fluorescence Resonance Energy Transfer Aptasensor for Aflatoxin B1 Based on Ligand-Induced ssDNA Displacement. Molecules 2023, 28, 7889. [Google Scholar] [CrossRef]
- Zhang, B.; Wei, C. An Aptasensor for the Label-Free Detection of Thrombin Based on Turn-on Fluorescent DNA-Templated Cu/Ag Nanoclusters. RSC Adv. 2020, 10, 35374–35380. [Google Scholar] [CrossRef]
- Zhang, S.; Song, G.; Yang, Z.; Kang, K.; Liu, X. A Label-Free Fluorescence Aptamer Sensor for Point-of-Care Serotonin Detection. Talanta 2024, 277, 126363. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Huang, R.; Xiong, L.; Chen, F.; Sun, W.; Yu, L. A Colorimetric Aptasensor for Ochratoxin A Detection Based on Tetramethylrhodamine Charge Effect-Assisted Silver Enhancement. Biosensors 2023, 13, 468. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Zhang, Q.; Ye, L. Colorimetric Aptasensing of Microcystin-LR Using DNA-Conjugated Polydiacetylene. Anal. Bioanal. Chem. 2024, 416, 7131–7140. [Google Scholar] [CrossRef]
- Li, G.; Yu, T.; Li, H.; Wan, B.; Tan, X.; Zhou, X.; Liang, J.; Zhou, Z. Colorimetric Aptasensors for Sensitive Low-Density Lipoprotein Detection Based on Reduced Oxide Graphene@molybdenum Disulfide-Ferrocene Nanosheets with Peroxidase-like Activity. Anal. Methods 2024, 17, 136–144. [Google Scholar] [CrossRef]
- Ogunmolasuyi, A.M.; Fogel, R.; Hoppe, H.; Goldring, D.; Limson, J. A Microfluidic Paper Analytical Device Using Capture Aptamers for the Detection of PfLDH in Blood Matrices. Malar. J. 2022, 21, 174. [Google Scholar] [CrossRef]
- Lv, X.; Frahat Foda, M.; He, J.; Zhou, J.; Cai, J. Robust and Facile Label-Free Colorimetric Aptasensor for Ochratoxin A Detection Using Aptamer-Enhanced Oxidase-like Activity of MnO2 Nanoflowers. Food Chem. 2023, 401, 134144. [Google Scholar] [CrossRef]
- Khan, A.; Di, K.; Khan, H.; He, N.; Li, Z. Rapid Capturing and Chemiluminescent Sensing of Programmed Death Ligand-1 Expressing Extracellular Vesicles. Biosensors 2022, 12, 281. [Google Scholar] [CrossRef]
- Liu, J.; Wang, X.; Sun, Y.; Luo, C. A Novel Chemiluminescence Sensor for Alpha-Fetoprotein Detection Based on an Aptamer–Luminol Modified Magnetic Graphene Oxide and Copper-Based MOF Composite. Anal. Methods 2024, 16, 5723–5732. [Google Scholar] [CrossRef] [PubMed]
- Han, R.; Sun, Y.; Dai, Y.; Gao, D.; Wang, X.; Luo, C. A Chemiluminescence Aptasensor for Sensitive Detection of Carcinoembryonic Antigen Based on Dual Aptamer-Conjugates Biorecognition. Sens. Actuators B Chem. 2021, 326, 128833. [Google Scholar] [CrossRef]
- Yan, X.; Ji, Y.; Xiao, Y.; Xue, X.; Liu, J.; Li, S.; Ai, F.; Zheng, X. One-Pot Label-Free Dual-Aptasensor as a Chemiluminescent Tool Kit Simultaneously Detect Adenosine Triphosphate and Chloramphenicol in Foods. Talanta 2021, 229, 122226. [Google Scholar] [CrossRef] [PubMed]
- Guan, Y.; Ma, J.; Neng, J.; Yang, B.; Wang, Y.; Xing, F. A Novel and Label-Free Chemiluminescence Detection of Zearalenone Based on a Truncated Aptamer Conjugated with a G-Quadruplex DNAzyme. Biosensors 2023, 13, 118. [Google Scholar] [CrossRef]
