Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (38)

Search Parameters:
Keywords = electricity-carbon coupled market

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 2249 KiB  
Article
Collaborative Operation Strategy of Virtual Power Plant Clusters and Distribution Networks Based on Cooperative Game Theory in the Electric–Carbon Coupling Market
by Chao Zheng, Wei Huang, Suwei Zhai, Guobiao Lin, Xuehao He, Guanzheng Fang, Shi Su, Di Wang and Qian Ai
Energies 2025, 18(16), 4395; https://doi.org/10.3390/en18164395 - 18 Aug 2025
Viewed by 389
Abstract
Against the backdrop of global low-carbon transition, the integrated development of electricity and carbon markets demands higher efficiency in the optimal operation of virtual power plants (VPPs) and distribution networks, yet conventional trading mechanisms face limitations such as inadequate recognition of differentiated contributions [...] Read more.
Against the backdrop of global low-carbon transition, the integrated development of electricity and carbon markets demands higher efficiency in the optimal operation of virtual power plants (VPPs) and distribution networks, yet conventional trading mechanisms face limitations such as inadequate recognition of differentiated contributions and inequitable benefit allocation. To address these challenges, this paper proposes a collaborative optimal trading mechanism for VPP clusters and distribution networks in an electricity–carbon coupled market environment by first establishing a joint operation framework to systematically coordinate multi-agent interactions, then developing a bi-level optimization model where the upper level formulates peer-to-peer (P2P) trading plans for electrical energy and carbon allowances through cooperative gaming among VPPs while the lower level optimizes distribution network power flow and feeds back the electro-carbon comprehensive price (EACP). By introducing an asymmetric Nash bargaining model for fair benefit distribution and employing the Alternating Direction Method of Multipliers (ADMM) for efficient computation, case studies demonstrate that the proposed method overcomes traditional models’ shortcomings in contribution evaluation and profit allocation, achieving 2794.8 units in cost savings for VPP clusters while enhancing cooperation stability and ensuring secure, economical distribution network operation, thereby providing a universal technical pathway for the synergistic advancement of global electricity and carbon markets. Full article
Show Figures

Figure 1

28 pages, 1465 KiB  
Article
A Three-Layer Coordinated Planning Model for Source–Grid–Load–Storage Considering Electricity–Carbon Coupling and Flexibility Supply–Demand Balance
by Zequn Wang, Haobin Chen, Haoyang Tang, Lin Zheng, Jianfeng Zheng, Zhilu Liu and Zhijian Hu
Sustainability 2025, 17(16), 7290; https://doi.org/10.3390/su17167290 - 12 Aug 2025
Viewed by 450
Abstract
With the deep integration of electricity and carbon trading markets, distribution networks are facing growing operational stress and a shortage of flexible resources under high penetration of renewable energy. This paper proposes a three-layer coordinated planning model for Source–Grid–Load–Storage (SGLS) systems, considering electricity–carbon [...] Read more.
With the deep integration of electricity and carbon trading markets, distribution networks are facing growing operational stress and a shortage of flexible resources under high penetration of renewable energy. This paper proposes a three-layer coordinated planning model for Source–Grid–Load–Storage (SGLS) systems, considering electricity–carbon coupling and flexibility supply–demand balance. The model incorporates a dynamic pricing mechanism that links carbon pricing and time-of-use electricity tariffs, and integrates multi-source flexible resources—such as wind, photovoltaic (PV), conventional generators, energy storage systems (ESS), and controllable loads—to quantify the system’s flexibility capacity. A hierarchical structure encompassing “decision–planning–operation” is designed to achieve coordinated optimization of resource allocation, cost minimization, and operational efficiency. To improve the model’s computational efficiency and convergence performance, an improved adaptive particle swarm optimization (IAPSO) algorithm is developed which integrates dynamic inertia weight adjustment, adaptive acceleration factors, and Gaussian mutation. Simulation studies conducted on the IEEE 33-bus distribution system demonstrate that the proposed model outperforms conventional approaches in terms of operational economy, carbon emission reduction, system flexibility, and renewable energy accommodation. The approach provides effective support for the coordinated deployment of diverse resources in next-generation power systems. Full article
Show Figures

