Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (343)

Search Parameters:
Keywords = electricity consumption prediction and management

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3940 KiB  
Article
24 Hours Ahead Forecasting of the Power Consumption in an Industrial Pig Farm Using Deep Learning
by Boris Evstatiev, Nikolay Valov, Katerina Gabrovska-Evstatieva, Irena Valova, Tsvetelina Kaneva and Nicolay Mihailov
Energies 2025, 18(15), 4055; https://doi.org/10.3390/en18154055 (registering DOI) - 31 Jul 2025
Viewed by 92
Abstract
Forecasting the energy consumption of different consumers became an important procedure with the creation of the European Electricity Market. This study presents a methodology for 24-hour ahead prediction of the energy consumption, which is suitable for application in animal husbandry facilities, such as [...] Read more.
Forecasting the energy consumption of different consumers became an important procedure with the creation of the European Electricity Market. This study presents a methodology for 24-hour ahead prediction of the energy consumption, which is suitable for application in animal husbandry facilities, such as pig farms. To achieve this, 24 individual models are trained using artificial neural networks that forecast the energy production 1 to 24 h ahead. The selected features include power consumption over the last 72 h, time-based data, average, minimum, and maximum daily temperatures, relative humidities, and wind speeds. The models’ Normalized mean absolute error (NMAE), Normalized root mean square error (NRMSE), and Mean absolute percentage error (MAPE) vary between 16.59% and 19.00%, 22.19% and 24.73%, and 9.49% and 11.49%, respectively. Furthermore, the case studies showed that in most situations, the forecasting error does not exceed 10% with several cases up to 25%. The proposed methodology can be useful for energy managers of animal farm facilities, and help them provide a better prognosis of their energy consumption for the Energy Market. The proposed methodology could be improved by selecting additional features, such as the variation of the controlled meteorological parameters over the last couple of days and the schedule of technological processes. Full article
(This article belongs to the Special Issue Application of AI in Energy Savings and CO2 Reduction)
Show Figures

Figure 1

27 pages, 881 KiB  
Article
Review of Methods and Models for Forecasting Electricity Consumption
by Kamil Misiurek, Tadeusz Olkuski and Janusz Zyśk
Energies 2025, 18(15), 4032; https://doi.org/10.3390/en18154032 - 29 Jul 2025
Viewed by 142
Abstract
This article presents a comprehensive review of methods used for forecasting electricity consumption. The studies analyzed by the authors encompass both classical statistical models and modern approaches based on artificial intelligence, including machine-learning and deep-learning techniques. Electricity load forecasting is categorized into four [...] Read more.
This article presents a comprehensive review of methods used for forecasting electricity consumption. The studies analyzed by the authors encompass both classical statistical models and modern approaches based on artificial intelligence, including machine-learning and deep-learning techniques. Electricity load forecasting is categorized into four time horizons: very short term, short term, medium term, and long term. The authors conducted a comparative analysis of various models, such as autoregressive models, neural networks, fuzzy logic systems, hybrid models, and evolutionary algorithms. Particular attention was paid to the effectiveness of these methods in the context of variable input data, such as weather conditions, seasonal fluctuations, and changes in energy consumption patterns. The article emphasizes the growing importance of accurate forecasts in the context of the energy transition, integration of renewable energy sources, and the management of the evolving electricity system, shaped by decentralization, renewable integration, and data-intensive forecasting demands. In conclusion, the authors highlight the lack of a universal forecasting approach and the need for further research on hybrid models that combine interpretability with high predictive accuracy. This review can serve as a valuable resource for decision-makers, grid operators, and researchers involved in energy system planning. Full article
(This article belongs to the Special Issue Electricity Market Modeling Trends in Power Systems: 2nd Edition)
Show Figures