- Han, X.; Qin, M.; Lu, X.; Wang, Q.; Zhang, Y.; Wang, Z. A Highly Sensitive SERS Aptasensor Using a Novel Truncated Aptamer for the Detection of Deoxynivalenol. Sens. Actuators B Chem. 2025, 424, 136908. [Google Scholar] [CrossRef]
- Chen, F.; Huang, Y.; Liu, Y.; Zhuang, Y.; Cao, X.; Qin, X. SERS Analysis Platform Based on Aptamer Recognition-Release Strategy for Efficient and Sensitive Diagnosis of Colorectal Precancerous Lesions. Int. J. Nanomed. 2024, 19, 10009–10021. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.; Park, J.; Kim, W.; Jo, S.; Kim, M.; Kim, C.; Park, H.; Bang, D.; Lee, W.; Park, J. Bio-Inspired Ag Nanovilli-Based Sandwich-Type SERS Aptasensor for Ultrasensitive and Selective Detection of 25-Hydroxy Vitamin D3. Biosens. Bioelectron. 2021, 188, 113341. [Google Scholar] [CrossRef]
- Park, K.S.; Choi, A.; Kim, H.J.; Park, I.; Eom, M.-S.; Yeo, S.-G.; Son, R.G.; Park, T.-I.; Lee, G.; Soh, H.T.; et al. Ultra-Sensitive Label-Free SERS Biosensor with High-Throughput Screened DNA Aptamer for Universal Detection of SARS-CoV-2 Variants from Clinical Samples. Biosens. Bioelectron. 2023, 228, 115202. [Google Scholar] [CrossRef] [PubMed]
- Hua, Y.; Wang, R.; Li, D. A Fiber-Based SPR Aptasensor for the In Vitro Detection of Inflammation Biomarkers. Micromachines 2022, 13, 1036. [Google Scholar] [CrossRef]
- Villalonga, A.; Parrado, C.; Díaz, R.; Sánchez, A.; Mayol, B.; Martínez-Ruíz, P.; Vilela, D.; Villalonga, R. Supramolecular Enzymatic Labeling for Aptamer Switch-Based Electrochemical Biosensor. Biosensors 2022, 12, 514. [Google Scholar] [CrossRef]
- Villalonga, A.; Díaz, R.; Ojeda, I.; Sánchez, A.; Mayol, B.; Martínez-Ruiz, P.; Villalonga, R.; Vilela, D. Sandwich-Type Electrochemical Aptasensor with Supramolecular Architecture for Prostate-Specific Antigen. Molecules 2024, 29, 4714. [Google Scholar] [CrossRef] [PubMed]
- Ye, C.; Wang, M.; Min, J.; Tay, R.Y.; Lukas, H.; Sempionatto, J.R.; Li, J.; Xu, C.; Gao, W. A Wearable Aptamer Nanobiosensor for Non-Invasive Female Hormone Monitoring. Nat. Nanotechnol. 2024, 19, 330–337. [Google Scholar] [CrossRef]
- Alharbi, M.A.; Rhouati, A.; Zourob, M. Development of a Label-Free Electrochemical Aptasensor for Rift Valley Fever Virus Detection. Sci. Rep. 2024, 14, 23892. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Karimi-Maleh, H. In Situ Synthesis of Label-Free Electrochemical Aptasensor-Based Sandwich-like AuNPs/PPy/Ti3C2Tx for Ultrasensitive Detection of Lead Ions as Hazardous Pollutants in Environmental Fluids. Chemosphere 2023, 324, 138302. [Google Scholar] [CrossRef]
- Cennamo, N.; Pasquardini, L.; Arcadio, F.; Lunelli, L.; Vanzetti, L.; Carafa, V.; Altucci, L.; Zeni, L. SARS-CoV-2 Spike Protein Detection through a Plasmonic D-Shaped Plastic Optical Fiber Aptasensor. Talanta 2021, 233, 122532. [Google Scholar] [CrossRef] [PubMed]
- Vu, C.-A.; Yang, W.-W.; Chan, H.W.-H.; Chen, W.-Y. An Aptamer Sandwich Assay for Protein Biomarker Detection by Solution-Gated Silicon Nanowire Field-Effect Transistor Systems. Microchem. J. 2024, 207, 112245. [Google Scholar] [CrossRef]
