Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (46)

Search Parameters:
Keywords = electrochemical ammonia synthesis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 8425 KB  
Article
Efficiency of the Electrocatalytic Nitrate Reduction to Ammonia: Do the Surface Nanostructures Play an Essential Role?
by Olga Lebedeva, Irina Kuznetsova, Dmitry Kultin, Alexander Leonov, Maxim Zakharov, Alexander Kustov, Stanislav Dvoryak and Leonid Kustov
Catalysts 2025, 15(7), 666; https://doi.org/10.3390/catal15070666 - 8 Jul 2025
Viewed by 615
Abstract
The degradation of electrochemical materials during energy conversion and storage, in particular the electrocatalyst materials, is becoming increasingly important. The selection and design of sustainable materials is an important task. This work examines the synthesis, characterization, and application of an electrocatalyst (based on [...] Read more.
The degradation of electrochemical materials during energy conversion and storage, in particular the electrocatalyst materials, is becoming increasingly important. The selection and design of sustainable materials is an important task. This work examines the synthesis, characterization, and application of an electrocatalyst (based on an amorphous alloy Co75Si15Fe5Cr4.5) having a structured surface in the form of nanocells for a “green” nitrate reduction reaction (NO3RR), which can serve as an alternative to the well-known Haber-Bosch process for the synthesis of ammonia. The material for the electrocatalyst was obtained by anodizing the alloy in the ionic liquid BmimNTf2 and characterized by using a combination of modern physicochemical and electrochemical methods. The Faradaic efficiency (FE) for the nanocell catalyst exceeds by more than three-fold and seven-fold catalyst with a polished surface and the initial catalyst having a natural oxide on the surface, respectively. A mechanism of this reaction on the studied electrocatalysts with structured and non-structured surfaces is proposed. It is mentioned that the nanocell electrocatalyst is an extremely stable material that passes all tests without visible changes. The authors consider their work as a starting point for the application of a nanostructured Co-electrocatalyst in NO3RR. Full article
Show Figures

Graphical abstract

26 pages, 1964 KB  
Review
Food Waste Anaerobic Digestion Under High Organic Loading Rate: Inhibiting Factors, Mechanisms, and Mitigation Strategies
by Hong-Ming Wu, Xiang Li, Jia-Ning Chen, Yi-Juan Yan, Takuro Kobayashi, Yong Hu and Xueying Zhang
Processes 2025, 13(7), 2090; https://doi.org/10.3390/pr13072090 - 1 Jul 2025
Cited by 3 | Viewed by 801
Abstract
Anaerobic digestion (AD) for food waste (FW) treatment has faced many challenges, especially ammonia nitrogen, acid, and salinity inhibition at a high organic loading rate (OLR). Therefore, a systematic understanding of the issues arising during the FW AD process is a necessity under [...] Read more.
Anaerobic digestion (AD) for food waste (FW) treatment has faced many challenges, especially ammonia nitrogen, acid, and salinity inhibition at a high organic loading rate (OLR). Therefore, a systematic understanding of the issues arising during the FW AD process is a necessity under a high OLR (over 3 g-VS/L d). Primarily, in terms of ammonia nitrogen inhibition, ammonia ions inhibit methane synthesis enzymes, and free ammonia (FAN) contributes to the imbalance of microbial protons. Regulation strategies include substrate C/N ratio regulation, microbial domestication, and ammonia nitrogen removal. In addition, with regard to acid inhibition, including volatile fatty acid (VFA) and long-chain fatty acid (LCFA) accumulation, the elevated acid concentration can contribute to reactive oxygen species stress, and a solution to this includes the addition of alkaline agents and trace elements or the use of microbial electrochemical and biofortification technology and micro-aeration-based AD technology. Furthermore, in terms of salinity inhibition, high salinity can result in a rapid increase in cell osmotic pressure, which can cause cell rupture, and water washing and bio-electrochemical AD are defined as solutions. Future research directions are proposed, mainly in terms of avoiding the introduction of novel containments into these regulation strategies and applying them in large-scale AD plants under a high OLR. Full article
Show Figures