Figure 1

23 pages, 3036 KiB  
Article
Research on the Synergistic Mechanism Design of Electricity-CET-TGC Markets and Transaction Strategies for Multiple Entities
by Zhenjiang Shi, Mengmeng Zhang, Lei An, Yan Lu, Daoshun Zha, Lili Liu and Tiantian Feng
Sustainability 2025, 17(15), 7130; https://doi.org/10.3390/su17157130 - 6 Aug 2025
Viewed by 309
Abstract
In the context of the global response to climate change and the active promotion of energy transformation, a number of low-carbon policies coupled with the development of synergies to help power system transformation is an important initiative. However, the insufficient articulation of the [...] Read more.
In the context of the global response to climate change and the active promotion of energy transformation, a number of low-carbon policies coupled with the development of synergies to help power system transformation is an important initiative. However, the insufficient articulation of the green power market, tradable green certificate (TGC) market, and carbon emission trading (CET) mechanism, and the ambiguous policy boundaries affect the trading decisions made by its market participants. Therefore, this paper systematically analyses the composition of the main players in the electricity-CET-TGC markets and their relationship with each other, and designs the synergistic mechanism of the electricity-CET-TGC markets, based on which, it constructs the optimal profit model of the thermal power plant operators, renewable energy manufacturers, power grid enterprises, power users and load aggregators under the electricity-CET-TGC markets synergy, and analyses the behavioural decision-making of the main players in the electricity-CET-TGC markets as well as the electric power system to optimise the trading strategy of each player. The results of the study show that: (1) The synergistic mechanism of electricity-CET-TGC markets can increase the proportion of green power grid-connected in the new type of power system. (2) In the selection of different environmental rights and benefits products, the direct participation of green power in the market-oriented trading is the main way, followed by applying for conversion of green power into China certified emission reduction (CCER). (3) The development of independent energy storage technology can produce greater economic and environmental benefits. This study provides policy support to promote the synergistic development of the electricity-CET-TGC markets and assist the low-carbon transformation of the power industry. Full article
Show Figures

Figure 1

31 pages, 2421 KiB  
Article
Optimization of Cooperative Operation of Multiple Microgrids Considering Green Certificates and Carbon Trading
by Xiaobin Xu, Jing Xia, Chong Hong, Pengfei Sun, Peng Xi and Jinchao Li
Energies 2025, 18(15), 4083; https://doi.org/10.3390/en18154083 - 1 Aug 2025
Viewed by 297
Abstract
In the context of achieving low-carbon goals, building low-carbon energy systems is a crucial development direction and implementation pathway. Renewable energy is favored because of its clean characteristics, but the access may have an impact on the power grid. Microgrid technology provides an [...] Read more.
In the context of achieving low-carbon goals, building low-carbon energy systems is a crucial development direction and implementation pathway. Renewable energy is favored because of its clean characteristics, but the access may have an impact on the power grid. Microgrid technology provides an effective solution to this problem. Uncertainty exists in single microgrids, so multiple microgrids are introduced to improve system stability and robustness. Electric carbon trading and profit redistribution among multiple microgrids have been challenges. To promote energy commensurability among microgrids, expand the types of energy interactions, and improve the utilization rate of renewable energy, this paper proposes a cooperative operation optimization model of multi-microgrids based on the green certificate and carbon trading mechanism to promote local energy consumption and a low carbon economy. First, this paper introduces a carbon capture system (CCS) and power-to-gas (P2G) device in the microgrid and constructs a cogeneration operation model coupled with a power-to-gas carbon capture system. On this basis, a low-carbon operation model for multi-energy microgrids is proposed by combining the local carbon trading market, the stepped carbon trading mechanism, and the green certificate trading mechanism. Secondly, this paper establishes a cooperative game model for multiple microgrid electricity carbon trading based on the Nash negotiation theory after constructing the single microgrid model. Finally, the ADMM method and the asymmetric energy mapping contribution function are used for the solution. The case study uses a typical 24 h period as an example for the calculation. Case study analysis shows that, compared with the independent operation mode of microgrids, the total benefits of the entire system increased by 38,296.1 yuan and carbon emissions were reduced by 30,535 kg through the coordinated operation of electricity–carbon coupling. The arithmetic example verifies that the method proposed in this paper can effectively improve the economic benefits of each microgrid and reduce carbon emissions. Full article
Show Figures