- Senturk, H.; Eksin, E.; Işık, Ö.; İlaslan, Z.; Mısırlı, F.; Erdem, A. Impedimetric Aptasensor for Lysozyme Detection Based on Carbon Nanofibres Enriched Screen-Printed Electrodes. Electrochim. Acta 2021, 377, 138078. [Google Scholar] [CrossRef]
- Park, K. Impedance Technique-Based Label-Free Electrochemical Aptasensor for Thrombin Using Single-Walled Carbon Nanotubes-Casted Screen-Printed Carbon Electrode. Sensors 2022, 22, 2699. [Google Scholar] [CrossRef]
- Yuan, M.; Song, Z.; Fei, J.; Wang, X.; Xu, F.; Cao, H.; Yu, J. Aptasensor for Lead(II) Based on the Use of a Quartz Crystal Microbalance Modified with Gold Nanoparticles. Microchim. Acta 2017, 184, 1397–1403. [Google Scholar] [CrossRef]
- Dong, Z.-M.; Zhao, G.-C. Quartz Crystal Microbalance Aptasensor for Sensitive Detection of Mercury(II) Based on Signal Amplification with Gold Nanoparticles. Sensors 2012, 12, 7080–7094. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, S.; Zhang, X.; Du, C.; Si, S.; Chen, J. A High-Frequency QCM Biosensing Platform for Label-Free Detection of the SARS-CoV-2 Spike Receptor-Binding Domain: An Aptasensor and an Immunosensor. Analyst 2023, 148, 719–723. [Google Scholar] [CrossRef]
- Ji, J.; Pang, Y.; Li, D.; Huang, Z.; Zhang, Z.; Xue, N.; Xu, Y.; Mu, X. An Aptamer-Based Shear Horizontal Surface Acoustic Wave Biosensor with a CVD-Grown Single-Layered Graphene Film for High-Sensitivity Detection of a Label-Free Endotoxin. Microsyst. Nanoeng. 2020, 6, 4. [Google Scholar] [CrossRef]
- Gao, F.; Li, Z.Q.; Li, J.Y.; Li, Z.Y.; Wei, J.; Ding, X.; Wang, L.; Zhai, L.Y.; Nan, J.C.; Wang, C. Aptamer-Based Microcantilever Biosensors for Label-Free PSA Detection. IEEE Sens. J. 2024, 25, 266–273. [Google Scholar] [CrossRef]
- Vishnubhotla, R.; Montgomery, C.B.; Steffens, K.L.; Semancik, S. Conformational Changes of Immobilized Polythymine Due to External Stressors Studied with Temperature-Controlled Electrochemical Microdevices. Langmuir 2021, 37, 2607–2618. [Google Scholar] [CrossRef] [PubMed]
- Jarczewska, M.; Ziółkowski, R.; Górski, Ł.; Malinowska, E. Application of RNA Aptamers as Recognition Layers for the Electrochemical Analysis of C-Reactive Protein. Electroanalysis 2018, 30, 658–664. [Google Scholar] [CrossRef]
- Meirinho, S.G.; Dias, L.G.; Peres, A.M.; Rodrigues, L.R. Electrochemical Aptasensor for Human Osteopontin Detection Using a DNA Aptamer Selected by SELEX. Anal. Chim. Acta 2017, 987, 25–37. [Google Scholar] [CrossRef] [PubMed]
- Levicky, R.; Herne, T.M.; Tarlov, M.J.; Satija, S.K. Using Self-Assembly To Control the Structure of DNA Monolayers on Gold: A Neutron Reflectivity Study. J. Am. Chem. Soc. 1998, 120, 9787–9792. [Google Scholar] [CrossRef]
- Meng, X.; O’Hare, D.; Ladame, S. Surface Immobilization Strategies for the Development of Electrochemical Nucleic Acid Sensors. Biosens. Bioelectron. 2023, 237, 115440. [Google Scholar] [CrossRef]
- Sheng, W.; Chen, T.; Kamath, R.; Xiong, X.; Tan, W.; Fan, Z.H. Aptamer-Enabled Efficient Isolation of Cancer Cells from Whole Blood Using a Microfluidic Device. Anal. Chem. 2012, 84, 4199–4206. [Google Scholar] [CrossRef]
- Pei, H.; Lu, N.; Wen, Y.; Song, S.; Liu, Y.; Yan, H.; Fan, C. A DNA Nanostructure-Based Biomolecular Probe Carrier Platform for Electrochemical Biosensing. Adv. Mater. 2010, 22, 4754–4758. [Google Scholar] [CrossRef]