Graphical abstract

22 pages, 3709 KB  
Review
Carbon-Based Catalysts for Electrochemical Nitrate Reduction to Ammonia: Design Strategies and Mechanistic Insights
by Qunyu Chen, Liuyang Deng, Jinrui Zhang, Ying Zhang, Lei Zhang, Shun Lu and Yanwei Wang
Materials 2025, 18(13), 3019; https://doi.org/10.3390/ma18133019 - 25 Jun 2025
Viewed by 711
Abstract
The electrochemical reduction of nitrate to ammonia offers a promising solution for both alleviating nitrate pollution in wastewater and providing a sustainable ammonia source for agriculture use. This review focuses on the role of carbon-based catalysts in electrochemical nitrate reduction to ammonia, emphasizing [...] Read more.
The electrochemical reduction of nitrate to ammonia offers a promising solution for both alleviating nitrate pollution in wastewater and providing a sustainable ammonia source for agriculture use. This review focuses on the role of carbon-based catalysts in electrochemical nitrate reduction to ammonia, emphasizing their potential in addressing environmental pollution and supporting sustainable ammonia production. Carbon materials, known for their abundance, affordability, and eco-friendly properties, are central to this process. The review highlights key strategies for enhancing catalytic performance, including heteroatom doping, the development of porous structures, and the integration of metal/metal oxide nanoparticles. Additionally, it addresses significant challenges such as weak nitrate adsorption, slow reaction kinetics, and competition with the hydrogen evolution reaction. Through the integration of advanced material design, mechanistic insights, and innovative engineering strategies, this review provides valuable guidance for the future design of carbon-based catalysts, paving the way for significant advancements in both nitrate removal and sustainable ammonia synthesis. Full article
Show Figures

Figure 1

26 pages, 4070 KB  
Review
Transitioning Ammonia Production: Green Hydrogen-Based Haber–Bosch and Emerging Nitrogen Reduction Technologies
by Cátia Ribeiro and Diogo M. F. Santos
Clean Technol. 2025, 7(2), 49; https://doi.org/10.3390/cleantechnol7020049 - 16 Jun 2025
Viewed by 3588
Abstract
Ammonia production is a cornerstone of the modern chemical industry, essential for fertilizer manufacturing and increasingly relevant in the energy sector. However, the conventional Haber–Bosch (HB) process is highly energy- and carbon-intensive, contributing significantly to global greenhouse gas emissions, releasing approximately 1.6 tonnes [...] Read more.
Ammonia production is a cornerstone of the modern chemical industry, essential for fertilizer manufacturing and increasingly relevant in the energy sector. However, the conventional Haber–Bosch (HB) process is highly energy- and carbon-intensive, contributing significantly to global greenhouse gas emissions, releasing approximately 1.6 tonnes of carbon dioxide for every tonne of ammonia produced. In the context of the ongoing climate crisis, exploring sustainable alternatives that can reduce or even eradicate these emissions is imperative. This review examines the potential of ammonia as a future energy carrier and evaluates the transition to green hydrogen-based HB production. Key technologies for green hydrogen generation are reviewed in conjunction with environmental, energy, and economic considerations. The transition to a green hydrogen-based HB process has been demonstrated to offer significant environmental advantages, potentially reducing carbon emissions by up to eight times compared to the conventional method. Furthermore, the economic viability of this process is particularly pronounced under conditions of low-cost renewable electricity, whether utilizing solid oxide electrolysis cells or proton-exchange membrane electrolyzers. Additionally, two emerging zero-emission, electrochemical routes for ammonia synthesis are analyzed in terms of their methodologies, efficiencies, and economic viability. Promising progress has been made in both direct and indirect nitrogen reduction approaches to ammonia. The indirect lithium-mediated pathway demonstrates the greatest potential, significantly reducing ammonia production costs. Despite existing challenges, particularly related to efficiency, these emerging technologies offer decentralized, electrified pathways for sustainable ammonia production in the future. This study highlights the near-term feasibility of decarbonizing ammonia production through green hydrogen in the HB process, while outlining the long-term potential of electrochemical nitrogen reduction as a sustainable alternative once the technology matures. Full article
(This article belongs to the Topic Green and Sustainable Chemical Processes)
Show Figures

