Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,522)

Search Parameters:
Keywords = electrochemical anodization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2358 KiB  
Article
Polishing of AISI 304 SS by Electrolytic Plasma in Aqueous Urea Solution: Effect on Surface Modification and Corrosion Resistance
by Hugo Pérez-Durán, Francisco Martínez-Baltodano and Gregorio Vargas-Gutiérrez
Materials 2025, 18(16), 3786; https://doi.org/10.3390/ma18163786 - 12 Aug 2025
Abstract
Plasma Electrolytic Polishing (PEP) is an advanced anodic process that enhances stainless steel surfaces through controlled electrochemical dissolution and plasma-mediated modification. This study demonstrates that PEP treatment of AISI 304 SS at 300 V in aqueous urea solution (3.0 wt.%)/NH4NO3 [...] Read more.
Plasma Electrolytic Polishing (PEP) is an advanced anodic process that enhances stainless steel surfaces through controlled electrochemical dissolution and plasma-mediated modification. This study demonstrates that PEP treatment of AISI 304 SS at 300 V in aqueous urea solution (3.0 wt.%)/NH4NO3 (0.25 wt.%) achieves remarkable improvements: surface roughness decreases by 54.6% (from 0.197 ± 0.023 μm to 0.0895 ± 0.0205 μm) with minimal mass loss (0.0035 g·cm−2) in just 20 min. Tafel analysis showed a 99% reduction in corrosion rate (0.00497 mm yr−1) compared to untreated AISI 304 SS (0.094 mm yr−1). Cyclic Potentiodynamic Polarization (CPDP) measurements indicated superior pitting resistance (Epit = +0.423 vs. +0.486 V for PEP processing). XPS analysis elucidates the underlying mechanisms, showing a 91% increase in the Cr/Fe ratio (0.44 to 0.84) and complete transformation of surface oxides to protective Cr2O3 (57.34 wt.%) and Fe3O4 (55.88 wt.%), which collectively explain the enhanced corrosion resistance. Full article
(This article belongs to the Special Issue Advances in Plasma Treatment of Materials)
Show Figures

Figure 1

25 pages, 5321 KiB  
Article
Corrosion and Ion Release in 304L Stainless Steel Biomedical Stylets
by Lucien Reclaru, Alexandru Florian Grecu, Daniela Florentina Grecu, Cristian Virgil Lungulescu and Dan Cristian Grecu
Materials 2025, 18(16), 3769; https://doi.org/10.3390/ma18163769 - 11 Aug 2025
Abstract
Styles are invasive medical devices that are visible on images and are used in several medical specialties, including cardiology, neurology, orthopaedics, anaesthesia, oto-rhino-laryngology (ENT), and dentistry. With their thin and flexible design, they allow for the optimal positioning and precise guidance of medical [...] Read more.
Styles are invasive medical devices that are visible on images and are used in several medical specialties, including cardiology, neurology, orthopaedics, anaesthesia, oto-rhino-laryngology (ENT), and dentistry. With their thin and flexible design, they allow for the optimal positioning and precise guidance of medical devices such as nerve stimulation, defibrillation, electrode positioning, and catheter insertion. Generally, they are made of stainless steel, offering a combination of rigidity and flexibility. The aim of this study is to evaluate the sensitivity of austenitic stainless steel 304L used for the manufacture of J-stylets in uniform, pitting, crevice, and intergranular corrosion. We follow the manufacturing process step by step in order to analyse the risks of corrosion sensitisation and the cumulative effects of various forms of degradation, which could lead to a significant release of metal cations. Another objective of this study is to determine the optimal heat treatment temperature to minimise sensitivity to the intergranular corrosion of 304L steel. Uniform corrosion: Two samples were taken at each stage of the manufacturing process (eight steps in total), in the form of rods. After one hour of immersion, potentiodynamic polarisation curves were plotted up to ±400 mV vs. SCE. A coulometric analysis was also performed by integrating the anode zone between E (i = 0) and +400 mV vs. SCE. The values obtained by integration are expressed as mC/cm2. The test medium used was a simulated artificial plasma solution (9 g/L NaCl solution). Intergranular corrosion: (a) Chemical test: Thirty rod-shaped samples were tested, representing the eight manufacturing steps, as well as heat treatments at 500 °C, 620 °C, and 750 °C, in accordance with ASTM A262 (F method). (b) Electrochemical Potentiokinetic Reactivation (EPR) according to ASTM G108–94 (2015). Two samples were tested for each condition: without heat treatment and after treatments at 500 °C, 620 °C, and 750 °C. Release of cations: The release of metal ions was evaluated in the following two media: artificial sweat, according to EN 1811:2011+A1:2015, and bone plasma, according to the Fitton-Jackson and Burks-Peck method. Six samples that had been heat-treated at 500 °C for one hour were analysed. Results, discussions: (a) Analysis of the polarisation curves revealed significant disturbances in the heat treatment steps, as well as the μC/cm2 quantities, which were between 150,000 and 400,000 compared to only 40–180 for the other manufacturing steps; (b) Electrochemical Potentiokinetic reactivation (EPR) tests indicated that the temperature of 500 °C was a good choice to limit 304L steel sensitisation in intergranular corrosion; and (c) the quantities of cations released in EN 1811 sweat were of the order of a few μg/cm2 week, as for Fe: 2.31, Cr: 0.05, and Ni: 0.12. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