- Aliakbarinodehi, N.; Jolly, P.; Bhalla, N.; Miodek, A.; De Micheli, G.; Estrela, P.; Carrara, S. Aptamer-Based Field-Effect Biosensor for Tenofovir Detection. Sci. Rep. 2017, 7, 44409. [Google Scholar] [CrossRef] [PubMed]
- Liu, J. Oligonucleotide-Functionalized Hydrogels as Stimuli Responsive Materials and Biosensors. Soft Matter 2011, 7, 6757–6767. [Google Scholar] [CrossRef]
- Oberhaus, F.V.; Frense, D.; Beckmann, D. Immobilization Techniques for Aptamers on Gold Electrodes for the Electrochemical Detection of Proteins: A Review. Biosensors 2020, 10, 45. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.; Wang, G.; Hein, R.; Liu, N.; Luo, X.; Davis, J.J. Antifouling Strategies for Selective In Vitro and In Vivo Sensing. Chem. Rev. 2020, 120, 3852–3889. [Google Scholar] [CrossRef]
- Liu, Y.; Canoura, J.; Alkhamis, O.; Xiao, Y. Immobilization Strategies for Enhancing Sensitivity of Electrochemical Aptamer-Based Sensors. ACS Appl. Mater. Interfaces 2021, 13, 9491–9499. [Google Scholar] [CrossRef]
- Fallah, A.; Imani Fooladi, A.A.; Havaei, S.A.; Mahboobi, M.; Sedighian, H. Recent Advances in Aptamer Discovery, Modification and Improving Performance. Biochem. Biophys. Rep. 2024, 40, 101852. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Alkhamis, O.; Canoura, J.; Liu, Y.; Xiao, Y. Advances and Challenges in Small-Molecule DNA Aptamer Isolation, Characterization, and Sensor Development. Angew. Chem. Int. Ed. 2021, 60, 16800–16823. [Google Scholar] [CrossRef]
- Komarova, N.; Kuznetsov, A. Inside the Black Box: What Makes SELEX Better? Molecules 2019, 24, 3598. [Google Scholar] [CrossRef]
- Oliveira, R.; Pinho, E.; Barros, M.M.; Azevedo, N.F.; Almeida, C. In Vitro Selection of DNA Aptamers against Staphylococcal Enterotoxin A. Sci. Rep. 2024, 14, 11345. [Google Scholar] [CrossRef]
- Jia, Y.; Chen, S.; Wang, Q.; Li, J. Recent Progress in Biosensor Regeneration Techniques. Nanoscale 2024, 16, 2834–2846. [Google Scholar] [CrossRef]
- Thiviyanathan, V.; Gorenstein, D.G. Aptamers and the Next Generation of Diagnostic Reagents. Proteom. Clin. Appl. 2012, 6, 563–573. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Gao, X.; Widdicombe, B.; Zhang, X.; Zielinski, J.L.; Cheng, T.; Gunatilaka, A.; Leung, K.K.; Plaxco, K.W.; Rajasekharan Unnithan, R.; et al. Dual-Purpose Aptamer-Based Sensors for Real-Time, Multiplexable Monitoring of Metabolites in Cell Culture Media. ACS Nano 2024, 18, 26127–26139. [Google Scholar] [CrossRef] [PubMed]
- Dauphin-Ducharme, P.; Yang, K.; Arroyo-Currás, N.; Ploense, K.L.; Zhang, Y.; Gerson, J.; Kurnik, M.; Kippin, T.E.; Stojanovic, M.N.; Plaxco, K.W. Electrochemical Aptamer-Based Sensors for Improved Therapeutic Drug Monitoring and High-Precision, Feedback-Controlled Drug Delivery. ACS Sens. 2019, 4, 2832–2837. [Google Scholar] [CrossRef]
- Shrikrishna, N.S.; Halder, S.; Kesarwani, V.; Nagamani, K.; Gandhi, S. Unveiling the Potential: High-Affinity Aptamers for Point of Care Detection of SARS-CoV-2 RBD Protein and It’s Validation in Clinical Samples. Chem. Eng. J. 2024, 493, 152841. [Google Scholar] [CrossRef]