Graphical abstract

14 pages, 1940 KB  
Article
Nanoporous CuAuPtPd Quasi-High-Entropy Alloy Prism Arrays for Sustainable Electrochemical Nitrogen Reduction
by Shuping Hou, Ziying Meng, Weimin Zhao and Zhifeng Wang
Metals 2025, 15(5), 568; https://doi.org/10.3390/met15050568 - 21 May 2025
Viewed by 506
Abstract
Electrochemical nitrogen reduction reaction (NRR) has emerged as a promising approach for sustainable ammonia synthesis under ambient conditions, offering a low-energy alternative to the traditional Haber–Bosch process. However, the development of efficient and sustainable electrocatalysts for NRR remains a significant challenge. Noble metals, [...] Read more.
Electrochemical nitrogen reduction reaction (NRR) has emerged as a promising approach for sustainable ammonia synthesis under ambient conditions, offering a low-energy alternative to the traditional Haber–Bosch process. However, the development of efficient and sustainable electrocatalysts for NRR remains a significant challenge. Noble metals, known for their exceptional chemical stability under electrocatalytic conditions, have garnered considerable attention in this field. In this study, we report the successful synthesis of nanoporous CuAuPtPd quasi-high-entropy alloy (quasi-HEA) prism arrays through “melt quenching” and “dealloying” techniques. The as-obtained alloy demonstrates remarkable performance as an NRR electrocatalyst, achieving an impressive ammonia synthesis rate of 17.5 μg h−1 mg−1 at a potential of −0.2 V vs. RHE, surpassing many previously reported NRR catalysts. This work not only highlights the potential of quasi-HEAs as advanced NRR electrocatalysts but also provides valuable insights into the design of nanoporous multicomponent materials for sustainable energy and catalytic applications. Full article
Show Figures

Figure 1

21 pages, 2925 KB  
Article
Flexible Green Ammonia Production: Impact of Process Design on the Levelized Cost of Ammonia
by Cecilia Pistolesi, Alberto Giaconia, Claudia Bassano and Marcello De Falco
Fuels 2025, 6(2), 39; https://doi.org/10.3390/fuels6020039 - 21 May 2025
Cited by 1 | Viewed by 2057
Abstract
This study evaluates the economic feasibility of flexible, renewable ammonia production in Italy through a comprehensive sensitivity analysis of the levelized cost of ammonia (LCOA). Ammonia is produced through Haber–Bosch synthesis from green hydrogen and nitrogen coming from alkaline electrolysis and cryogenic air [...] Read more.
This study evaluates the economic feasibility of flexible, renewable ammonia production in Italy through a comprehensive sensitivity analysis of the levelized cost of ammonia (LCOA). Ammonia is produced through Haber–Bosch synthesis from green hydrogen and nitrogen coming from alkaline electrolysis and cryogenic air separation, respectively. The analysis examines the impact of key parameters such as renewable source peak power, Haber–Bosch reactor flexibility, energy mix, electrochemical and hydrogen storage, on the final production cost. The location considered for the PV and wind power output is Southern Italy. The results show that a wind-driven system with minimal battery storage and a flexibility factor (ratio between the minimum operating capacity and the nominal capacity of the plant) of 20% offers the most cost-effective solution, but production is scaled down to 64 tpd. With the 2030 cost structure, battery storage offers better integration with wind systems and flexible operation, even at low levels of turndown. For different combinations of process design choices and flexibility, the optimal LCOA for a green ammonia production is approximately 0.59 USD/kgNH3 in 2050. This cost of production could be competitive with grey ammonia, provided that a carbon emission allowance of USD 0.12/kgCO2 is applied. Full article
Show Figures

Figure 1

21 pages, 5143 KB  
Article
The Ammonia Adsorption and Desorption Behavior of Nafion
by Dominik Sachse, Andreas Glüsen, Klaus Wippermann, Martin Müller, Uwe Rau and Ralf Peters
Membranes 2025, 15(5), 149; https://doi.org/10.3390/membranes15050149 - 14 May 2025
Viewed by 787
Abstract
The electrochemical nitrogen reduction reaction (eNRR) for electrochemical ammonia (NH3) synthesis is considered a promising alternative to the energy-intensive and highly CO2-emitting Haber-Bosch process. In numerous experiments, the Nafion membrane has been used as an electrolyte or separator. However, [...] Read more.
The electrochemical nitrogen reduction reaction (eNRR) for electrochemical ammonia (NH3) synthesis is considered a promising alternative to the energy-intensive and highly CO2-emitting Haber-Bosch process. In numerous experiments, the Nafion membrane has been used as an electrolyte or separator. However, Nafion adsorbs and desorbs NH3, leading to erroneous measurements and making reproducibility extremely difficult. This study systematically investigates the interaction between NH3 and Nafion, underscoring the strength of the interaction between ammonium-ions (NH4+) and protons (H+). We found that minute quantities of synthesized NH3 are prone to persist within the membrane, albeit without affecting the ion conductivity and resistivity of Nafion. Consequently, the removal of NH3 from the membrane can occur under conditions where synthesis is not viable. The objective of this work is to heighten awareness regarding the interaction between NH3 and Nafion and contribute to the attainment of reliable and reproducible outcomes in eNRRs. Full article
(This article belongs to the Section Membrane Applications for Energy)
Show Figures