11 pages, 2686 KiB  
Article
High-Efficiency Strategy for Reducing Decomposition Potential of Lithium Formate as Cathode Prelithiation Additive for Lithium-Ion Batteries
by Yaqin Guo, Ti Yin, Zeyu Liu, Qi Wu, Yuheng Wang, Kangyu Zou, Tianxiang Ning, Lei Tan and Lingjun Li
Nanomaterials 2025, 15(16), 1225; https://doi.org/10.3390/nano15161225 - 11 Aug 2025
Abstract
Lithium-ion batteries (LIBs) have attracted extensive attention as a distinguished electrochemical energy storage system due to their high energy density and long cycle life. However, the initial irreversible lithium loss during the first cycle caused by the formation of the solid electrolyte interphase [...] Read more.
Lithium-ion batteries (LIBs) have attracted extensive attention as a distinguished electrochemical energy storage system due to their high energy density and long cycle life. However, the initial irreversible lithium loss during the first cycle caused by the formation of the solid electrolyte interphase (SEI) leads to the prominent reduction in the energy density of LIBs. Notably, lithium formate (HCOOLi, LFM) is regarded as a promising cathode prelithiation reagent for effective lithium supplementation due to its high theoretical capacity of 515 mAh·g−1. Nevertheless, the stable Li-O bond of LFM brings out the high reaction barrier accompanied by the high decomposition potential, which impedes its practical applications. To address this issue, a feasible strategy for reducing the reaction barrier has been proposed, in which the decomposition potential of LFM from 4.84 V to 4.23 V resulted from the synergetic effects of improving the electron/ion transport kinetics and catalysis of transition metal oxides. The addition of LFM to full cells consisting of graphite anodes and LiNi0.834Co0.11Mn0.056O2 cathodes significantly enhanced the electrochemical performance, increasing the reversible discharge capacity from 156 to 169 mAh·g−1 at 0.1 C (2.65–4.25 V). Remarkably, the capacity retention after 100 cycles improved from 72.8% to 94.7%. Our strategy effectively enables LFM to serve as an efficient prelithiation additive for commercial cathode materials. Full article
Show Figures