Figure 1

38 pages, 2182 KiB  
Article
Smart Grid Strategies for Tackling the Duck Curve: A Qualitative Assessment of Digitalization, Battery Energy Storage, and Managed Rebound Effects Benefits
by Joseph Nyangon
Energies 2025, 18(15), 3988; https://doi.org/10.3390/en18153988 - 25 Jul 2025
Viewed by 346
Abstract
Modern utilities face unprecedented pressures as trends in digital transformation and democratized energy choice empower consumers to engage in peak shaving, flexible load management, and adopt grid automation and intelligence solutions. A powerful confluence of architectural, technological, and socio-economic forces is transforming the [...] Read more.
Modern utilities face unprecedented pressures as trends in digital transformation and democratized energy choice empower consumers to engage in peak shaving, flexible load management, and adopt grid automation and intelligence solutions. A powerful confluence of architectural, technological, and socio-economic forces is transforming the U.S. electricity market, triggering significant changes in electricity production, transmission, and consumption. Utilities are embracing digital twins and repurposed Utility 2.0 concepts—distributed energy resources, microgrids, innovative electricity market designs, real-time automated monitoring, smart meters, machine learning, artificial intelligence, and advanced data and predictive analytics—to foster operational flexibility and market efficiency. This analysis qualitatively evaluates how digitalization, Battery Energy Storage Systems (BESSs), and adaptive strategies to mitigate rebound effects collectively advance smart duck curve management. By leveraging digital platforms for real-time monitoring and predictive analytics, utilities can optimize energy flows and make data-driven decisions. BESS technologies capture surplus renewable energy during off-peak periods and discharge it when demand spikes, thereby smoothing grid fluctuations. This review explores the benefits of targeted digital transformation, BESSs, and managed rebound effects in mitigating the duck curve problem, ensuring that energy efficiency gains translate into actual savings. Furthermore, this integrated approach not only reduces energy wastage and lowers operational costs but also enhances grid resilience, establishing a robust framework for sustainable energy management in an evolving market landscape. Full article
(This article belongs to the Special Issue Policy and Economic Analysis of Energy Systems)
Show Figures

Figure 1

26 pages, 3405 KiB  
Article
Digital Twins for Intelligent Vehicle-to-Grid Systems: A Multi-Physics EV Model for AI-Based Energy Management
by Michela Costa and Gianluca Del Papa
Appl. Sci. 2025, 15(15), 8214; https://doi.org/10.3390/app15158214 - 23 Jul 2025
Viewed by 246
Abstract
This paper presents a high-fidelity multi-physics dynamic model for electric vehicles, serving as a fundamental building block for intelligent vehicle-to-grid (V2G) integration systems. The model accurately captures complex vehicle dynamics of the powertrain, battery, and regenerative braking, enabling precise energy consumption evaluation, including [...] Read more.
This paper presents a high-fidelity multi-physics dynamic model for electric vehicles, serving as a fundamental building block for intelligent vehicle-to-grid (V2G) integration systems. The model accurately captures complex vehicle dynamics of the powertrain, battery, and regenerative braking, enabling precise energy consumption evaluation, including in AI-driven V2G scenarios. Validated using real-world data from a Citroën Ami operating on urban routes in Naples, Italy, it achieved exceptional accuracy with a root mean square error (RMSE) of 1.28% for dynamic state of charge prediction. This robust framework provides an essential foundation for AI-driven digital twin technologies in V2G applications, significantly advancing sustainable transportation and smart grid integration through predictive simulation. Its versatility supports diverse fleet applications, from residential energy management and coordinated charging optimization to commercial car sharing operations, leveraging backup power during peak demand or grid outages, so to maximize distributed battery storage utilization. Full article
(This article belongs to the Special Issue Applications of Artificial Intelligence in the Novel Power System)
Show Figures