Figure 1

22 pages, 1788 KiB  
Article
Multi-Market Coupling Mechanism of Offshore Wind Power with Energy Storage Participating in Electricity, Carbon, and Green Certificates
by Wenchuan Meng, Zaimin Yang, Jingyi Yu, Xin Lin, Ming Yu and Yankun Zhu
Energies 2025, 18(15), 4086; https://doi.org/10.3390/en18154086 - 1 Aug 2025
Viewed by 392
Abstract
With the support of the dual-carbon strategy and related policies, China’s offshore wind power has experienced rapid development. However, constrained by the inherent intermittency and volatility of wind power, large-scale expansion poses significant challenges to grid integration and exacerbates government fiscal burdens. To [...] Read more.
With the support of the dual-carbon strategy and related policies, China’s offshore wind power has experienced rapid development. However, constrained by the inherent intermittency and volatility of wind power, large-scale expansion poses significant challenges to grid integration and exacerbates government fiscal burdens. To address these critical issues, this paper proposes a multi-market coupling trading model integrating energy storage-equipped offshore wind power into electricity–carbon–green certificate markets for large-scale grid networks. Firstly, a day-ahead electricity market optimization model that incorporates energy storage is established to maximize power revenue by coordinating offshore wind power generation, thermal power dispatch, and energy storage charging/discharging strategies. Subsequently, carbon market and green certificate market optimization models are developed to quantify Chinese Certified Emission Reduction (CCER) volume, carbon quotas, carbon emissions, market revenues, green certificate quantities, pricing mechanisms, and associated economic benefits. To validate the model’s effectiveness, a gradient ascent-optimized game-theoretic model and a double auction mechanism are introduced as benchmark comparisons. The simulation results demonstrate that the proposed model increases market revenues by 17.13% and 36.18%, respectively, compared to the two benchmark models. It not only improves wind power penetration and comprehensive profitability but also effectively alleviates government subsidy pressures through coordinated carbon–green certificate trading mechanisms. Full article
Show Figures

Figure 1

26 pages, 2573 KiB  
Article
Two-Layer Robust Optimization Scheduling Strategy for Active Distribution Network Considering Electricity-Carbon Coupling
by Yiteng Xu, Chenxing Yang, Zijie Liu, Yaxian Zheng, Yuechi Liu and Haiteng Han
Electronics 2025, 14(14), 2798; https://doi.org/10.3390/electronics14142798 - 11 Jul 2025
Viewed by 259
Abstract
Under the guidance of carbon peaking and carbon neutrality goals, the power industry is transitioning toward environmentally friendly practices. With the increasing integration of intermittent renewable energy sources (RES) and the enhanced self-regulation capabilities of grids, traditional distribution networks (DNs) are transitioning into [...] Read more.
Under the guidance of carbon peaking and carbon neutrality goals, the power industry is transitioning toward environmentally friendly practices. With the increasing integration of intermittent renewable energy sources (RES) and the enhanced self-regulation capabilities of grids, traditional distribution networks (DNs) are transitioning into active distribution networks (ADNs). To fully exploit the synergistic optimization potential of the “source-grid-load-storage” system in electricity-carbon coupling scenarios, leverage user-side flexibility resources, and facilitate low-carbon DN development, this paper proposes a low-carbon optimal scheduling strategy for ADN incorporating demand response (DR) priority. Building upon a bi-directional feedback mechanism between carbon potential and load, a two-layer distributed robust scheduling model for DN is introduced, which is solved through hierarchical iteration using column and constraint generation (C&CG) algorithm. Case study demonstrates that the model proposed in this paper can effectively measure the priority of demand response for different loads. Under the proposed strategy, the photovoltaic (PV) consumption rate reaches 99.76%. Demand response costs were reduced by 6.57%, and system carbon emissions were further reduced by 8.93%. While accounting for PV uncertainty, it balances the economic efficiency and robustness of DN, thereby effectively improving system operational safety and reliability, and promoting the smooth evolution of DN toward a low-carbon and efficient operational mode. Full article
Show Figures