Graphical abstract

45 pages, 6412 KiB  
Review
Thermal Stability of Lithium-Ion Batteries: A Review of Materials and Strategies
by Aimei Yu, Jinjie Feng and Jun Pang
Energies 2025, 18(16), 4240; https://doi.org/10.3390/en18164240 - 9 Aug 2025
Viewed by 118
Abstract
Rising incidents of critical lithium-ion battery (LIB) accidents highlight the pressing demand for safety enhancements that do not degrade the electrochemical performance parameters. This article provides a comprehensive overview of thermal failure mechanisms and thermal stability strategies, including their cathode, anode, separator, and [...] Read more.
Rising incidents of critical lithium-ion battery (LIB) accidents highlight the pressing demand for safety enhancements that do not degrade the electrochemical performance parameters. This article provides a comprehensive overview of thermal failure mechanisms and thermal stability strategies, including their cathode, anode, separator, and electrolyte. The analysis covers the current thermal failure mechanisms of each component, including structural changes and boundary reactions, such as Mn dissolution in the cathode, solid–electrolyte interface decomposition in the anode, the melting–shrinkage–perforation of the separator, as well as decomposition–combustion–gas generation in the electrolyte. Furthermore, the article reviews thermal stability improvement methods for each component, including element doping and surface coating of the electrode, high-temperature resistance, flame retardancy, and porosity strategies of the separator, flame retardant, non-flammable solvent, and solid electrolyte strategies of the electrolyte. The findings highlight that incorporating diverse elements into the crystal lattice enhances the thermal stability and extends the service life of electrode materials, while applying surface coatings effectively suppresses the boundary reactions and structural degradation responsible for thermal failure. Furthermore, by using solid electrolytes such as polymer electrolytes, and combining innovative ceramic-polymer composite separators, it is possible to effectively reduce the flammability of these components and enhance their thermal stability. As a result, the overall thermal safety of LIBs is improved. These strategies collectively contribute to the overall thermal safety performance of LIBs. Full article
Show Figures

Figure 1

11 pages, 1504 KiB  
Article
Nano-Alloy FeSb Wrapped in Three-Dimensional Honeycomb Carbon for High-Performance Lithium-Ion Batteries
by Nanjun Jia, Xinming Nie, Jianwei Li and Wei Qin
Batteries 2025, 11(8), 305; https://doi.org/10.3390/batteries11080305 - 8 Aug 2025
Viewed by 199
Abstract
Sb-based anodes have great potential in lithium-ion batteries because of their relatively high theoretical capacities. However, in general, their volume changes (>150%) during charge and discharge process have a significant impact, which affects their electrochemical performances. In this paper, nano-alloy FeSb wrapped in [...] Read more.
Sb-based anodes have great potential in lithium-ion batteries because of their relatively high theoretical capacities. However, in general, their volume changes (>150%) during charge and discharge process have a significant impact, which affects their electrochemical performances. In this paper, nano-alloy FeSb wrapped in three-dimensional honeycomb graphite carbon (FeSb@C) was prepared by the freeze-drying method using sodium chloride as a template. The three-dimensional carbon can buffer the volume change in the reaction process, increasing the contact area between the electrode and electrolyte. Furthermore, the addition of metallic iron also increases the overall specific capacity and improves its electrochemical performance. As the anode of a lithium-ion battery, the optimized FeSb@C shows excellent electrochemical performance with a specific capacity of 193.0 mAh g−1 at a high current density of 5 A g−1, and a reversible capacity of 607.8 mAh g−1 after 600 cycles of 1 A g−1. It provides an effective strategy for preparing high-performance lithium-ion batteries anode materials. Full article
(This article belongs to the Special Issue Batteries: 10th Anniversary)
Show Figures