Figure 1

29 pages, 9145 KiB  
Article
Ultra-Short-Term Forecasting-Based Optimization for Proactive Home Energy Management
by Siqi Liu, Zhiyuan Xie, Zhengwei Hu, Kaisa Zhang, Weidong Gao and Xuewen Liu
Energies 2025, 18(15), 3936; https://doi.org/10.3390/en18153936 - 23 Jul 2025
Viewed by 180
Abstract
With the increasing integration of renewable energy and smart technologies in residential energy systems, proactive household energy management (HEM) have become critical for reducing costs, enhancing grid stability, and achieving sustainability goals. This study proposes a ultra-short-term forecasting-driven proactive energy consumption optimization strategy [...] Read more.
With the increasing integration of renewable energy and smart technologies in residential energy systems, proactive household energy management (HEM) have become critical for reducing costs, enhancing grid stability, and achieving sustainability goals. This study proposes a ultra-short-term forecasting-driven proactive energy consumption optimization strategy that integrates advanced forecasting models with multi-objective scheduling algorithms. By leveraging deep learning techniques like Graph Attention Network (GAT) architectures, the system predicts ultra-short-term household load profiles with high accuracy, addressing the volatility of residential energy use. Then, based on the predicted data, a comprehensive consideration of electricity costs, user comfort, carbon emission pricing, and grid load balance indicators is undertaken. This study proposes an enhanced mixed-integer optimization algorithm to collaboratively optimize multiple objective functions, thereby refining appliance scheduling, energy storage utilization, and grid interaction. Case studies demonstrate that integrating photovoltaic (PV) power generation forecasting and load forecasting models into a home energy management system, and adjusting the original power usage schedule based on predicted PV output and water heater demand, can effectively reduce electricity costs and carbon emissions without compromising user engagement in optimization. This approach helps promote energy-saving and low-carbon electricity consumption habits among users. Full article
Show Figures

Figure 1

29 pages, 5526 KiB  
Article
Dynamic Machine Learning-Based Simulation for Preemptive Supply-Demand Balancing Amid EV Charging Growth in the Jamali Grid 2025–2060
by Joshua Veli Tampubolon, Rinaldy Dalimi and Budi Sudiarto
World Electr. Veh. J. 2025, 16(7), 408; https://doi.org/10.3390/wevj16070408 - 21 Jul 2025
Viewed by 291
Abstract
The rapid uptake of electric vehicles (EVs) in the Jawa–Madura–Bali (Jamali) grid produces highly variable charging demands that threaten the supply–demand balance. To forestall instability, we developed a predictive simulation based on long short-term memory (LSTM) networks that combines historical generation and consumption [...] Read more.
The rapid uptake of electric vehicles (EVs) in the Jawa–Madura–Bali (Jamali) grid produces highly variable charging demands that threaten the supply–demand balance. To forestall instability, we developed a predictive simulation based on long short-term memory (LSTM) networks that combines historical generation and consumption patterns with models of EV population growth and initial charging-time (ICT). We introduce a novel supply–demand balance score to quantify weekly and annual deviations between projected supply and demand curves, then use this metric to guide the machine-learning model in optimizing annual growth rate (AGR) and preventing supply demand imbalance. Relative to a business-as-usual baseline, our approach improves balance scores by 64% and projects up to a 59% reduction in charging load by 2060. These results demonstrate the promise of data-driven demand-management strategies for maintaining grid reliability during large-scale EV integration. Full article
Show Figures

Figure 1

22 pages, 2112 KiB  
Article
Cultural Diversity and the Operational Performance of Airport Security Checkpoints: An Analysis of Energy Consumption and Passenger Flow
by Jacek Ryczyński, Artur Kierzkowski, Marta Nowakowska and Piotr Uchroński
Energies 2025, 18(14), 3853; https://doi.org/10.3390/en18143853 - 20 Jul 2025
Viewed by 293
Abstract
This paper examines the operational consequences and energy demands associated with the growing cultural diversity of air travellers at airport security checkpoints. The analysis focuses on how an increasing proportion of passengers requiring enhanced security screening, due to cultural, religious, or linguistic factors, [...] Read more.
This paper examines the operational consequences and energy demands associated with the growing cultural diversity of air travellers at airport security checkpoints. The analysis focuses on how an increasing proportion of passengers requiring enhanced security screening, due to cultural, religious, or linguistic factors, affects both system throughput and energy consumption. The methodology integrates synchronised measurement of passenger flow with real-time monitoring of electricity usage. Four operational scenarios, representing incremental shares (0–15%) of passengers subject to extended screening, were modelled. The findings indicate that a 15% increase in this passenger group leads to a statistically significant rise in average power consumption per device (3.5%), a total energy usage increase exceeding 4%, and an extension of average service time by 0.6%—the cumulative effect results in a substantial annual contribution to the airport’s carbon footprint. The results also reveal a higher frequency and intensity of power consumption peaks, emphasising the need for advanced infrastructure management. The study emphasises the significance of predictive analytics, dynamic resource allocation, and the implementation of energy-efficient technologies. Furthermore, systematic intercultural competency training is recommended for security staff. These insights provide a scientific basis for optimising airport security operations amid increasing passenger heterogeneity. Full article
Show Figures