Figure 1

26 pages, 7471 KB  
Article
Vanadium Stress-Driven Microbial Acclimation Enhances Biological Denitrification in Recycling of Vanadium-Containing Industrial Wastewater
by Yihuan She, Yimin Zhang, Qiushi Zheng, Zhenlei Cai, Yue Wang and Nannan Xue
Microorganisms 2025, 13(5), 1003; https://doi.org/10.3390/microorganisms13051003 - 27 Apr 2025
Viewed by 442
Abstract
Recirculation in vanadium mining enhances resource efficiency but risks ammonia nitrogen (NH3-N) accumulation, severely compromising leaching yields. To address this bottleneck, we developed a bioaugmentation strategy using Pseudomonas sp. S.P-1 acclimated to vanadium stress. Under optimized conditions (sodium citrate as a [...] Read more.
Recirculation in vanadium mining enhances resource efficiency but risks ammonia nitrogen (NH3-N) accumulation, severely compromising leaching yields. To address this bottleneck, we developed a bioaugmentation strategy using Pseudomonas sp. S.P-1 acclimated to vanadium stress. Under optimized conditions (sodium citrate as a carbon source, C/N = 5, 5% inoculum, and pH = 8), the strain achieved exceptional NH3-N (2000 mg·L−1) removal (>99.25% within 16 days; residual NH4+ < 15 mg·L−1), 12.7% higher than the original bacteria. Mechanistic studies revealed that vanadium exposure triggered dual adaptive responses: enhanced biosorption via the stimulated synthesis of extracellular polymeric substances (EPS) enriched with negatively charged functional groups (C=O, -COOH-, and C-N), improving NH4+ adsorption capacity, and metabolic activation via an elevated transmembrane electrochemical potential and an accelerated substrate uptake due to cell membrane permeability, while up-regulation of ammonia monooxygenase (AMO) activity (123.11%) facilitated efficient NH4+→NH2OH conversions. Crucially, this bio-process enabled simultaneous NH3-N degradation (89.2% efficiency) and vanadium recovery, demonstrating its dual role in pollution control and critical metal recycling. By integrating microbial resilience with circular economy principles, our strategy offers a scalable prototype for sustainable vanadium extraction, aligning with low-carbon metallurgy demands in clean energy transitions. This study investigated the ability of vanadium stress to enhance microbial ammonia nitrogen metabolism, and by acclimatizing S.P-1 to vanadium-containing solutions, we aimed to address the dual problems of NH3-N accumulation and vanadium toxicity in wastewater recirculation. Full article
(This article belongs to the Section Microbial Biotechnology)
Show Figures