Figure 1

37 pages, 3497 KiB  
Review
Recent Advances in Dendrite Suppression Strategies for Solid-State Lithium Batteries: From Interface Engineering to Material Innovations
by Abniel Machín, Francisco Díaz, María C. Cotto, José Ducongé and Francisco Márquez
Batteries 2025, 11(8), 304; https://doi.org/10.3390/batteries11080304 - 8 Aug 2025
Viewed by 346
Abstract
Solid-state lithium batteries (SSLBs) have emerged as a promising alternative to conventional lithium-ion systems due to their superior safety profile, higher energy density, and potential compatibility with lithium metal anodes. However, a major challenge hindering their widespread deployment is the formation and growth [...] Read more.
Solid-state lithium batteries (SSLBs) have emerged as a promising alternative to conventional lithium-ion systems due to their superior safety profile, higher energy density, and potential compatibility with lithium metal anodes. However, a major challenge hindering their widespread deployment is the formation and growth of lithium dendrites, which compromise both performance and safety. This review provides a comprehensive and structured overview of recent advances in dendrite suppression strategies, with special emphasis on the role played by the nature of the solid electrolyte. In particular, we examine suppression mechanisms and material innovations within the three main classes of solid electrolytes: sulfide-based, oxide-based, and polymer-based systems. Each electrolyte class presents distinct advantages and challenges in relation to dendrite behavior. Sulfide electrolytes, known for their high ionic conductivity and good interfacial wettability, suffer from poor mechanical strength and chemical instability. Oxide electrolytes exhibit excellent electrochemical stability and mechanical rigidity but often face high interfacial resistance. Polymer electrolytes, while mechanically flexible and easy to process, generally have lower ionic conductivity and limited thermal stability. This review discusses how these intrinsic properties influence dendrite nucleation and propagation, including the role of interfacial stress, grain boundaries, void formation, and electrochemical heterogeneity. To mitigate dendrite formation, we explore a variety of strategies including interfacial engineering (e.g., the use of artificial interlayers, surface coatings, and chemical additives), mechanical reinforcement (e.g., incorporation of nanostructured or gradient architectures, pressure modulation, and self-healing materials), and modifications of the solid electrolyte and electrode structure. Additionally, we highlight the critical role of advanced characterization techniques—such as in situ electron microscopy, synchrotron-based X-ray diffraction, vibrational spectroscopy, and nuclear magnetic resonance (NMR)—for elucidating dendrite formation mechanisms and evaluating the effectiveness of suppression strategies in real time. By integrating recent experimental and theoretical insights across multiple disciplines, this review identifies key limitations in current approaches and outlines emerging research directions. These include the design of multifunctional interphases, hybrid electrolytes, and real-time diagnostic tools aimed at enabling the development of reliable, scalable, and dendrite-free SSLBs suitable for practical applications in next-generation energy storage. Full article
(This article belongs to the Special Issue Advances in Solid Electrolytes and Solid-State Batteries)
Show Figures

Figure 1

17 pages, 3870 KiB  
Review
Eco-Friendly, Biomass-Derived Materials for Electrochemical Energy Storage Devices
by Yeong-Seok Oh, Seung Woo Seo, Jeong-jin Yang, Moongook Jeong and Seongki Ahn
Coatings 2025, 15(8), 915; https://doi.org/10.3390/coatings15080915 - 5 Aug 2025
Viewed by 346
Abstract
This mini-review emphasizes the potential of biomass-derived materials as sustainable components for next-generation electrochemical energy storage systems. Biomass obtained from abundant and renewable natural resources can be transformed into carbonaceous materials. These materials typically possess hierarchical porosities, adjustable surface functionalities, and inherent heteroatom [...] Read more.
This mini-review emphasizes the potential of biomass-derived materials as sustainable components for next-generation electrochemical energy storage systems. Biomass obtained from abundant and renewable natural resources can be transformed into carbonaceous materials. These materials typically possess hierarchical porosities, adjustable surface functionalities, and inherent heteroatom doping. These physical and chemical characteristics provide the structural and chemical flexibility needed for various electrochemical applications. Additionally, biomass-derived materials offer a cost-effective and eco-friendly alternative to traditional components, promoting green chemistry and circular resource utilization. This review provides a systematic overview of synthesis methods, structural design strategies, and material engineering approaches for their use in lithium-ion batteries (LIBs), lithium–sulfur batteries (LSBs), and supercapacitors (SCs). It also highlights key challenges in these systems, such as the severe volume expansion of anode materials in LIBs and the shuttle effect in LSBs and discusses how biomass-derived carbon can help address these issues. Full article
Show Figures

