Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (114)

Search Parameters:
Keywords = electricity and natural gas distribution systems

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 6221 KiB  
Article
Development and Experimental Validation of a Tubular Permanent Magnet Linear Alternator for Free-Piston Engine Applications
by Parviz Famouri, Jayaram Subramanian, Fereshteh Mahmudzadeh-Ghomi, Mehar Bade, Terence Musho and Nigel Clark
Machines 2025, 13(8), 651; https://doi.org/10.3390/machines13080651 - 25 Jul 2025
Viewed by 298
Abstract
The ongoing rise in global electricity demand highlights the need for advanced, efficient, and environmentally responsible energy conversion technologies. This research presents a comprehensive design, modeling, and experimental validation of a tubular permanent magnet linear alternator (PMLA) integrated with a free piston engine [...] Read more.
The ongoing rise in global electricity demand highlights the need for advanced, efficient, and environmentally responsible energy conversion technologies. This research presents a comprehensive design, modeling, and experimental validation of a tubular permanent magnet linear alternator (PMLA) integrated with a free piston engine system. Linear alternators offer a direct conversion of linear motion to electricity, eliminating the complexity and losses associated with rotary generators and enabling higher efficiency and simplified system architecture. The study combines analytical modeling, finite element simulations, and a sensitivity-based design optimization to guide alternator and engine integration. Two prototype systems, designated as alpha and beta, were developed, modeled, and tested. The beta prototype achieved a maximum electrical output of 550 W at 57% efficiency using natural gas fuel, demonstrating reliable performance at elevated reciprocating frequencies. The design and optimization of specialized flexure springs were essential in achieving stable, high-frequency operation and improved power density. These results validate the effectiveness of the proposed design approach and highlight the scalability and adaptability of PMLA technology for sustainable power generation. Ultimately, this study demonstrates the potential of free piston linear generator systems as efficient, robust, and environmentally friendly alternatives to traditional rotary generators, with applications spanning hybrid electric vehicles, distributed energy systems, and combined heat and power. Full article
(This article belongs to the Section Electrical Machines and Drives)
Show Figures

Figure 1

31 pages, 5880 KiB  
Article
Low-Carbon Optimal Operation Strategy of Multi-Energy Multi-Microgrid Electricity–Hydrogen Sharing Based on Asymmetric Nash Bargaining
by Hang Wang, Qunli Wu and Huiling Guo
Sustainability 2025, 17(10), 4703; https://doi.org/10.3390/su17104703 - 20 May 2025
Viewed by 495
Abstract
The cooperative interconnection of multi-microgrid systems offers significant advantages in enhancing energy utilization efficiency and economic performance, providing innovative pathways for promoting sustainable development. To establish a fair energy trading mechanism for electricity–hydrogen sharing within multi-energy multi-microgrid (MEMG) systems, this study first analyzes [...] Read more.
The cooperative interconnection of multi-microgrid systems offers significant advantages in enhancing energy utilization efficiency and economic performance, providing innovative pathways for promoting sustainable development. To establish a fair energy trading mechanism for electricity–hydrogen sharing within multi-energy multi-microgrid (MEMG) systems, this study first analyzes the operational architecture of MEMG energy sharing and establishes a multi-energy coordinated single-microgrid model integrating electricity, heat, natural gas, and hydrogen. To achieve low-carbon operation, carbon capture systems (CCSs) and power-to-gas (P2G) units are incorporated into conventional combined heat and power (CHP) systems. Subsequently, an asymmetric Nash bargaining-based optimization framework is proposed to coordinate the MEMG network, which decomposes the problem into two subproblems: (1) minimizing the total operational cost of MEMG networks, and (2) maximizing payment benefits through fair benefit allocation. Notably, Subproblem 2 employs the energy trading volume of individual microgrids as bargaining power to ensure equitable profit distribution. The improved alternating direction multiplier method (ADMM) is adopted for distributed problem-solving. Experimental results demonstrate that the cost of each MG decreased by 5894.14, 3672.44, and 2806.64 CNY, while the total cost of the MEMG network decreased by 12,431.22 CNY. Additionally, the carbon emission reduction ratios were 2.84%, 2.77%, and 5.51% for each MG and 11.12% for the MEMG network. Full article
Show Figures