Figure 1

22 pages, 3160 KiB  
Article
Monthly Urban Electricity Power Consumption Prediction Using Nighttime Light Remote Sensing: A Case Study of the Yangtze River Delta Urban Agglomeration
by Shuo Chen, Dongmei Yan, Cuiting Li, Jun Chen, Jun Yan and Zhe Zhang
Remote Sens. 2025, 17(14), 2478; https://doi.org/10.3390/rs17142478 - 17 Jul 2025
Viewed by 263
Abstract
Urban electricity power consumption (EPC) prediction plays a crucial role in urban management and sustainable development. Nighttime light (NTL) remote sensing imagery has demonstrated significant potential in estimating urban EPC due to its strong correlation with human activities and energy use. However, most [...] Read more.
Urban electricity power consumption (EPC) prediction plays a crucial role in urban management and sustainable development. Nighttime light (NTL) remote sensing imagery has demonstrated significant potential in estimating urban EPC due to its strong correlation with human activities and energy use. However, most existing models focus on annual-scale estimations, limiting their ability to capture month-scale EPC. To address this limitation, a novel monthly EPC prediction model that incorporates monthly average temperature, and the interaction between NTL data and temperature was proposed in this study. The proposed method was applied to cities within the Yangtze River Delta (YRD) urban agglomeration, and was validated using datasets constructed from NPP/VIIRS and SDGSAT-1 satellite imageries, respectively. For the NPP/VIIRS dataset, the proposed method achieved a Mean Absolute Relative Error (MARE) of 7.96% during the training phase (2017–2022) and of 10.38% during the prediction phase (2023), outperforming the comparative methods. Monthly EPC spatial distribution maps from VPP/VIIRS data were generated, which not only reflect the spatial patterns of EPC but also clearly illustrate the temporal evolution of EPC at the spatial level. Annual EPC estimates also showed superior accuracy compared to three comparative methods, achieving a MARE of 7.13%. For the SDGSAT-1 dataset, leave-one-out cross-validation confirmed the robustness of the model, and high-resolution (40 m) monthly EPC maps were generated, enabling the identification of power consumption zones and their spatial characteristics. The proposed method provides a timely and accurate means for capturing monthly EPC dynamics, effectively supporting the dynamic monitoring of urban EPC at the monthly scale in the YRD urban agglomeration. Full article
Show Figures

Graphical abstract

15 pages, 1572 KiB  
Article
AI-Driven Optimization Framework for Smart EV Charging Systems Integrated with Solar PV and BESS in High-Density Residential Environments
by Md Tanjil Sarker, Marran Al Qwaid, Siow Jat Shern and Gobbi Ramasamy
World Electr. Veh. J. 2025, 16(7), 385; https://doi.org/10.3390/wevj16070385 - 9 Jul 2025
Viewed by 585
Abstract
The rapid growth of electric vehicle (EV) adoption necessitates advanced energy management strategies to ensure sustainable, reliable, and efficient operation of charging infrastructure. This study proposes a hybrid AI-based framework for optimizing residential EV charging systems through the integration of Reinforcement Learning (RL), [...] Read more.
The rapid growth of electric vehicle (EV) adoption necessitates advanced energy management strategies to ensure sustainable, reliable, and efficient operation of charging infrastructure. This study proposes a hybrid AI-based framework for optimizing residential EV charging systems through the integration of Reinforcement Learning (RL), Linear Programming (LP), and real-time grid-aware scheduling. The system architecture includes smart wall-mounted chargers, a 120 kWp rooftop solar photovoltaic (PV) array, and a 60 kWh lithium-ion battery energy storage system (BESS), simulated under realistic load conditions for 800 residential units and 50 charging points rated at 7.4 kW each. Simulation results, validated through SCADA-based performance monitoring using MATLAB/Simulink and OpenDSS, reveal substantial technical improvements: a 31.5% reduction in peak transformer load, voltage deviation minimized from ±5.8% to ±2.3%, and solar utilization increased from 48% to 66%. The AI framework dynamically predicts user demand using a non-homogeneous Poisson process and optimizes charging schedules based on a cost-voltage-user satisfaction reward function. The study underscores the critical role of intelligent optimization in improving grid reliability, minimizing operational costs, and enhancing renewable energy self-consumption. The proposed system demonstrates scalability, resilience, and cost-effectiveness, offering a practical solution for next-generation urban EV charging networks. Full article
Show Figures