Figure 1

27 pages, 5122 KiB  
Article
Risk Spillover of Energy-Related Systems Under a Carbon Neutral Target
by Fei Liu, Honglin Yao, Yanan Chen, Xingbei Song, Yihang Zhao and Sen Guo
Energies 2025, 18(13), 3515; https://doi.org/10.3390/en18133515 - 3 Jul 2025
Viewed by 354
Abstract
Under the background of climate change, the risk spillover within the energy system is constantly intensifying. Clarifying the coupling relationship between entities within the energy system can help policymakers propose more reasonable policy measures and strengthen risk prevention. To estimate the risk spillover [...] Read more.
Under the background of climate change, the risk spillover within the energy system is constantly intensifying. Clarifying the coupling relationship between entities within the energy system can help policymakers propose more reasonable policy measures and strengthen risk prevention. To estimate the risk spillover of energy-related systems, this paper constructs five subsystems: the fossil fuel subsystem, the electricity subsystem, the green bond subsystem, the renewable energy subsystem, and the carbon subsystem. Then, a quantitative risk analysis is conducted on two major energy consumption/carbon emission entities, China and Europe, based on the DCC-GARCH-CoVaR method. The result shows that (1) Markets of the same type often have more significant dynamic correlations. Of these, the average dynamic correlation coefficient of GBI-CABI (the Chinese green bond subsystem) and FR-DE (the European electricity subsystem) are the largest, by 0.8552 and 0.7347. (2) The high correlation between energy markets results in serious risk contagion, and the overall risk spillover effect within the European energy system is about 2.6 times that within the Chinese energy system. Of these, EUA and CABI are the main risk connectors of each energy system. Full article
Show Figures

Figure 1

20 pages, 3502 KiB  
Article
Blockchain-Enabled Cross-Chain Coordinated Trading Strategy for Electricity-Carbon-Green Certificate in Virtual Power Plants: Multi-Market Coupling and Low-Carbon Operation Optimization
by Chao Zheng, Wei Huang, Suwei Zhai, Kaiyan Pan, Xuehao He, Xiaojie Liu, Shi Su, Cong Shen and Qian Ai
Energies 2025, 18(13), 3443; https://doi.org/10.3390/en18133443 - 30 Jun 2025
Viewed by 269
Abstract
In the context of global climate governance and the low-carbon energy transition, virtual power plant (VPP), a key technology for integrating distributed energy resources, is urgently needed to solve the problem of decentralization and lack of synergy in electricity, carbon, and green certificate [...] Read more.
In the context of global climate governance and the low-carbon energy transition, virtual power plant (VPP), a key technology for integrating distributed energy resources, is urgently needed to solve the problem of decentralization and lack of synergy in electricity, carbon, and green certificate trading. Existing studies mostly focus on single energy or carbon trading scenarios and lack a multi-market coupling mechanism supported by blockchain technology, resulting in low transaction transparency and a high risk of information tampering. For this reason, this paper proposes a synergistic optimization strategy for electricity/carbon/green certificate virtual power plants based on blockchain cross-chain transactions. First, Latin Hypercubic Sampling (LHS) is used to generate new energy output and load scenarios, and the K-means clustering method with improved particle swarm optimization are combined to cut down the scenarios and improve the prediction accuracy; second, a relay chain cross-chain trading framework integrating quota system is constructed to realize organic synergy and credible data interaction among electricity, carbon, and green certificate markets; lastly, the multi-energy optimization model of the virtual power plant is designed to integrate carbon capture, Finally, a virtual power plant multi-energy optimization model is designed, integrating carbon capture, power-to-gas (P2G) and other technologies to balance the economy and low-carbon goals. The simulation results show that compared with the traditional model, the proposed strategy reduces the carbon emission intensity by 13.3% (1.43 tons/million CNY), increases the rate of new energy consumption to 98.75%, and partially offsets the cost through the carbon trading revenue, which verifies the Pareto improvement of environmental and economic benefits. This study provides theoretical support for the synergistic optimization of multi-energy markets and helps to build a low-carbon power system with a high proportion of renewable energy. Full article
Show Figures