Figure 1

24 pages, 2845 KiB  
Review
Silicon-Based Polymer-Derived Ceramics as Anode Materials in Lithium-Ion Batteries
by Liang Zhang, Han Fei, Chenghuan Wang, Hao Ma, Xuan Li, Pengjie Gao, Qingbo Wen, Shasha Tao and Xiang Xiong
Materials 2025, 18(15), 3648; https://doi.org/10.3390/ma18153648 - 3 Aug 2025
Viewed by 468
Abstract
In most commercial lithium-ion batteries, graphite remains the primary anode material. However, its theoretical specific capacity is only 372 mAh∙g−1, which falls short of meeting the demands of high-performance electronic devices. Silicon anodes, despite boasting an ultra-high theoretical specific capacity of [...] Read more.
In most commercial lithium-ion batteries, graphite remains the primary anode material. However, its theoretical specific capacity is only 372 mAh∙g−1, which falls short of meeting the demands of high-performance electronic devices. Silicon anodes, despite boasting an ultra-high theoretical specific capacity of 4200 mAh∙g−1, suffer from significant volume expansion (>300%) during cycling, leading to severe capacity fade and limiting their commercial viability. Currently, silicon-based polymer-derived ceramics have emerged as a highly promising next-generation anode material for lithium-ion batteries, thanks to their unique nano-cluster structure, tunable composition, and low volume expansion characteristics. The maximum capacity of the ceramics can exceed 1000 mAh∙g−1, and their unique synthesis routes enable customization to align with diverse electrochemical application requirements. In this paper, we present the progress of silicon oxycarbide (SiOC), silicon carbonitride (SiCN), silicon boron carbonitride (SiBCN) and silicon oxycarbonitride (SiOCN) in the field of LIBs, including their synthesis, structural characteristics and electrochemical properties, etc. The mechanisms of lithium-ion storage in the Si-based anode materials are summarized as well, including the key role of free carbon in these materials. Full article
Show Figures

Figure 1

11 pages, 3000 KiB  
Article
Comparative Study of the Bulk and Foil Zinc Anodic Behavior Kinetics in Oxalic Acid Aqueous Solutions
by Vanya Lilova, Emil Lilov, Stephan Kozhukharov, Georgi Avdeev and Christian Girginov
Materials 2025, 18(15), 3635; https://doi.org/10.3390/ma18153635 - 1 Aug 2025
Viewed by 270
Abstract
The anodic behavior of zinc electrodes is important for energy storage, corrosion protection, electrochemical processing, and other practical applications. This study investigates the anodic galvanostatic polarization of zinc foil and bulk electrodes in aqueous oxalic acid solutions, revealing significant differences in their electrochemical [...] Read more.
The anodic behavior of zinc electrodes is important for energy storage, corrosion protection, electrochemical processing, and other practical applications. This study investigates the anodic galvanostatic polarization of zinc foil and bulk electrodes in aqueous oxalic acid solutions, revealing significant differences in their electrochemical behavior, particularly in induction period durations. The induction period’s duration depended on electrolyte concentration, current density, and temperature. Notably, the temperature dependence of the kinetics exhibited contrasting trends: the induction period for foil electrodes increased with temperature, while that of bulk electrodes decreased. Chemical analysis and polishing treatment comparisons showed no significant differences between the foil and bulk electrodes. However, Scanning Electron Microscopy (SEM) observations of samples anodized at different temperatures, combined with Inductively Coupled Plasma–Optical Emission Spectroscopy (ICP-OES) analysis of dissolved electrode material, provided insights into the distinct anodic behaviors. X-ray Diffraction (XRD) studies further confirmed these findings, revealing a crystallographic orientation dependence of the anodic behavior. These results provide detailed information about the electrochemical properties of zinc electrodes, with implications for optimizing their performance in various applications. Full article
Show Figures