Figure 1

39 pages, 2307 KiB  
Article
Modeling of Energy Management System for Fully Autonomous Vessels with Hybrid Renewable Energy Systems Using Nonlinear Model Predictive Control via Grey Wolf Optimization Algorithm
by Harriet Laryea and Andrea Schiffauerova
J. Mar. Sci. Eng. 2025, 13(7), 1293; https://doi.org/10.3390/jmse13071293 - 30 Jun 2025
Viewed by 310
Abstract
This study presents a multi-objective predictive energy management system (EMS) for optimizing hybrid renewable energy systems (HRES) in autonomous marine vessels. The objective is to minimize fuel consumption and emissions while maximizing renewable energy usage and pure-electric sailing durations. The EMS combines nonlinear [...] Read more.
This study presents a multi-objective predictive energy management system (EMS) for optimizing hybrid renewable energy systems (HRES) in autonomous marine vessels. The objective is to minimize fuel consumption and emissions while maximizing renewable energy usage and pure-electric sailing durations. The EMS combines nonlinear model predictive control (NMPC) with metaheuristic optimizers—Grey Wolf Optimization (GWO) and Genetic Algorithm (GA)—and is benchmarked against a conventional rule-based (RB) method. The HRES architecture comprises photovoltaic arrays, vertical-axis wind turbines (VAWTs), diesel engines, generators, and a battery storage system. A ship dynamics model was used to represent propulsion power under realistic sea conditions. Simulations were conducted using real-world operational and environmental datasets, with state prediction enhanced by an Extended Kalman Filter (EKF). Performance is evaluated using marine-relevant indicators—fuel consumption; emissions; battery state of charge (SOC); and emission cost—and validated using standard regression metrics. The NMPC-GWO algorithm consistently outperformed both NMPC-GA and RB approaches, achieving high prediction accuracy and greater energy efficiency. These results confirm the reliability and optimization capability of predictive EMS frameworks in reducing emissions and operational costs in autonomous maritime operations. Full article
(This article belongs to the Special Issue Advancements in Hybrid Power Systems for Marine Applications)
Show Figures

Figure 1

28 pages, 5769 KiB  
Article
Assessment and Enhancement of Indoor Environmental Quality in a School Building
by Ronan Proot-Lafontaine, Abdelatif Merabtine, Geoffrey Henriot and Wahid Maref
Sustainability 2025, 17(12), 5576; https://doi.org/10.3390/su17125576 - 17 Jun 2025
Viewed by 447
Abstract
Achieving both indoor environmental quality (IEQ) and energy efficiency in school buildings remains a challenge, particularly in older structures where renovation strategies often lack site-specific validation. This study evaluates the impact of energy retrofits on a 1970s primary school in France by integrating [...] Read more.
Achieving both indoor environmental quality (IEQ) and energy efficiency in school buildings remains a challenge, particularly in older structures where renovation strategies often lack site-specific validation. This study evaluates the impact of energy retrofits on a 1970s primary school in France by integrating in situ measurements with a validated numerical model for forecasting energy demand and IEQ. Temperature, humidity, and CO2 levels were recorded before and after renovations, which included insulation upgrades and an air handling unit replacement. Results indicate significant improvements in winter thermal comfort (PPD < 20%) with a reduced heating water temperature (65 °C to 55 °C) and stable indoor air quality (CO2 < 800 ppm), without the need for window ventilation. Night-flushing ventilation proved effective in mitigating overheating by shifting peak temperatures outside school hours, contributing to enhanced thermal regulation. Long-term energy consumption analysis (2019–2022) revealed substantial reductions in gas and electricity use, 15% and 29% of energy saving for electricity and gas, supporting the effectiveness of the applied renovation strategies. However, summer overheating (up to 30 °C) persisted, particularly in south-facing upper floors with extensive glazing, underscoring the need for additional optimization in solar gain management and heating control. By providing empirical validation of renovation outcomes, this study bridges the gap between theoretical predictions and real-world effectiveness, offering a data-driven framework for enhancing IEQ and energy performance in aging school infrastructure. Full article
(This article belongs to the Special Issue New Insights into Indoor Air Quality in Sustainable Buildings)
Show Figures