Figure 1

24 pages, 3072 KB  
Review
Recent Advances in Membrane Electrode Assembly Based Nitrate Reduction Electrolyzers for Sustainable Ammonia Synthesis
by Keon-Han Kim and Jeonghoon Lim
Catalysts 2025, 15(2), 172; https://doi.org/10.3390/catal15020172 - 12 Feb 2025
Cited by 1 | Viewed by 2170
Abstract
The electrochemical reduction from nitrate (NO3RR) to ammonia (NH3) provides a decentralized and environmentally friendly route for sustainable ammonia production while addressing the urgent issue of nitrate pollution in water bodies. Recent advancements in NO3RR research have [...] Read more.
The electrochemical reduction from nitrate (NO3RR) to ammonia (NH3) provides a decentralized and environmentally friendly route for sustainable ammonia production while addressing the urgent issue of nitrate pollution in water bodies. Recent advancements in NO3RR research have improved catalyst designs, mechanistic understanding, and electrolyzer technologies, enhancing selectivity, yield, and energy efficiency. This review explores cutting-edge developments, focusing on innovative designs for catalysts and electrolyzers, such as membrane electrode assemblies (MEA) and electrolyzer configurations, understanding the role of membranes in MEA designs, and various types of hybrid and membrane-free reactors. Furthermore, the integration of NO3RR with anodic oxidation reactions has been demonstrated to improve overall efficiency by generating valuable co-products. However, challenges such as competitive hydrogen evolution, catalyst degradation, and scalability remain critical barriers to large-scale adoption. We provide a comprehensive overview of recent progress, evaluate current limitations, and identify future research directions for realizing the full potential of NO3RR in sustainable nitrogen cycling and ammonia synthesis. Full article
(This article belongs to the Special Issue Electrocatalytic Nitrogen-Cycle)
Show Figures

Graphical abstract

14 pages, 2519 KB  
Article
Electrochemical Ammonia Synthesis from Dilute Gaseous Nitric Oxide Reduction at Ambient Conditions
by Haroon Ur Rasheed, Jae Hyung Kim, Taek-Seung Kim, Kyungho Lee, Joonmok Shim, Sung Hyung Kim and Hyung Chul Yoon
Catalysts 2024, 14(11), 838; https://doi.org/10.3390/catal14110838 - 20 Nov 2024
Viewed by 1771
Abstract
Converting gaseous nitric oxide (NO) to ammonia (NH3) is important because of its environmental and industrial implications. The electrochemical transformation of nitrogen (N2) to NH3 faces several challenges, including a slow reaction rate and low Faradaic efficiency (FE). [...] Read more.
Converting gaseous nitric oxide (NO) to ammonia (NH3) is important because of its environmental and industrial implications. The electrochemical transformation of nitrogen (N2) to NH3 faces several challenges, including a slow reaction rate and low Faradaic efficiency (FE). This study presents an innovative approach by integrating NO elimination and NH3 production by electrochemical gaseous NO reduction reaction (NORR) under ambient conditions. Co and Mo-based catalysts were investigated for the continuous reduction of diluted NO gas (1%) to NH3 within a proton exchange membrane (PEM) cell under ambient conditions. In electrochemical NORR tests conducted without a catholyte, CoMo-NC demonstrated notable NORR performance, achieving an NH3 yield rate of 23.2 × 10−10 mol s−1 cm−2 at −2.2 Vcell and FENH3 of 94.6% at −1.6 Vcell, along with enhanced durability. Notably, this performance represents one of the highest FENH3 achievements for electrochemical gas-phase NO reduction at room temperature. Full article
(This article belongs to the Section Electrocatalysis)
Show Figures

Graphical abstract

13 pages, 3364 KB  
Article
Designing C9N10 Anchored Single Mo Atom as an Efficient Electrocatalyst for Nitrogen Fixation
by Yibo Chen, Liang Chen, Xinyu Zhang and Pengyue Zhang
Molecules 2024, 29(19), 4768; https://doi.org/10.3390/molecules29194768 - 9 Oct 2024
Viewed by 1389
Abstract
Electrochemical nitrogen reduction reaction (NRR) is a promising route for realizing green and sustainable ammonia synthesis under ambient conditions. However, one of the major challenges of currently available Single-atom catalysts (SACs) is poor catalytic activity and low catalytic selectivity, which is far away [...] Read more.
Electrochemical nitrogen reduction reaction (NRR) is a promising route for realizing green and sustainable ammonia synthesis under ambient conditions. However, one of the major challenges of currently available Single-atom catalysts (SACs) is poor catalytic activity and low catalytic selectivity, which is far away from the requirements of industrial applications. Herein, first-principle calculations within the density functional theory were performed to evaluate the feasibility of a single Mo atom anchored on a g-C9N10 monolayer (Mo@g-C9N10) as NRR electrocatalysts. The results demonstrated that the gas phase N2 molecule can be sufficiently activated on Mo@g-C9N10, and N2 reduction dominantly occurs on the active Mo atom via the preferred enzymatic mechanism, with a low limiting potential of −0.48 V. In addition, Mo@g-C9N10 possesses a good prohibition ability for the competitive hydrogen evolution reaction. More impressively, good electronic conductivity and high electron transport efficiency endow Mo SACs with excellent activity for electrocatalytic N2 reduction. This theoretical research not only accelerates the development of NRR electrocatalysts but also increases our insights into optimizing the catalytic performance of SACs. Full article
Show Figures