Graphical abstract

26 pages, 2575 KiB  
Article
Bi-Level Resilience-Oriented Sitting and Sizing of Energy Hubs in Electrical, Thermal and Gas Networks Considering Energy Management System
by Dhafer M. Dahis, Seyed Saeedallah Mortazavi, Mahmood Joorabian and Alireza Saffarian
Energies 2025, 18(10), 2569; https://doi.org/10.3390/en18102569 - 15 May 2025
Cited by 1 | Viewed by 339
Abstract
In this article, the planning and energy administration of energy hubs in electric, thermal and gas networks are presented, considering the resilience of the system against natural phenomena like floods and earthquakes. Each hub consists of bio-waste, wind and solar renewable units. These [...] Read more.
In this article, the planning and energy administration of energy hubs in electric, thermal and gas networks are presented, considering the resilience of the system against natural phenomena like floods and earthquakes. Each hub consists of bio-waste, wind and solar renewable units. These include non-renewable units such as boilers and combined heat and power (CHP) units. Compressed air and thermal energy storage are used in each hub. The design is formed as a bi-level optimization framework. In the upper level of the scheme, the energy management of networks bound to system resiliency is provided. This considers the minimization of annual operating and resilience costs based on optimal power flow equations in networks. In the lower-level model, the planning (placement and sizing) of hubs is considered. This minimizes the total building and operation costs of hubs based on the operation-planning equations for power supplies and storages. Scenario-based stochastic optimization models are used to determine the uncertainties of demand, the power of renewable systems, energy price and the accessibility of distribution networks’ elements against natural disasters. In this study, the Karush–Kuhn–Tucker technique is used to extract the single-level formulation. A numerical report for case studies verifies the potential of the plan to enhance the economic, operation and resilience status of networks with energy administration and the optimal planning of hubs in the mentioned networks. By determining the optimal capacity for resources and storage in the hubs located in the optimal places and the optimal energy administration of the hubs, the economic, exploitation and resilience situation of the networks are improved by about 27.1%, 97.7% and 23–50%, respectively, compared to load flow studies. Full article
(This article belongs to the Special Issue Advanced Forecasting Methods for Sustainable Power Grid)
Show Figures

Figure 1

25 pages, 7829 KiB  
Article
Consider Demand Response and Power-Sharing Source-Storage-Load Three-Level Game Models
by Fuyi Zou, Hui He, Xiang Liao, Ke Liu, Shuo Ouyang, Li Mo and Wei Huang
Sustainability 2025, 17(10), 4270; https://doi.org/10.3390/su17104270 - 8 May 2025
Viewed by 406
Abstract
With the increasing connection between integrated natural gas, thermal energy, and electric power systems, the integrated energy system (IES) needs to coordinate the internal unit scheduling and meet the different load demands of customers. However, when the energy subjects involved in scheduling are [...] Read more.
With the increasing connection between integrated natural gas, thermal energy, and electric power systems, the integrated energy system (IES) needs to coordinate the internal unit scheduling and meet the different load demands of customers. However, when the energy subjects involved in scheduling are engaged in conflicts of interest, aspects such as hierarchical status relationships and cooperative and competitive relationships must be considered. Therefore, this paper studies the problem of achieving optimal energy scheduling for multiple subjects of source, storage, and load under the same distribution network while ensuring that their benefits are not impaired. First, this paper establishes a dual master-slave game model with a shared energy storage system (SESS), IES, and the alliance of prosumers (APs) as the main subjects. Second, based on the Nash negotiation theory and considering the sharing of electric energy among prosumers, the APs model is equated into two sub-problems of coalition cost minimization and cooperative benefit distribution to ensure that the coalition members distribute the cooperative benefits equitably. Further, the Stackelberg-Stackelberg-Nash three-layer game model is established, and the dichotomous distributed optimization algorithm combined with the alternating direction multiplier method (ADMM) is used to solve this three-layer game model. Finally, in the simulation results of the arithmetic example, the natural gas consumption is reduced by 9.32%, the economic efficiency of IES is improved by 3.95%, and the comprehensive energy purchase cost of APs is reduced by 12.16%, the proposed model verifies the sustainability co-optimization and mutual benefits of source, storage and load multi-interested subjects. Full article
Show Figures