Figure 1

30 pages, 3063 KiB  
Article
Operation Strategy of Multi-Virtual Power Plants Participating in Joint Electricity–Carbon Market Based on Carbon Emission Theory
by Jiahao Zhou, Dongmei Huang, Xingchi Ma and Wei Hu
Energies 2025, 18(11), 2820; https://doi.org/10.3390/en18112820 - 28 May 2025
Cited by 2 | Viewed by 644
Abstract
The global energy transition is accelerating, bringing new challenges to power systems. A high penetration of renewable energy increases grid volatility. Virtual power plants (VPPs) address this by dynamically responding to market signals. They integrate renewables, energy storage, and flexible loads. Additionally, they [...] Read more.
The global energy transition is accelerating, bringing new challenges to power systems. A high penetration of renewable energy increases grid volatility. Virtual power plants (VPPs) address this by dynamically responding to market signals. They integrate renewables, energy storage, and flexible loads. Additionally, they participate in multi-tier markets, including energy, ancillary services, and capacity trading. This study proposes a load factor-based VPP pre-dispatch model for optimal resource allocation. It incorporates the coupling effects of electricity–carbon markets. A Nash negotiation strategy is developed for multi-VPP cooperation. The model uses an accelerated adaptive alternating-direction multiplier method (AA-ADMM) for efficient demand response. The approach balances computational efficiency with privacy protection. Revenue is allocated fairly based on individual contributions. The study uses data from a VPP dispatch center in Shanxi Province. Shanxi has abundant wind and solar resources, necessitating advanced scheduling methods. Cooperative operation boosts profits for three VPPs by CNY 1101, 260, and 823, respectively. The alliance’s total profit rises by CNY 2184. Carbon emissions drop by 31.3% to 8.113 tons, with a CNY 926 gain over independent operation. Post-cooperation, VPP1 and VPP2 see slight emission increases, while VPP3 achieves major reductions. This leads to significant low-carbon benefits. This method proves effective in cutting costs and emissions. It also balances economic and environmental gains while ensuring fair profit distribution. Full article
Show Figures

Figure 1

31 pages, 6518 KiB  
Review
A Review of Industrial Load Flexibility Enhancement for Demand-Response Interaction
by Jiubo Zhang, Bowen Zhou, Zhile Yang, Yuanjun Guo, Chen Lv, Xiaofeng Xu and Jichun Liu
Sustainability 2025, 17(11), 4938; https://doi.org/10.3390/su17114938 - 27 May 2025
Viewed by 929
Abstract
The global transition toward low-carbon energy systems necessitates fundamental innovations in demand-side flexibility, particularly in industrial load regulation. This study presents a systematic review and critical analysis of 90 key research works (2015–2025) to establish a comprehensive framework for industrial load flexibility enhancement. [...] Read more.
The global transition toward low-carbon energy systems necessitates fundamental innovations in demand-side flexibility, particularly in industrial load regulation. This study presents a systematic review and critical analysis of 90 key research works (2015–2025) to establish a comprehensive framework for industrial load flexibility enhancement. We rigorously examined the tripartite interdependencies among the following: (1) Multi-energy flow physical coupling, addressing temporal-scale disparities in electricity-thermal-gas coordination under renewable penetration; (2) Uncertainty quantification, integrating data-driven and physics-informed modeling for robust decision-making; (3) Market mechanism synergy, analyzing demand response, carbon-P2P hybrid markets, and regulatory policy impacts. Our analysis reveals three fundamental challenges: the accuracy-stability trade-off in cross-timescale optimization, the policy-model disconnect in carbon-aware scheduling, and the computational complexity barrier for real-time industrial applications. The paper further proposes a roadmap for next-generation industrial load regulation systems, emphasizing co-optimization of technical feasibility, economic viability, and policy compliance. These findings advance both academic research and practical implementations for carbon-neutral power systems. Full article
Show Figures

Figure 1

22 pages, 9548 KiB  
Article
A BiGRUSA-ResSE-KAN Hybrid Deep Learning Model for Day-Ahead Electricity Price Prediction
by Nan Yang, Guihong Bi, Yuhong Li, Xiaoling Wang, Zhao Luo and Xin Shen
Symmetry 2025, 17(6), 805; https://doi.org/10.3390/sym17060805 - 22 May 2025
Viewed by 558
Abstract
In the context of the clean and low-carbon transformation of power systems, addressing the challenge of day-ahead electricity market price prediction issues triggered by the strong stochastic volatility of power supply output due to high-penetration renewable energy integration, as well as problems such [...] Read more.
In the context of the clean and low-carbon transformation of power systems, addressing the challenge of day-ahead electricity market price prediction issues triggered by the strong stochastic volatility of power supply output due to high-penetration renewable energy integration, as well as problems such as limited dataset scales and short market cycles in test sets associated with existing electricity price prediction methods, this paper introduced an innovative prediction approach based on a multi-modal feature fusion and BiGRUSA-ResSE-KAN deep learning model. In the data preprocessing stage, maximum–minimum normalization techniques are employed to process raw electricity price data and exogenous variable data; the complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and variational mode decomposition (VMD) methods are utilized for multi-modal decomposition of electricity price data to construct a multi-scale electricity price component matrix; and a sliding window mechanism is applied to segment time-series data, forming a three-dimensional input structure for the model. In the feature extraction and prediction stage, the BiGRUSA-ResSE-KAN multi-branch integrated network leverages the synergistic effects of gated recurrent units combined with residual structures and attention mechanisms to achieve deep feature fusion of multi-source heterogeneous data and model complex nonlinear relationships, while further exploring complex coupling patterns in electricity price fluctuations through the knowledge-adaptive network (KAN) module, ultimately outputting 24 h day-ahead electricity price predictions. Finally, verification experiments conducted using test sets spanning two years from five major electricity markets demonstrate that the introduced method effectively enhances the accuracy of day-ahead electricity price prediction, exhibits good applicability across different national electricity markets, and provides robust support for electricity market decision making. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