Figure 1

19 pages, 2851 KiB  
Article
Estimating Energy Consumption During Soil Cultivation Using Geophysical Scanning and Machine Learning Methods
by Jasper Tembeck Mbah, Katarzyna Pentoś, Krzysztof S. Pieczarka and Tomasz Wojciechowski
Agriculture 2025, 15(12), 1263; https://doi.org/10.3390/agriculture15121263 - 11 Jun 2025
Viewed by 1062
Abstract
The agricultural sector is one of the most significant sectors of the global economy, yet it is concurrently a highly energy-intensive industry. The issue of optimizing field operations in terms of energy consumption is therefore a key consideration for sustainable agriculture, and the [...] Read more.
The agricultural sector is one of the most significant sectors of the global economy, yet it is concurrently a highly energy-intensive industry. The issue of optimizing field operations in terms of energy consumption is therefore a key consideration for sustainable agriculture, and the solution to this issue leads to both environmental and financial benefits. The aim of this study was to estimate energy consumption during soil cultivation using geophysical scanning data and machine learning (ML) algorithms. This included determining the optimal set of independent variables and the most suitable ML method. Soil parameters such as electrical conductivity, magnetic susceptibility, and soil reflectance in infrared spectra were mapped using data from Geonics EM-38 and Veris 3100 scanners. These data, along with soil texture, served as inputs for predicting fuel consumption and field productivity. Three machine learning algorithms were tested: support vector machines (SVMs), multilayer perceptron (MLP), and radial basis function (RBF) neural networks. Among these, SVM achieved the best performance, showing a MAPE of 4% and a strong correlation (R = 0.97) between predicted and actual productivity values. For fuel consumption, the optimal method was MLP (MAPE = 4% and R = 0.63). The findings demonstrate the viability of geophysical scanning and machine learning for accurately predicting energy use in tillage operations. This approach supports more sustainable agriculture by enabling optimized fuel use and reducing environmental impact through data-driven field management. Further research is needed to obtain training data for different soil parameters and agrotechnical treatments in order to develop more universal models. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

25 pages, 3399 KiB  
Article
Symmetry-Guided Electric Vehicles Energy Consumption Optimization Based on Driver Behavior and Environmental Factors: A Reinforcement Learning Approach
by Jiyuan Wang, Haijian Zhang, Bi Wu and Wenhe Liu
Symmetry 2025, 17(6), 930; https://doi.org/10.3390/sym17060930 - 11 Jun 2025
Cited by 1 | Viewed by 625
Abstract
The widespread adoption of electric vehicles (EVs) necessitates advanced energy management strategies to alleviate range anxiety and improve overall energy efficiency. This study presents a novel framework for optimizing energy consumption in EVs by integrating driver behavior patterns, road conditions, and environmental factors. [...] Read more.
The widespread adoption of electric vehicles (EVs) necessitates advanced energy management strategies to alleviate range anxiety and improve overall energy efficiency. This study presents a novel framework for optimizing energy consumption in EVs by integrating driver behavior patterns, road conditions, and environmental factors. Utilizing a comprehensive dataset of 3395 high-resolution charging sessions from 85 EV drivers across 25 workplace locations, we developed a multi-modal prediction model that captures the complex interactions between driving behavior and environmental conditions. The proposed methodology employs a combination of driving scenario recognition and reinforcement learning techniques to optimize energy usage. Specifically, we utilize contrastive learning to extract meaningful representations of driving states by leveraging the symmetric relationships between positive pairs and the asymmetric nature of negative pairs and implement graph attention networks to model the intricate relationships between road environments and driving behaviors. Our experimental results demonstrate that the proposed framework achieves a significant reduction in energy consumption compared to baseline methods, with an average improvement of 17.3% in energy efficiency under various driving conditions. Furthermore, we introduce an adaptive real-time optimization strategy that dynamically adjusts vehicle parameters based on instantaneous driving patterns and environmental contexts. This research contributes to the advancement of intelligent energy management systems for EVs and provides insights into the development of more efficient and environmentally sustainable transportation solutions. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