Figure 1

25 pages, 3834 KiB  
Article
Stochastic Capacity Expansion Model Accounting for Uncertainties in Fuel Prices, Renewable Generation, and Demand
by Naga Srujana Goteti, Eric Hittinger and Eric Williams
Energies 2025, 18(5), 1283; https://doi.org/10.3390/en18051283 - 6 Mar 2025
Viewed by 1532
Abstract
Capacity expansion models for electricity grids typically use deterministic optimization, addressing uncertainty through ex-post analysis by varying input parameters. This paper presents a stochastic capacity expansion model that integrates uncertainty directly into optimization, enabling the selection of a single strategy robust across a [...] Read more.
Capacity expansion models for electricity grids typically use deterministic optimization, addressing uncertainty through ex-post analysis by varying input parameters. This paper presents a stochastic capacity expansion model that integrates uncertainty directly into optimization, enabling the selection of a single strategy robust across a defined range of uncertainties. Two cost-based risk objectives are explored: “risk-neutral” minimizes expected total system cost, and “risk-averse” minimizes the most expensive 5% of the cost distribution. The model is applied to the U.S. Midwest grid, accounting for uncertainties in electricity demand, natural gas prices, and wind generation patterns. While uncertain gas prices lead to wind additions, wind variability leads to reduced adoption when explicitly accounted for. The risk-averse objective produces a more diverse generation portfolio, including six GW more solar, three GW more biomass, along with lower current fleet retirements. Stochastic objectives reduce mean system costs by 4.5% (risk-neutral) and 4.3% (risk-averse) compared to the deterministic case. Carbon emissions decrease by 1.5% under the risk-neutral objective, but increase by 3.0% under the risk-averse objective due to portfolio differences. Full article
(This article belongs to the Special Issue Renewable Energy Power Generation and Power Demand Side Management)
Show Figures

Figure 1

16 pages, 1885 KiB  
Article
Green Hydrogen Blending into the Tunisian Natural Gas Distributing System
by Hadhami Bdioui, Hazem Touati, Maher Ben Chiekh and Angeles López-Agüera
Hydrogen 2024, 5(4), 1004-1019; https://doi.org/10.3390/hydrogen5040054 - 17 Dec 2024
Viewed by 1572
Abstract
It is likely that blending hydrogen into natural gas grids could contribute to economy-wide decarbonization while retaining some of the benefits that natural gas networks offer energy systems. Hydrogen injection into existing natural gas infrastructure is recognised as a key solution for energy [...] Read more.
It is likely that blending hydrogen into natural gas grids could contribute to economy-wide decarbonization while retaining some of the benefits that natural gas networks offer energy systems. Hydrogen injection into existing natural gas infrastructure is recognised as a key solution for energy storage during periods of low electricity demand or high variable renewable energy penetration. In this scenario, natural gas networks provide an energy vector parallel to the electricity grid, offering additional energy transmission capacity and inherent storage capabilities. By incorporating green hydrogen into the NG network, it becomes feasible to (i) address the current energy crisis, (ii) reduce the carbon intensity of the gas grid, and (iii) promote sector coupling through the utilisation of various renewable energy sources. This study gives an overview of various interchangeability indicators and investigates the permissible ratios for hydrogen blending with two types of natural gas distributed in Tunisia (ANG and MNG). Additionally, it examines the impact of hydrogen injection on energy content variation and various combustion parameters. It is confirmed by the data that ANG and MNG can withstand a maximum hydrogen blend of up to 20%. The article’s conclusion emphasises the significance of evaluating infrastructure and safety standards related to Tunisia’s natural gas network and suggests more experimental testing of the findings. This research marks a critical step towards unlocking the potential of green hydrogen in Tunisia. Full article
Show Figures

Figure 1

32 pages, 17114 KiB  
Article
Behavior of the Electricity and Gas Grids When Injecting Synthetic Natural Gas Produced with Electricity Surplus of Rooftop PVs
by Andrea Ademollo, Carlo Carcasci and Albana Ilo
Sustainability 2024, 16(22), 9747; https://doi.org/10.3390/su16229747 - 8 Nov 2024
Cited by 1 | Viewed by 1367
Abstract
Distributed generation and sector coupling are key factors for economic decarbonization. Because gas networks have a large storage capacity, they have attracted the attention of power engineers to use them to increase the flexibility and security of supply in the presence of renewable [...] Read more.
Distributed generation and sector coupling are key factors for economic decarbonization. Because gas networks have a large storage capacity, they have attracted the attention of power engineers to use them to increase the flexibility and security of supply in the presence of renewable and distributed energy resources. This paper makes the first attempt to integrate the electricity and gas systems to fill available gas storage facilities with synthetic natural gas on a large scale. This synthetic natural gas can then be used to operate gas turbines and to compensate for the fluctuating production of renewable energy sources. The LINK-holistic architecture, which integrates renewable and distributed energy resources, is used in this work. It facilitates sector coupling, which means power-to-gas and gas-to-power, throughout the entire power grid and at the customer level. This work is limited to investigating the power-to-gas process at the prosumer level. The electricity surplus of rooftop PVs is used to produce synthetic natural gas, fed into the gas grid after covering the local gas load. The behaviors of the electricity and gas grids are investigated. Results show that electricity prosumers may also become prosumers of synthetic natural gas. The current unidirectional gas grids should be upgraded with compressors at pressure reduction groups to turn them bidirectional, allowing synthetic natural gas storage in the existing large gas storage appliances after considering the pipes’ linepack effect. The proposed solution could make it possible to fill the underground storage plants in summer, when the electricity and synthetic natural gas production exceed electrical and gas demand, respectively. Full article
Show Figures