- Wang, J.; Guo, S.; Park, E.; Lee, S.; Park, Y.; Han, X.X.; Zhao, B.; Jung, Y.M. SERS-Based Aptamer Sensing Strategy for Diabetes Biomarker Detection. Anal. Chem. 2024, 96, 20082–20089. [Google Scholar] [CrossRef]
- McDonough, M.H.; Stocker, S.L.; Kippin, T.E.; Meiring, W.; Plaxco, K.W. Using Seconds-resolved Pharmacokinetic Datasets to Assess Pharmacokinetic Models Encompassing Time-varying Physiology. Brit. J. Clin. Pharma. 2023, 89, 2798–2812. [Google Scholar] [CrossRef] [PubMed]
- Alkhamis, O.; Canoura, J.; Wu, Y.; Emmons, N.A.; Wang, Y.; Honeywell, K.M.; Plaxco, K.W.; Kippin, T.E.; Xiao, Y. High-Affinity Aptamers for In Vitro and In Vivo Cocaine Sensing. J. Am. Chem. Soc. 2024, 146, 3230–3240. [Google Scholar] [CrossRef]
- Gerson, J.; Erdal, M.K.; Dauphin-Ducharme, P.; Idili, A.; Hespanha, J.P.; Plaxco, K.W.; Kippin, T.E. A High-precision View of Intercompartmental Drug Transport via Simultaneous, Seconds-resolved, in Situ Measurements in the Vein and Brain. Br. J Pharmacol. 2024, 181, 3869–3885. [Google Scholar] [CrossRef]
- Zhao, C.; Cheung, K.M.; Huang, I.-W.; Yang, H.; Nakatsuka, N.; Liu, W.; Cao, Y.; Man, T.; Weiss, P.S.; Monbouquette, H.G.; et al. Implantable Aptamer–Field-Effect Transistor Neuroprobes for in Vivo Neurotransmitter Monitoring. Sci. Adv. 2021, 7, eabj7422. [Google Scholar] [CrossRef]
- Rabiee, N.; Rabiee, M. Wearable Aptasensors. Anal. Chem. 2024, 96, 19160–19182. [Google Scholar] [CrossRef]
- Singh, N.K.; Chung, S.; Chang, A.-Y.; Wang, J.; Hall, D.A. A Non-Invasive Wearable Stress Patch for Real-Time Cortisol Monitoring Using a Pseudoknot-Assisted Aptamer. Biosens. Bioelectron. 2023, 227, 115097. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Zhao, C.; Wang, Z.; Yang, K.-A.; Cheng, X.; Liu, W.; Yu, W.; Lin, S.; Zhao, Y.; Cheung, K.M.; et al. Wearable Aptamer-Field-Effect Transistor Sensing System for Noninvasive Cortisol Monitoring. Sci. Adv. 2022, 8, eabk0967. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Tehrani, F.; Teymourian, H.; Mack, J.; Shaver, A.; Reynoso, M.; Kavner, J.; Huang, N.; Furmidge, A.; Duvvuri, A.; et al. Microneedle Aptamer-Based Sensors for Continuous, Real-Time Therapeutic Drug Monitoring. Anal. Chem. 2022, 94, 8335–8345. [Google Scholar] [CrossRef] [PubMed]
- Friedel, M.; Werbovetz, B.; Drexelius, A.; Watkins, Z.; Bali, A.; Plaxco, K.W.; Heikenfeld, J. Continuous Molecular Monitoring of Human Dermal Interstitial Fluid with Microneedle-Enabled Electrochemical Aptamer Sensors. Lab A Chip 2023, 23, 3289–3299. [Google Scholar] [CrossRef]
- Zheng, H.; GhavamiNejad, A.; GhavamiNejad, P.; Samarikhalaj, M.; Giacca, A.; Poudineh, M. Hydrogel Microneedle-Assisted Assay Integrating Aptamer Probes and Fluorescence Detection for Reagentless Biomarker Quantification. ACS Sens. 2022, 7, 2387–2399. [Google Scholar] [CrossRef]
- Childs, A.; Mayol, B.; Lasalde-Ramírez, J.A.; Song, Y.; Sempionatto, J.R.; Gao, W. Diving into Sweat: Advances, Challenges, and Future Directions in Wearable Sweat Sensing. ACS Nano 2024, 18, 24605–24616. [Google Scholar] [CrossRef]