Figure 1

35 pages, 3346 KB  
Review
Recent Advances in Ammonia Synthesis Modeling and Experiments on Metal Nitrides and Other Catalytic Surfaces
by Numair Elahi and Constantinos D. Zeinalipour-Yazdi
Crystals 2024, 14(9), 818; https://doi.org/10.3390/cryst14090818 - 18 Sep 2024
Cited by 4 | Viewed by 4359
Abstract
In this review, we explore the recent progress in catalytic materials for the ammonia syntheses that are based on metal nitrides and other catalytic surfaces. It comprises a detailed overlook of the various techniques used in ammonia synthesis research and the state-of-the-art modeling [...] Read more.
In this review, we explore the recent progress in catalytic materials for the ammonia syntheses that are based on metal nitrides and other catalytic surfaces. It comprises a detailed overlook of the various techniques used in ammonia synthesis research and the state-of-the-art modeling techniques employed to investigate new reaction mechanisms and more efficient processes for sustainable ammonia synthesis production. The review is discussed in the context of the reaction mechanisms developed and the recent progress that has been made with respect to thermal, electrochemical, and photocatalytic ammonia synthesis. Full article
(This article belongs to the Section Materials for Energy Applications)
Show Figures

Graphical abstract

19 pages, 2186 KB  
Review
Recent Advances in Carbon Nanotube Technology: Bridging the Gap from Fundamental Science to Wide Applications
by Zhizhi Tao, Yuqiong Zhao, Ying Wang and Guojie Zhang
C 2024, 10(3), 69; https://doi.org/10.3390/c10030069 - 6 Aug 2024
Cited by 7 | Viewed by 8675
Abstract
Carbon nanotubes, as carbon allotropes distinguished by their intricate structures and exceptional physicochemical properties, have demonstrated substantial progress in recent years across diverse domains, including energy production, chemical synthesis, and environmental preservation. They exhibit notable attributes such as high thermal stability, superior adsorption [...] Read more.
Carbon nanotubes, as carbon allotropes distinguished by their intricate structures and exceptional physicochemical properties, have demonstrated substantial progress in recent years across diverse domains, including energy production, chemical synthesis, and environmental preservation. They exhibit notable attributes such as high thermal stability, superior adsorption capacity, and a substantial specific surface area, rendering them superb catalyst supports. Particularly in electrochemical energy storage, CNTs are extensively employed in supercapacitor electrodes owing to their elevated electrical conductivity, mechanical robustness, and electrocatalytic prowess, which facilitate significant energy storage capabilities. Their intricate pore architecture and reactive sites make functionalized carbon nanotubes well suited for synthesizing composite materials with diverse components, which are ideal for sequestering carbon dioxide from both atmospheric and indoor environments. This review presents a comprehensive examination of carbon nanotube synthesis methodologies, encompassing chemical vapor deposition, arc discharge, and laser ablation, and evaluates their impacts on the structural and functional properties of carbon nanotubes. Furthermore, this article underscores the applications of carbon nanotubes in fields such as fuel cells, photocatalysis, ammonia synthesis, dry methane reforming, Fischer–Tropsch synthesis, and supercapacitors. Despite the considerable potential of carbon nanotubes, their manufacturing processes remain intricate and costly, impeding large-scale industrial production. This review concludes by addressing the challenges in fabricating carbon nanotube composites and outlining future development prospects. Full article
(This article belongs to the Collection Novel Applications of Carbon Nanotube-Based Materials)
Show Figures