Figure 1

26 pages, 4218 KiB  
Article
Optimal Scheduling of Integrated Energy System Considering Virtual Heat Storage and Electric Vehicles
by Yinjun Liu, Yongqing Zhu, Shunjiang Yu, Zhibang Wang, Zhen Li, Changming Chen, Li Yang and Zhenzhi Lin
World Electr. Veh. J. 2024, 15(10), 461; https://doi.org/10.3390/wevj15100461 - 11 Oct 2024
Cited by 1 | Viewed by 1656
Abstract
Integrated energy systems (IESs) are complex multisource supply systems with integrated source, grid, load, and storage systems, which can provide various flexible resources. Nowadays, there exists the phenomenon of a current power system lacking flexibility. Thus, more research focuses on enhancing the flexibility [...] Read more.
Integrated energy systems (IESs) are complex multisource supply systems with integrated source, grid, load, and storage systems, which can provide various flexible resources. Nowadays, there exists the phenomenon of a current power system lacking flexibility. Thus, more research focuses on enhancing the flexibility of power systems by considering the participation of IESs in distribution network optimization scheduling. Therefore, the optimal scheduling of IESs considering virtual heat storage and electric vehicles (EVs) is proposed in this paper. Firstly, the basic structure of IESs and mathematical models for the operation of the relevant equipment are presented. Then, an optimal scheduling strategy of an IES considering virtual heat storage and electric vehicles is proposed. Finally, an IES with an IEEE 33-node distribution network, 20-node Belgian natural gas network, and 44-node heating network topologies is selected to validate the proposed strategy. The proposed models of integrated demand response (IDR), EV orderly charging participation, virtual heat storage, and actual multitype energy storage devices play the role of peak shaving and valley filling, which also helps to reduce the scheduling cost from CNY 11,253.0 to CNY 11,184.4. The simulation results also demonstrate that the proposed model can effectively improve the operational economy of IESs, and the scheduling strategy can promote the consumption of renewable energy, with the wind curtailment rate decreasing from 63.62% to 12.50% and the solar curtailment rate decreasing from 56.92% to 21.34%. Full article
(This article belongs to the Special Issue Power and Energy Systems for E-mobility)
Show Figures