Modification | Analyte | Strategy | Properties | Method | Refs. |
---|---|---|---|---|---|
Nucleic acid terminals | SARS-CoV helicase | Inverted thymidine or biotin | Nuclease resistance | Post-SELEX | [74] |
Interleukin-17A | Pegylation | Nuclease resistance | Post-SELEX | [75] | |
33-mer gliadin | 5′- thiol, biotin and 6-FAM | Decreased affinity | Post-SELEX | [76] | |
Sugar ring | HIV-1 reverse transcriptase | 2′-deoxy-2′-fluoroarabinonucleotides | Nuclease resistance Stability | Mod-SELEX | [77] |
Thrombin | 2′-O,4′-C-methylene-bridged/linked bicyclic ribonucleotides | Binding affinity Nuclease resistance | Mod-SELEX | [78] | |
Phosphodiester linkage | Thrombin and VEGF165 | Phosphorodithioate | Binding affinity Nuclease resistance | Post-SELEX | [79] |
Bases | Thrombin | C5-modified thymidine bearing N6-ethyladenine | Binding affinity Nuclease resistance | Mod-SELEX | [78] |
Thrombin | Alkyne | Binding affinity | Mod-SELEX | [80] | |
Dengue non-structural protein 1 | 7-(2-thienyl)imidazo[4,5-b]pyridine (new base) | Binding affinity | Mod-SELEX | [81] | |
Human β-defensins | Modified nucleotide triphosphate dAadTP | Binding affinity | Mod-SELEX | [82] | |
Thrombin | 2′-deoxyuridine analogue bearing an azobenzene moiety at C5-position (dUAzTP) | Photoisomerization | Mod-SELEX | [83] | |
Spiegelmers | L-CLL2 (Monocyte Chemoattractant Protein-1) | Mirror image | Stability, no immunological response | Post-SELEX | [84,85] |
Bisphenol A | Mirror image | Nuclease resistance | Post-SELEX | [86] | |
Circular Aptamers | NF-κB | 5′ and 3′ ends attached | Stability, nuclease resistance | Genetically encoding | [87] |
Mesenchymal-epithelial transition factor receptors | Hybridizing two monovalent aptamers | Stability, nuclease resistance | Post-SELEX | [88] | |
Multivalent and Dimerization | Circulating Tumor Cells | Multivalent aptamer functionalized Ag2S NDs | Binding affinity | Post-SELEX | [89] |
SARS-CoV-2 | Polythymidine (polyT) linker | Binding affinity | Post-SELEX | [90] | |
Truncation | Tobramycin | Molecular docking | Improved or comparable binding affinity, while reducing costs | Post-SELEX | [91] |
T-2 toxin | Molecular docking | Improved or comparable binding affinity, while reducing costs | Post-SELEX | [71] | |
α-Toxin | Molecular docking | Improved or comparable binding affinity, while reducing costs | Post-SELEX | [92] |
Signal | Strategy | Target | Applications | Ref. | ||
---|---|---|---|---|---|---|
Optical | Fluorescence | Labeled | Capture | Aβ oligomers | Disease diagnosis | [104] |
Sandwich | Carcinoembryonic antigen (CEA), human-α thrombin and prostate-specific antigen (PSA) | Cancer detection | [105] | |||
Displacement | Aflatoxin B1 | Food contamination control | [106] | |||
Label-free | Capture | Thrombin | Disease diagnosis | [107] | ||
Displacement | Serotonin | Disease diagnosis | [108] | |||
Colorimetric | Labeled | Capture | Ochratoxin A | Food contamination control | [109] | |
Displacement | microcystin-LR | Environmental monitoring and public health | [110] | |||
Sandwich | Low-density lipoprotein (LDL) | Cardiovascular disease diagnosis | [111] | |||