18 pages, 18892 KiB  
Article
A Bidding Strategy for Power Suppliers Based on Multi-Agent Reinforcement Learning in Carbon–Electricity–Coal Coupling Market
by Zhiwei Liao, Chengjin Li, Xiang Zhang, Qiyun Hu and Bowen Wang
Energies 2025, 18(9), 2388; https://doi.org/10.3390/en18092388 - 7 May 2025
Viewed by 532
Abstract
The deepening operation of the carbon emission trading market has reshaped the cost–benefit structure of the power generation side. In the process of participating in the market quotation, power suppliers not only need to calculate the conventional power generation cost but also need [...] Read more.
The deepening operation of the carbon emission trading market has reshaped the cost–benefit structure of the power generation side. In the process of participating in the market quotation, power suppliers not only need to calculate the conventional power generation cost but also need to coordinate the superimposed impact of carbon quota accounting on operating income, which causes the power suppliers a multi-time-scale decision-making collaborative optimization problem under the interaction of the carbon market, power market, and coal market. This paper focuses on the multi-market-coupling decision optimization problem of thermal power suppliers. It proposes a collaborative bidding decision framework based on a multi-agent deep deterministic policy gradient (MADDPG). Firstly, aiming at the time-scale difference of multi-sided market decision making, a decision-making cycle coordination scheme for the carbon–electricity–coal coupling market is proposed. Secondly, upper and lower optimization models for the bidding decision making of power suppliers are constructed. Then, based on the MADDPG algorithm, the multi-generator bidding scenario is simulated to solve the optimal multi-generator bidding strategy in the carbon–electricity–coal coupling market. Finally, the multi-scenario simulation based on the IEEE-5 node system shows that the model can effectively analyze the differential influence of a multi-market structure on the bidding strategy of power suppliers, verifying the superiority of the algorithm in convergence speed and revenue optimization. Full article
Show Figures

Figure 1

22 pages, 4990 KiB  
Article
Modeling the Tripartite Coupling Dynamics of Electricity–Carbon–Renewable Certificate Markets: A System Dynamics Approach
by Zhangrong Pan, Yuexin Wang, Junhong Guo, Xiaoxuan Zhang, Song Xue, Wei Li, Zhuo Chen and Zhenlu Liu
Processes 2025, 13(3), 868; https://doi.org/10.3390/pr13030868 - 15 Mar 2025
Viewed by 713
Abstract
To ensure a smooth transition towards peak carbon emissions and carbon neutrality, one key strategy is to promote a low-carbon transition in the energy sector by facilitating the coordinated development of the electricity market, carbon market, and other markets. Currently, China’s national carbon [...] Read more.
To ensure a smooth transition towards peak carbon emissions and carbon neutrality, one key strategy is to promote a low-carbon transition in the energy sector by facilitating the coordinated development of the electricity market, carbon market, and other markets. Currently, China’s national carbon market primarily focuses on the power generation industry. High-energy-consuming industries such as the steel industry not only participate in the electricity market but also play a significant role in China’s future carbon market. Despite existing research on market mechanisms, there remains a significant research gap in understanding how steel enterprises adjust their trading behaviors to optimize costs in multi-market coupling contexts. This study employs a system dynamics approach to model the trading interconnection between electricity trading (ET), carbon emission trading (CET), and tradable green certificates (TGC). Within this multi-market system, thermal power enterprises and renewable generators serve as suppliers of carbon allowances and green certificates, respectively, while steel companies must meet both carbon emission constraints and renewable energy consumption obligations. The results show that companies can reduce future market transaction costs by increasing the proportion of medium to long-term electricity contracts and the purchase ratio of green electricity. Additionally, a lower proportion of free quotas leads to increased costs in the carbon market transactions in later stages. Therefore, it is beneficial for steel companies to conduct cost analyses of their participation in multivariate market transactions in the long run and adapt to market changes in advance and formulate rational market trading strategies. Full article
Show Figures