Figure 1

20 pages, 4977 KiB  
Article
Simulation-Based Hybrid Energy Storage Composite-Target Planning with Power Quality Improvements for Integrated Energy Systems in Large-Building Microgrids
by Chunguang He, Xiaolin Tan, Zixuan Liu, Jiakun An, Xuejun Li, Gengfeng Li and Runfan Zhang
Electronics 2024, 13(19), 3844; https://doi.org/10.3390/electronics13193844 - 28 Sep 2024
Cited by 1 | Viewed by 1634
Abstract
In this paper, we present an optimization planning method for enhancing power quality in integrated energy systems in large-building microgrids by adjusting the sizing and deployment of hybrid energy storage systems. These integrated energy systems incorporate wind and solar power, natural gas supply, [...] Read more.
In this paper, we present an optimization planning method for enhancing power quality in integrated energy systems in large-building microgrids by adjusting the sizing and deployment of hybrid energy storage systems. These integrated energy systems incorporate wind and solar power, natural gas supply, and interactions with electric vehicles and the main power grid. In the optimization planning method developed, the objectives of cost-effective and low-carbon operation, the lifecycle cost of hybrid energy storage, power quality improvements, and renewable energy utilization are targeted and coordinated by using utility fusion theory. Our planning method addresses multiple energy forms—cooling, heating, electricity, natural gas, and renewable energies—which are integrated through a combined cooling, heating, and power system and a natural gas turbine. The hybrid energy storage system incorporates batteries and compressed-air energy storage systems to handle fast and slow variations in power demand, respectively. A sensitivity matrix between the output power of the energy sources and the voltage is modeled by using the power flow method in DistFlow, reflecting the improvements in power quality and the respective constraints. The method proposed is validated by simulating various typical scenarios on the modified IEEE 13-node distribution network topology. The novelty of this paper lies in its focus on the application of integrated energy systems within large buildings and its approach to hybrid energy storage system planning in multiple dimensions, including making co-location and capacity sizing decisions. Other innovative aspects include the coordination of hybrid energy storage combinations, simultaneous siting and sizing decisions, lifecycle cost calculations, and optimization for power quality enhancement. As part of these design considerations, microgrid-related technologies are integrated with cutting-edge nearly zero-energy building designs, representing a pioneering attempt within this field. Our results indicate that this multi-objective, multi-dimensional, utility fusion-based optimization method for hybrid energy storage significantly enhances the economic efficiency and quality of the operation of integrated energy systems in large-building microgrids in building-level energy distribution planning. Full article
(This article belongs to the Special Issue Innovations in Intelligent Microgrid Operation and Control)
Show Figures

Figure 1

24 pages, 10669 KiB  
Article
Smart IoT SCADA System for Hybrid Power Monitoring in Remote Natural Gas Pipeline Control Stations
by Muhammad Waqas and Mohsin Jamil
Electronics 2024, 13(16), 3235; https://doi.org/10.3390/electronics13163235 - 15 Aug 2024
Cited by 8 | Viewed by 9187
Abstract
A pipeline network is the most efficient and rapid way to transmit natural gas from source to destination. The smooth operation of natural gas pipeline control stations depends on electrical equipment such as data loggers, control systems, surveillance, and communication devices. Besides having [...] Read more.
A pipeline network is the most efficient and rapid way to transmit natural gas from source to destination. The smooth operation of natural gas pipeline control stations depends on electrical equipment such as data loggers, control systems, surveillance, and communication devices. Besides having a reliable and consistent power source, such control stations must also have cost-effective and intelligent monitoring and control systems. Distributed processes are monitored and controlled using supervisory control and data acquisition (SCADA) technology. This paper presents an Internet of Things (IoT)-based, open-source SCADA architecture designed to monitor a Hybrid Power System (HPS) at a remote natural gas pipeline control station, addressing the limitations of existing proprietary and non-configurable SCADA architectures. The proposed system comprises voltage and current sensors acting as Field Instrumentation Devices for required data collection, an ESP32-WROOM-32E microcontroller that functions as the Remote Terminal Unit (RTU) for processing sensor data, a Blynk IoT-based cloud server functioning as the Master Terminal Unit (MTU) for historical data storage and human–machine interactions (HMI), and a GSM SIM800L module and a local WiFi router for data communication between the RTU and MTU. Considering the remote locations of such control stations and the potential lack of 3G, 4G, or Wi-Fi networks, two configurations that use the GSM SIM800L and a local Wi-Fi router are proposed for hardware integration. The proposed system exhibited a low power consumption of 3.9 W and incurred an overall cost of 40.1 CAD, making it an extremely cost-effective solution for remote natural gas pipeline control stations. Full article
Show Figures