Figure 1

26 pages, 5007 KiB  
Article
Copper-Enhanced NiMo/TiO2 Catalysts for Bifunctional Green Hydrogen Production and Pharmaceutical Pollutant Removal
by Nicolás Alejandro Sacco, Fernanda Albana Marchesini, Ilaria Gamba and Gonzalo García
Catalysts 2025, 15(8), 737; https://doi.org/10.3390/catal15080737 - 1 Aug 2025
Viewed by 340
Abstract
This study presents the development of Cu-doped NiMo/TiO2 photoelectrocatalysts for simultaneous green hydrogen production and pharmaceutical pollutant removal under simulated solar irradiation. The catalysts were synthesized via wet impregnation (15 wt.% total metal loading with 0.6 wt.% Cu) and thermally treated at [...] Read more.
This study presents the development of Cu-doped NiMo/TiO2 photoelectrocatalysts for simultaneous green hydrogen production and pharmaceutical pollutant removal under simulated solar irradiation. The catalysts were synthesized via wet impregnation (15 wt.% total metal loading with 0.6 wt.% Cu) and thermally treated at 400 °C and 900 °C to investigate structural transformations and catalytic performance. Comprehensive characterization (XRD, BET, SEM, XPS) revealed phase transitions, enhanced crystallinity, and redistribution of redox states upon Cu incorporation, particularly the formation of NiTiO3 and an increase in oxygen vacancies. Crystallite sizes for anatase, rutile, and brookite ranged from 21 to 47 nm at NiMoCu400, while NiMoCu900 exhibited only the rutile phase with 55 nm crystallites. BET analysis showed a surface area of 44.4 m2·g−1 for NiMoCu400, and electrochemical measurements confirmed its higher electrochemically active surface area (ECSA, 2.4 cm2), indicating enhanced surface accessibility. In contrast, NiMoCu900 exhibited a much lower BET surface area (1.4 m2·g−1) and ECSA (1.4 cm2), consistent with its inferior photoelectrocatalytic performance. Compared to previously reported binary NiMo/TiO2 systems, the ternary NiMoCu/TiO2 catalysts demonstrated significantly improved hydrogen production activity and more efficient photoelectrochemical degradation of paracetamol. Specifically, NiMoCu400 showed an anodic peak current of 0.24 mA·cm−2 for paracetamol oxidation, representing a 60% increase over NiMo400 and a cathodic current of −0.46 mA·cm−2 at −0.1 V vs. RHE under illumination, nearly six times higher than the undoped counterpart (–0.08 mA·cm−2). Mott–Schottky analysis further revealed that NiMoCu400 retained n-type behavior, while NiMoCu900 exhibited an unusual inversion to p-type, likely due to Cu migration and rutile-phase-induced realignment of donor states. Despite its higher photosensitivity, NiMoCu900 showed negligible photocurrent, confirming that structural preservation and surface redox activity are critical for photoelectrochemical performance. This work provides mechanistic insight into Cu-mediated photoelectrocatalysis and identifies NiMoCu/TiO2 as a promising bifunctional platform for integrated solar-driven water treatment and sustainable hydrogen production. Full article
(This article belongs to the Section Electrocatalysis)
Show Figures

Figure 1

17 pages, 2016 KiB  
Article
DFT-Guided Next-Generation Na-Ion Batteries Powered by Halogen-Tuned C12 Nanorings
by Riaz Muhammad, Anam Gulzar, Naveen Kosar and Tariq Mahmood
Computation 2025, 13(8), 180; https://doi.org/10.3390/computation13080180 - 1 Aug 2025
Viewed by 357
Abstract
Recent research on the design and synthesis of new and upgraded materials for secondary batteries is growing to fulfill future energy demands around the globe. Herein, by using DFT calculations, the thermodynamic and electrochemical properties of Na/Na+@C12 complexes and then [...] Read more.
Recent research on the design and synthesis of new and upgraded materials for secondary batteries is growing to fulfill future energy demands around the globe. Herein, by using DFT calculations, the thermodynamic and electrochemical properties of Na/Na+@C12 complexes and then halogens (X = Br, Cl, and F) as counter anions are studied for the enhancement of Na-ion battery cell voltage and overall performance. Isolated C12 nanorings showed a lower cell voltage (−1.32 V), which was significantly increased after adsorption with halide anions as counter anions. Adsorption of halides increased the Gibbs free energy, which in turn resulted in higher cell voltage. Cell voltage increased with the increasing electronegativity of the halide anion. The Gibbs free energy of Br@C12 was −52.36 kcal·mol1, corresponding to a desirable cell voltage of 2.27 V, making it suitable for use as an anode in sodium-ion batteries. The estimated cell voltage of these considered complexes ensures the effective use of these complexes in sodium-ion secondary batteries. Full article
(This article belongs to the Special Issue Feature Papers in Computational Chemistry)
Show Figures