Label-free | Capture | Plasmodium falciparum lactate dehydrogenase (rPfLDH) | Disease diagnosis | [112] | ||
Displacement | Ochratoxin A | Food contamination control | [113] | |||
Chemiluminescence | Labeled | Capture | Programmed death ligand-1 (PD-L1) expressing EVs | Cancer detection | [114] | |
Displacement | Alpha-fetoprotein detection | Cancer detection | [115] | |||
Sandwich | CEA | Cancer detection | [116] | |||
Label-free | Capture | Adenosine triphosphate and chloramphenicol | Food contamination control | [117] | ||
Displacement | Zearalenone | Food contamination control | [118] | |||
SERS | Labeled | Capture | Deoxynivalenol | Food contamination control | [119] | |
Displacement | Colorectal precancerous lesion biomarkers, hnRNP A1 and S100P | Cancer detection | [120] | |||
Sandwich | 25-hydroxy vitamin D3 | Disease diagnosis | [121] | |||
Label-free | Capture | SARS-CoV-2 | Disease diagnosis | [122] | ||
SPR | Label-free | Capture | C-reactive protein (CRP) and cardiac troponin I (cTn-I) | Disease diagnosis | [123] | |
Electrical | Electrochemical | Labeled | Capture | CEA | Cancer detection | [124] |
Sandwich | PSA | Cancer detection | [125] | |||
Displacement | Oestradiol | Disease diagnosis | [126] | |||
Label free | Capture | Rift Valley fever virus | Disease diagnosis | [127] | ||
Displacement | Pb2+ | Environmental monitoring and public health | [128] | |||
FET | Label-free | Capture | SARS-CoV-2 spike protein | Disease diagnosis | [129] | |
Sandwich | Cardiac Troponin I (cTnI) | Disease diagnosis | [130] | |||
Impedance | Label-free | Capture | Lysozyme | Disease diagnosis | [131] | |
Displacement | Thrombin | Disease diagnosis | [132] | |||
Mass sensitive | QCM | Labeled | Displacement | Pb2+ | Environmental monitoring and public health | [133] |
Sandwich | Hg2+ | Environmental monitoring and public health | [134] | |||
Label-free | Capture | SARS-CoV-2 spike | Disease diagnosis | [135] | ||
SAW (Surface acoustic wave) | Label-free | Capture | Endotoxin from E. Coli | Disease diagnosis | [136] | |
Micromechanics | Label-free | Capture | PSA | Disease diagnosis | [137] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mayol, B.; Qubbaj, I.Z.; Nava-Granados, J.; Vasquez, K.; Keene, S.T.; Sempionatto, J.R. Aptamer and Oligonucleotide-Based Biosensors for Health Applications. Biosensors 2025, 15, 277. https://doi.org/10.3390/bios15050277
Mayol B, Qubbaj IZ, Nava-Granados J, Vasquez K, Keene ST, Sempionatto JR. Aptamer and Oligonucleotide-Based Biosensors for Health Applications. Biosensors. 2025; 15(5):277. https://doi.org/10.3390/bios15050277
Chicago/Turabian StyleMayol, Beatriz, I. Zeina Qubbaj, Julieta Nava-Granados, Katherine Vasquez, Scott T. Keene, and Juliane R. Sempionatto. 2025. "Aptamer and Oligonucleotide-Based Biosensors for Health Applications" Biosensors 15, no. 5: 277. https://doi.org/10.3390/bios15050277
APA StyleMayol, B., Qubbaj, I. Z., Nava-Granados, J., Vasquez, K., Keene, S. T., & Sempionatto, J. R. (2025). Aptamer and Oligonucleotide-Based Biosensors for Health Applications. Biosensors, 15(5), 277. https://doi.org/10.3390/bios15050277