Figure 1

26 pages, 6678 KiB  
Article
Energy Cost Optimization for Incorporating Energy Hubs into a Smart Microgrid with RESs, CHP, and EVs
by Anestis G. Anastasiadis, Alexios Lekidis, Ioannis Pierros, Apostolos Polyzakis, Georgios A. Vokas and Elpiniki I. Papageorgiou
Energies 2024, 17(12), 2827; https://doi.org/10.3390/en17122827 - 8 Jun 2024
Cited by 2 | Viewed by 1385
Abstract
The energy carrier infrastructure, including both electricity and natural gas sources, has evolved and begun functioning independently over recent years. Nevertheless, recent studies are pivoting toward the exploration of a unified architecture for energy systems that combines Multiple-Energy Carriers into a single network, [...] Read more.
The energy carrier infrastructure, including both electricity and natural gas sources, has evolved and begun functioning independently over recent years. Nevertheless, recent studies are pivoting toward the exploration of a unified architecture for energy systems that combines Multiple-Energy Carriers into a single network, hence moving away from treating these carriers separately. As an outcome, a new methodology has emerged, integrating electrical, chemical, and heating carriers and centered around the concept of Energy Hubs (EHs). EHs are complex systems that handle the input and output of different energy types, including their conversion and storage. Furthermore, EHs include Combined Heat and Power (CHP) units, which offer greater efficiency and are more environmentally benign than traditional thermal units. Additionally, CHP units provide greater flexibility in the use of natural gas and electricity, thereby offering significant advantages over traditional methods of energy supply. This article introduces a new approach for exploring the steady-state model of EHs and addresses all related optimization issues. These issues encompass the optimal dispatch across multiple carriers, the optimal hub interconnection, and the ideal hub configuration within an energy system. Consequently, this article targets the reduction in the overall system energy costs, while maintaining compliance with all the necessary system constraints. The method is applied in an existing Smart Microgrid (SM) of a typical Greek 17-bus low-voltage distribution network into which EHs are introduced along with Renewable Energy Sources (RESs) and Electric Vehicles (EVs). The SM experiments focus on the optimization of the operational cost using different operational scenarios with distributed generation (DG) and CHP units as well as EVs. A sensitivity analysis is also performed under variations in electricity costs to identify the optimal scenario for handling increased demand. Full article
(This article belongs to the Section A1: Smart Grids and Microgrids)
Show Figures

Figure 1

18 pages, 2294 KiB  
Article
Low-Carbon Optimal Configuration of Integrated Electricity and Natural Gas Energy System with Life-Cycle Carbon Emission
by Jianpei Han, Ershun Du, Xunyan Lv and Jinming Hou
Processes 2024, 12(4), 845; https://doi.org/10.3390/pr12040845 - 22 Apr 2024
Cited by 1 | Viewed by 1521
Abstract
In response to the challenges of global warming and the development of A low-carbon economy, the integrated electricity and natural gas energy system (IEGES) is known as an important structure for future energy supply; thus, its planning and design must take low-carbon and [...] Read more.
In response to the challenges of global warming and the development of A low-carbon economy, the integrated electricity and natural gas energy system (IEGES) is known as an important structure for future energy supply; thus, its planning and design must take low-carbon and environmental protection factors into account. Regarding carbon emissions as an optimization criterion, this paper built life-cycle carbon emission models of IEGES components. Then, taking the capacities of the energy resources, storage and conversion units of IEGES as the optimization variables, a multi-objective optimization configuration model was established considering the annual investment operation cost and the life-cycle carbon emissions. The multi-objective model was transformed into a single-objective one by an ε-constraint approach and the polynomial fitting method was employed to obtain the value of ε for obtaining uniformly distributed Pareto sets. Based on the fuzzy entropy weight method and the fuzzy affiliation degree approach, the obtained Pareto sets were ranked and the solution with the highest ranking value was selected as the optimal solution for the original problem. Finally, the configuration schemes were analyzed from the perspectives of economy, carbon emission and renewable energy utilization, and the effectiveness and rationality of the proposed optimization method were verified through MATLAB simulation. Full article
(This article belongs to the Special Issue Process and Modelling of Renewable and Sustainable Energy Sources)
Show Figures

Figure 1

30 pages, 3994 KiB  
Article
Collaborative Optimization Scheduling of Multi-Microgrids Incorporating Hydrogen-Doped Natural Gas and P2G–CCS Coupling under Carbon Trading and Carbon Emission Constraints
by Yuzhe Zhao and Jingwen Chen
Energies 2024, 17(8), 1954; https://doi.org/10.3390/en17081954 - 19 Apr 2024
Cited by 10 | Viewed by 1477
Abstract
In the context of “dual carbon”, restrictions on carbon emissions have attracted widespread attention from researchers. In order to solve the issue of the insufficient exploration of the synergistic emission reduction effects of various low-carbon policies and technologies applied to multiple microgrids, we [...] Read more.
In the context of “dual carbon”, restrictions on carbon emissions have attracted widespread attention from researchers. In order to solve the issue of the insufficient exploration of the synergistic emission reduction effects of various low-carbon policies and technologies applied to multiple microgrids, we propose a multi-microgrid electricity cooperation optimization scheduling strategy based on stepped carbon trading, a hydrogen-doped natural gas system and P2G–CCS coupled operation. Firstly, a multi-energy microgrid model is developed, coupled with hydrogen-doped natural gas system and P2G–CCS, and then carbon trading and a carbon emission restriction mechanism are introduced. Based on this, a model for multi-microgrid electricity cooperation is established. Secondly, design optimization strategies for solving the model are divided into the day-ahead stage and the intraday stage. In the day-ahead stage, an improved alternating direction multiplier method is used to distribute the model to minimize the cooperative costs of multiple microgrids. In the intraday stage, based on the day-ahead scheduling results, an intraday scheduling model is established and a rolling optimization strategy to adjust the output of microgrid equipment and energy purchases is adopted, which reduces the impact of uncertainties in new energy output and load forecasting and improves the economic and low-carbon operation of multiple microgrids. Setting up different scenarios for experimental validation demonstrates the effectiveness of the introduced low-carbon policies and technologies as well as the effectiveness of their synergistic interaction. Full article
(This article belongs to the Topic Advances in Power Science and Technology)
Show Figures