22 pages, 6853 KiB  
Article
Optimization of Battery Thermal Management for Real Vehicles via Driving Condition Prediction Using Neural Networks
by Haozhe Zhang, Jiashun Zhang, Tianchang Song, Xu Zhao, Yulong Zhang and Shupeng Zhao
Batteries 2025, 11(6), 224; https://doi.org/10.3390/batteries11060224 - 8 Jun 2025
Cited by 1 | Viewed by 808
Abstract
In the context of the global energy transition, thermal management of electric vehicle batteries faces severe challenges due to temperature rise and energy consumption under dynamic operating conditions. Traditional strategies rely on real-time feedback and suffer from response lag and energy efficiency imbalance. [...] Read more.
In the context of the global energy transition, thermal management of electric vehicle batteries faces severe challenges due to temperature rise and energy consumption under dynamic operating conditions. Traditional strategies rely on real-time feedback and suffer from response lag and energy efficiency imbalance. In this study, we propose a neural network-based synergistic optimization method for driving conditions prediction and dynamic thermal management, which collects multi-scenario real-vehicle data (358 60-s condition segments) by naturalistic driving data collection method, extracts four typical conditions (congestion, highway, urban, and suburbia) by combining with K-means clustering, and constructs a BP (backpropagation neural network) model (20 neurons in the input layer and 60 neurons in the output layer) to predict the vehicle speed in the next 60 s. Based on the prediction results, the coupled PID control and temperature feedback mechanism dynamically adjusts the coolant flow rate (maximum reduction of 17.6%), which reduces the maximum temperature of the battery by 3.8 °C, the maximum temperature difference by 0.3 °C, and the standard deviation of temperature fluctuation at ambient temperatures of 25~40 °C is 0.2 °C in AMESim simulation and experimental validation. The results show that the strategy significantly improves battery safety and system economy under complex working conditions by prospectively optimizing heat dissipation and energy consumption, providing an efficient solution for intelligent thermal management. Full article
(This article belongs to the Special Issue Batteries Safety and Thermal Management for Electric Vehicles)
Show Figures

Graphical abstract

19 pages, 2900 KiB  
Article
Energy Management and Edge-Driven Trading in Fractal-Structured Microgrids: A Machine Learning Approach
by Mostafa Pasandideh, Jason Kurz and Mark Apperley
Energies 2025, 18(11), 2976; https://doi.org/10.3390/en18112976 - 5 Jun 2025
Viewed by 559
Abstract
The integration of renewable energy into residential microgrids presents significant challenges due to solar generation intermittency and variability in household electricity demand. Traditional forecasting methods, reliant on historical data, fail to adapt effectively in dynamic scenarios, leading to inefficient energy management. This paper [...] Read more.
The integration of renewable energy into residential microgrids presents significant challenges due to solar generation intermittency and variability in household electricity demand. Traditional forecasting methods, reliant on historical data, fail to adapt effectively in dynamic scenarios, leading to inefficient energy management. This paper introduces a novel adaptive energy management framework that integrates streaming machine learning (SML) with a hierarchical fractal microgrid architecture to deliver precise real-time electricity demand forecasts for a residential community. Leveraging incremental learning capabilities, the proposed model continuously updates, achieving robust predictive performance with mean absolute errors (MAE) across individual households and the community of less than 10% of typical hourly consumption values. Three battery-sizing scenarios are analytically evaluated: centralised battery, uniformly distributed batteries, and a hybrid model of uniformly distributed batteries plus an optimised central battery. Predictive adaptive management significantly reduced cumulative grid usage compared to traditional methods, with a 20% reduction in energy deficit events, and optimised battery cycling frequency extending battery lifecycle. Furthermore, the adaptive framework conceptually aligns with digital twin methodologies, facilitating real-time operational adjustments. The findings provide critical insights into sustainable, decentralised microgrid management, emphasising improved operational efficiency, enhanced battery longevity, reduced grid dependence, and robust renewable energy utilisation. Full article
(This article belongs to the Special Issue Novel Energy Management Approaches in Microgrid Systems)
Show Figures

Figure 1

Back to TopTop