Figure 1

18 pages, 2393 KiB  
Article
Phosphate Transport Through Homogeneous and Heterogeneous Anion-Exchange Membranes: A Chronopotentiometric Study for Electrodialytic Applications
by Kayo Santana-Barros, Manuel César Martí-Calatayud, Svetlozar Velizarov and Valentín Pérez-Herranz
Membranes 2025, 15(8), 230; https://doi.org/10.3390/membranes15080230 - 31 Jul 2025
Viewed by 411
Abstract
This study investigates the behavior of phosphate ion transport through two structurally distinct anion-exchange membranes—AMV (homogeneous) and HC-A (heterogeneous)—in an electrodialysis system under both static and stirred conditions at varying pH levels. Chronopotentiometric and current–voltage analyses were used to investigate the influence of [...] Read more.
This study investigates the behavior of phosphate ion transport through two structurally distinct anion-exchange membranes—AMV (homogeneous) and HC-A (heterogeneous)—in an electrodialysis system under both static and stirred conditions at varying pH levels. Chronopotentiometric and current–voltage analyses were used to investigate the influence of pH and hydrodynamics on ion transport. Under underlimiting (ohmic) conditions, the AMV membrane exhibited simultaneous transport of H2PO4 and HPO42− ions at neutral and mildly alkaline pH, while such behavior was not verified at acidic pH and in all cases for the HC-A membrane. Under overlimiting current conditions, AMV favored electroconvection at low pH and exhibited significant water dissociation at high pH, leading to local pH shifts and chemical equilibrium displacement at the membrane–solution interface. In contrast, the HC-A membrane operated predominantly under strong electroconvective regimes, regardless of the pH value, without evidence of water dissociation or equilibrium change phenomena. Stirring significantly impacted the electrochemical responses: it altered the chronopotentiogram profiles through the emergence of intense oscillations in membrane potential drop at overlimiting currents and modified the current–voltage behavior by increasing the limiting current density, reducing electrical resistance, and compressing the plateau region that separates ohmic and overlimiting regimes. Additionally, both membranes showed signs of NH3 formation at the anodic-side interface under pH 7–8, associated with increased electrical resistance. These findings reveal distinct ionic transport characteristics and hydrodynamic sensitivities of the membranes, thus providing valuable insights for optimizing phosphate recovery via electrodialysis. Full article
(This article belongs to the Section Membrane Applications for Water Treatment)
Show Figures

Figure 1

13 pages, 1996 KiB  
Article
Corrosion and Discharge Performance of a Mg-La-Zr Alloy as an Anode for Mg-Air Batteries
by Yan Song, Gang Fang, Junping Zhang, Guanrun Chu, Peng Wang, Ang Zhang, Yuyang Gao and Bin Jiang
Metals 2025, 15(8), 847; https://doi.org/10.3390/met15080847 - 29 Jul 2025
Viewed by 244
Abstract
The corrosion behavior and electrochemical performance of Mg-La-Zr and Mg-La alloys were studied. Microstructural observation indicated that the trace alloying of Zr refined the grain size of Mg-La alloy, which improved the discharge activity of Mg-La alloys. At the same time, the addition [...] Read more.
The corrosion behavior and electrochemical performance of Mg-La-Zr and Mg-La alloys were studied. Microstructural observation indicated that the trace alloying of Zr refined the grain size of Mg-La alloy, which improved the discharge activity of Mg-La alloys. At the same time, the addition of Zr led to a transformation of the second-phase distribution from intracrystalline to grain boundary central distribution. This change inhibited the self-corrosion of the alloy during discharge and improved the anode utilization efficiency. Therefore, an air battery based on a Mg-La-Zr alloy anode with a unique microstructure demonstrated a high discharge performance. In this paper, the relationship between the microstructure and anodic properties of Mg-La-Zr alloy are systematically elucidated. Full article
Show Figures