Figure 1

28 pages, 12177 KiB  
Article
Optimal Microgrids in Buildings with Critical Loads and Hybrid Energy Storage
by Enrique Rosales-Asensio, Iker de Loma-Osorio, Ana I. Palmero-Marrero, Antonio Pulido-Alonso and David Borge-Diez
Buildings 2024, 14(4), 865; https://doi.org/10.3390/buildings14040865 - 22 Mar 2024
Cited by 1 | Viewed by 1804
Abstract
This research aims to optimize and compare the annual costs of energy services in buildings with critical loads and analyze case studies for hospitals and higher education institutions in the United States. Besides electricity and natural gas costs, the study considers all the [...] Read more.
This research aims to optimize and compare the annual costs of energy services in buildings with critical loads and analyze case studies for hospitals and higher education institutions in the United States. Besides electricity and natural gas costs, the study considers all the infrastructure costs of capital amortization and maintenance. In addition, it studies energy resilience improvement due to distributed generation, including solar photovoltaic, solar thermal, internal combustion engine, and fuel cell sources. The optimization considers the electrical consumption, the heating and cooling demands, and the operational strategy of the energy storage systems. To simulate real scenarios, energy tariffs were modeled and considered, and final optimization results were produced. Some of the microgrid load was considered critical to model resilience benefits. The results show that if favorable energy tariffs are applied, the benefits of increasing energy resilience represent a novel market with high potential in facilities with significant critical loads. This methodology can be used in similar scenarios, adapting each particular load profile and critical load to provide a combined optimal solution regarding resilience and economic benefits. Full article
Show Figures

Graphical abstract

22 pages, 2082 KiB  
Article
Techno-Economic Comparison between Centralized and Distributed Energy Resource Systems: A Case Study of an Underground Transportation Infrastructure System in Changsha, China
by Ran Zhuang and Yuan Wang
Buildings 2024, 14(3), 666; https://doi.org/10.3390/buildings14030666 - 2 Mar 2024
Viewed by 1179
Abstract
Due to their higher energy efficiency and better economic performance, distributed energy resource (DER) systems are expected to be one of the main energy supply forms in the future and have gained increasing attention in recent years. Thus, there is a need to [...] Read more.
Due to their higher energy efficiency and better economic performance, distributed energy resource (DER) systems are expected to be one of the main energy supply forms in the future and have gained increasing attention in recent years. Thus, there is a need to boost our understanding of how to apply DER systems in different types of actual cases. This paper investigates a techno-economic analysis of a DER system applied in a real case in a hot-summer and cold-winter zone in China, where the climate is considered to be Cfa according to the Köppen–Geiger climate classification system. An urban underground transportation infrastructure system located in Changsha (China) was chosen to analyze the techno-economic performance of a natural-gas-fired DER system in comparison with a centralized energy system (CES). First, a scientific and reasonable application program of the natural-gas-fired DER system was developed by an overall load analysis (electric load, air-conditioner load, and domestic hot water load during the operating period). Based on this load analysis, this research combined the energy consumption and the actual operating situation and then compared and analyzed different types and capacities of equipment in this case. Moreover, a comprehensive analysis of the economic benefits was estimated by comparing the natural-gas-fired DER system with conventional CESs. Overall, the total annual cost of the DER system was reduced by 18.73%, and its additional investment can be paid back within about 2.2 years. A better economic benefit was achieved by applying the natural-gas-fired DER system in an actual case, which will help encourage the widespread application of DER systems. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

Back to TopTop