Graphical abstract

19 pages, 2863 KB  
Article
Sparrow Search Algorithm Based on New Energy Power Hydrogen Synthesis Ammonia Economic Optimization of System Scheduling
by Jingchao Liu, Yue Chen, Jiqing Yu, Huisheng Wang, Liyan Zhang, Biao Li, Linsheng Cheng, Xianhai Liu, Guinan Wang, Yiyao Li and Qingzhu Wan
Energies 2024, 17(15), 3796; https://doi.org/10.3390/en17153796 - 1 Aug 2024
Cited by 3 | Viewed by 1400
Abstract
P2A (Power to ammonia) is one of the important ways of large-scale consumption of renewable energy, and one of the important technological routes for the chemical industry to realize low-carbon and clean development. The new off-grid energy power to hydrogen ammonia system lacks [...] Read more.
P2A (Power to ammonia) is one of the important ways of large-scale consumption of renewable energy, and one of the important technological routes for the chemical industry to realize low-carbon and clean development. The new off-grid energy power to hydrogen ammonia system lacks the support of large power grids due to the complex mathematical model of the system, more variables, and cumbersome constraints, which leads to model solving difficulties, and the production simulation results obtained suffer from the problems of low economic efficiency and high new energy power abandonment rate. To address the shortcomings of the algorithm, which converges slowly and easily falls into the local optimum when solving the model, this paper applies the Sparrow Search Algorithm (SSA) to the problem of economic optimization of new energy hydrogen synthesis and ammonia system scheduling. Firstly, based on the characteristics of wind and light, the operating characteristics of an electrolyzer, and the characteristics of an electrochemical energy storage device, and taking the economic optimization of the electric hydrogen synthesis ammonia system as the objective function, the economic optimization scheduling model of an off-grid new energy electric hydrogen synthesis ammonia system is established for 24 h production simulation. Secondly, the model is solved based on the sparrow search algorithm, and the speed of solving and the economic benefits of the system are analyzed in comparison with the conventional algorithm. Finally, the proposed off-grid wind-powered hydrogen synthesis ammonia system based on the sparrow search algorithm is verified to achieve the optimal operation of the 24 h production simulation through an actual example in the Daan area of Baicheng City, Jilin Province, which shows that the optimized system has better economic efficiency and the new energy is completely consumed, thus verifying the reasonableness and validity of the algorithm proposed in this article. Full article
Show Figures

Figure 1

14 pages, 5519 KB  
Article
Optimized Ammonia-Sensing Electrode with CeO2/rGO Nano-Composite Coating Synthesized by Focused Laser Ablation in Liquid
by Mengqi Shi and Hiroyuki Wada
Nanomaterials 2024, 14(15), 1238; https://doi.org/10.3390/nano14151238 - 23 Jul 2024
Cited by 1 | Viewed by 1321
Abstract
This study investigated the synthesis of cerium oxide (CeO2) nanoparticles (NPs) and composites with reduced graphene oxide (rGO) for the enhanced electrochemical sensing of ammonia. CeO2 NPs were prepared by the focused laser ablation in liquid (LAL) method, which enabled [...] Read more.
This study investigated the synthesis of cerium oxide (CeO2) nanoparticles (NPs) and composites with reduced graphene oxide (rGO) for the enhanced electrochemical sensing of ammonia. CeO2 NPs were prepared by the focused laser ablation in liquid (LAL) method, which enabled the production of high-purity, spherical nanoparticles with a uniform dispersion and sizes under 50 nm in a short time. The effects of varying irradiation fluence and time on the nanoparticle size, production yield, and dispersion were systematically studied. The synthesized CeO2 NPs were doped with rGO to form CeO2/rGO composites, which were drop casted to modify the glassy carbon electrodes (GCE). The CeO2/rGO-GCE electrodes exhibited superior electrochemical properties compared with single-component electrodes, which demonstrated the significant potential for ammonia detection, especially at a 4 J/cm2 fluence. The CeO2/rGO composites showed uniformly dispersed CeO2 NPs between the rGO sheets, which enhanced the conductivity, as confirmed by SEM, EDS mapping, and XRD analysis. Cyclic voltammetry data demonstrated superior electrochemical activity of the CeO2/rGO composite electrodes, with the 2rGO/1CeO2 ratio showing the highest current response and sensitivity. The CV response to varying ammonia concentrations exhibited a linear relationship, indicating the electrode’s capability for accurate quantification. These findings highlight the effectiveness of focused laser ablation in enhancing nanoparticle synthesis and the promising synergistic effects of CeO2 and rGO in developing high-performance electrochemical sensors. Full article
(This article belongs to the Special Issue Laser-Based Nano Fabrication and Nano Lithography: Second Edition)
Show Figures

Figure 1

Back to TopTop