Figure 1

16 pages, 4613 KiB  
Article
Passive Layer Evolution of Anodized B206 Aluminum in Seawater for Tidal Energy Applications: An Electrochemical Approach
by Ibrahim M. Gadala, Shabnam Pournazari, Davood Nakhaie, Akram Alfantazi, Daan M. Maijer and Edouard Asselin
Metals 2025, 15(8), 846; https://doi.org/10.3390/met15080846 - 29 Jul 2025
Viewed by 314
Abstract
Aluminum–copper casting alloys are potential candidate materials for use in marine applications where high mechanical strength and superior fatigue resistance are desired. The corrosion and protection of aluminum alloy B206 in seawater through surface passivation continues to pose challenges, hampering its widespread use [...] Read more.
Aluminum–copper casting alloys are potential candidate materials for use in marine applications where high mechanical strength and superior fatigue resistance are desired. The corrosion and protection of aluminum alloy B206 in seawater through surface passivation continues to pose challenges, hampering its widespread use in marine structures. In this study, the electrochemical behavior of B206 is investigated in artificial seawater at temperatures and dissolved oxygen (DO) concentrations anticipated during service in marine environments. In particular, the influence of anodizing B206 in deaerated seawater on the subsequent corrosion behavior of the alloy is studied using potentiodynamic and potentiostatic polarization, electrochemical impedance spectroscopy (EIS), and Mott–Schottky analysis. The results showed that the effect of DO on the corrosion of B206 is more significant than the effect of temperature. In the absence of DO, results of potentiostatic polarization, EIS, and Mott–Schottky analysis at anodic potentials all indicated the development of a thicker, more protective passive layer in colder seawater. Moreover, passive layer thickness modeled using Power-Law was found to range between 3 and 9 nm, whilst decreasing in thickness with temperature. Donor densities of the n-type passive layer are on the order of 1021 cm−3 and increase with temperature. The findings presented in this study support the feasibility of implementing anodizing for B206 in marine service environments. Full article
Show Figures

Figure 1

16 pages, 3298 KiB  
Article
High-Performance Catalytic Oxygen Evolution with Nanocellulose-Derived Biocarbon and Fe/Zeolite/Carbon Nanotubes
by Javier Hernandez-Ortega, Chamak Ahmed, Andre Molina, Ronald C. Sabo, Lorena E. Sánchez Cadena, Bonifacio Alvarado Tenorio, Carlos R. Cabrera and Juan C. Noveron
Catalysts 2025, 15(8), 719; https://doi.org/10.3390/catal15080719 - 28 Jul 2025
Viewed by 422
Abstract
The oxygen evolution reaction (OER) plays a central role as an anode in electrocatalytic processes such as energy conversion and storage and the generation of molecular oxygen from the electrolysis of water. Currently, precious metal oxides such as IrO2 and RuO2 [...] Read more.
The oxygen evolution reaction (OER) plays a central role as an anode in electrocatalytic processes such as energy conversion and storage and the generation of molecular oxygen from the electrolysis of water. Currently, precious metal oxides such as IrO2 and RuO2 are recognized as reference OER electrocatalysts with reasonably high activity; however, their widespread use in practical devices has been severely hindered by their high cost and scarcity. It is essential to design alternative OER electrocatalysts made of low-cost and abundant earth elements with significant activity and robustness. We report four new nanocellulose-derived Fe–zeolite nanocomposites, namely Fe/Zeolite@CCNC (1), Fe/Zeolite@CCNF (2), Fe/Zeolite/CNT@CCNC (3), and Fe/Zeolite/CNT@CCNF (4). Two different types of nanocellulose were investigated: nanocellulose nanofibrils and nanocellulose nanocrystals. Characterization with TEM, SEM-EDS, PXRD, and XPS is reported. The nanocomposites exhibited electrocatalytic activity for OER that varies based on the origin of biocarbon and the composition content. The effect of adding carbon nanotubes to the nanocomposites was studied, and an improvement in OER catalysis was observed. The electrochemical double-layer capacitance and electrochemical impedance spectroscopy of the nanocomposites are reported. The nanocomposite 3 exhibited the highest performance, with an onset potential value of 1.654 V and an overpotential of 551 mV, which exceeds the activity of RuO2 for OER catalysis at 10 mA/cm2 in the glassy carbon electrode. A 24 h chronoamperometry study revealed that the catalyst is active for ~2 h under continuous operating conditions. BET surface analysis showed that the crystalline nanocellulose-derived composite exhibited 301.47 m2/g, and the fibril nanocellulose-derived composite exhibited 120.39 m2/g, indicating that the increased nanoporosity of the former contributes to the increase in OER catalysis. Full article
Show Figures

Graphical abstract

Back to TopTop