Figure 1

22 pages, 5774 KiB  
Article
Research and Demonstration of Operation Optimization Method of Zero-Carbon Building’s Compound Energy System Based on Day-Ahead Planning and Intraday Rolling Optimization Algorithm
by Biao Qiao, Jiankai Dong, Wei Xu, Ji Li and Fei Lu
Buildings 2025, 15(5), 836; https://doi.org/10.3390/buildings15050836 - 6 Mar 2025
Cited by 1 | Viewed by 692
Abstract
The compound energy system is an important component of zero-carbon buildings. Due to the complex form of the system and the difficult-to-capture characteristics of thermo-electric coupling interactions, the operation control of the zero-carbon building’s energy system is difficult in practical engineering. Therefore, it [...] Read more.
The compound energy system is an important component of zero-carbon buildings. Due to the complex form of the system and the difficult-to-capture characteristics of thermo-electric coupling interactions, the operation control of the zero-carbon building’s energy system is difficult in practical engineering. Therefore, it is necessary to carry out relevant optimization methods. This paper investigated the current research status of the control and scheduling of compound energy systems in zero-carbon buildings at home and abroad, selected a typical zero-carbon building as the research object, analyzed its energy system’s operational data, and proposed an operation scheduling algorithm based on day-ahead flexible programming and intraday rolling optimization. The multi-energy flow control algorithm model was developed to optimize the operation strategy of heat pump, photovoltaic, and energy storage systems. Then, the paper applied the algorithm model to a typical zero-carbon building project, and verified the actual effect of the method through the actual operational data. After applying the method in this paper, the self-absorption rate of photovoltaic power generation in the building increased by 7.13%. The research results provide a theoretical model and data support for the operation control of the zero-carbon building’s compound energy system, and could promote the market application of the compound energy system. Full article
(This article belongs to the Special Issue Research on Solar Energy System and Storage for Sustainable Buildings)
Show Figures

Figure 1

25 pages, 3976 KiB  
Article
Research on Multi-Scale Electricity–Carbon–Green Certificate Market Coupling Trading Based on System Dynamics
by Tiannan Ma, Lilin Peng, Gang Wu, Yuchen Wei and Xin Zou
Processes 2025, 13(1), 109; https://doi.org/10.3390/pr13010109 - 3 Jan 2025
Cited by 2 | Viewed by 1468
Abstract
While tradable green certificates (TGCs) and carbon emission trading (CET) play key roles in achieving peak carbon and carbon neutrality, the coupling effects between these two policies on the medium- and long-term electricity market and the spot market are still uncertain. In this [...] Read more.
While tradable green certificates (TGCs) and carbon emission trading (CET) play key roles in achieving peak carbon and carbon neutrality, the coupling effects between these two policies on the medium- and long-term electricity market and the spot market are still uncertain. In this study, we firstly construct a multi-scale market trading framework to sort out the information transfer of four markets. Secondly, we establish a multi-scale market system dynamics-coupled trading model with five sub-modules, including the medium- and long-term power markets, the spot market, and the carbon market. Subsequently, we adjust the policy parameters (carbon quota benchmark price, carbon quota auction ratio, and renewable energy quota ratio) and set up five policy scenarios to compare and analyze the impacts of the CET and TGC mechanisms on the power market and carbon emission reduction when they act alone or in synergy, in order to provide a theoretical basis for the adjustment of strategies of market entities and the setting of parameters. The results show that CET can increase spot electricity prices and promote renewable energy to enter the spot market, while TGCs can promote a high proportion of renewable energy consumption but lower spot electricity prices for a long time. The coordinated implementation of the CET and TGC mechanisms can improve the power market’s adaptability to high renewable energy penetration, but it may also result in policy redundancy. Full article
Show Figures

Figure 1

Back to TopTop