Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (445)

Search Parameters:
Keywords = electric field controlled materials

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 2295 KiB  
Review
Advances in Interfacial Engineering and Structural Optimization for Diamond Schottky Barrier Diodes
by Shihao Lu, Xufang Zhang, Shichao Wang, Mingkun Li, Shuopei Jiao, Yuesong Liang, Wei Wang and Jing Zhang
Materials 2025, 18(15), 3657; https://doi.org/10.3390/ma18153657 - 4 Aug 2025
Viewed by 229
Abstract
Diamond, renowned for its exceptional electrical, physical, and chemical properties, including ultra-wide bandgap, superior hardness, high thermal conductivity, and unparalleled stability, serves as an ideal candidate for next-generation high-power and high-temperature electronic devices. Among diamond-based devices, Schottky barrier diodes (SBDs) have garnered significant [...] Read more.
Diamond, renowned for its exceptional electrical, physical, and chemical properties, including ultra-wide bandgap, superior hardness, high thermal conductivity, and unparalleled stability, serves as an ideal candidate for next-generation high-power and high-temperature electronic devices. Among diamond-based devices, Schottky barrier diodes (SBDs) have garnered significant attention due to their simple architecture and superior rectifying characteristics. This review systematically summarizes recent advances in diamond SBDs, focusing on both metal–semiconductor (MS) and metal–interlayer–semiconductor (MIS) configurations. For MS structures, we critically analyze the roles of single-layer metals (including noble metals, transition metals, and other metals) and multilayer metals in modulating Schottky barrier height (SBH) and enhancing thermal stability. However, the presence of interface-related issues such as high densities of surface states and Fermi level pinning often leads to poor control of the SBH, limiting device performance and reliability. To address these challenges and achieve high-quality metal/diamond interfaces, researchers have proposed various interface engineering strategies. In particular, the introduction of interfacial layers in MIS structures has emerged as a promising approach. For MIS architectures, functional interlayers—including high-k materials (Al2O3, HfO2, SnO2) and low-work-function materials (LaB6, CeB6)—are evaluated for their efficacy in interface passivation, barrier modulation, and electric field control. Terminal engineering strategies, such as field-plate designs and surface termination treatments, are also highlighted for their role in improving breakdown voltage. Furthermore, we emphasize the limitations in current parameter extraction from current–voltage (I–V) properties and call for a unified new method to accurately determine SBH. This comprehensive analysis provides critical insights into interface engineering strategies and evaluation protocols for high-performance diamond SBDs, paving the way for their reliable deployment in extreme conditions. Full article
Show Figures

Graphical abstract

16 pages, 23912 KiB  
Article
First-Principles Study on the Modulation of Schottky Barrier in Graphene/Janus MoSSe Heterojunctions by Interface Contact and Electric Field Effects
by Zhe Zhang, Jiahui Li, Xiaopei Xu and Guodong Shi
Nanomaterials 2025, 15(15), 1174; https://doi.org/10.3390/nano15151174 - 30 Jul 2025
Viewed by 260
Abstract
Constructing heterojunctions can combine the superior performance of different two-dimensional (2D) materials and eliminate the drawbacks of a single material, and modulating heterojunctions can enhance the capability and extend the application field. Here, we investigate the physical properties of the heterojunctions formed by [...] Read more.
Constructing heterojunctions can combine the superior performance of different two-dimensional (2D) materials and eliminate the drawbacks of a single material, and modulating heterojunctions can enhance the capability and extend the application field. Here, we investigate the physical properties of the heterojunctions formed by the contact of different atom planes of Janus MoSSe (JMoSSe) and graphene (Gr), and regulate the Schottky barrier of the Gr/JMoSSe heterojunction by the number of layers and the electric field. Due to the difference in atomic electronegativity and surface work function (WF), the Gr/JSMoSe heterojunction formed by the contact of S atoms with Gr exhibits an n-type Schottky barrier, whereas the Gr/JSeMoS heterojunction formed by the contact of the Se atoms with Gr reveals a p-type Schottky barrier. Increasing the number of layers of JMoSSe allows the Gr/JMoSSe heterojunction to achieve the transition from Schottky contact to Ohmic contact. Moreover, under the control of an external electric field, the Gr/JMoSSe heterojunction can realize the transition among n-type Schottky barrier, p-type Schottky barrier, and Ohmic contact. The physical mechanism of the layer number and electric field modulation effect is analyzed in detail by the change in the interface electron charge transfer. Our results will contribute to the design and application of nanoelectronics and optoelectronic devices based on Gr/JMoSSe heterojunctions in the future. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
Show Figures

Figure 1

80 pages, 962 KiB  
Review
Advancements in Hydrogels: A Comprehensive Review of Natural and Synthetic Innovations for Biomedical Applications
by Adina-Elena Segneanu, Ludovic Everard Bejenaru, Cornelia Bejenaru, Antonia Blendea, George Dan Mogoşanu, Andrei Biţă and Eugen Radu Boia
Polymers 2025, 17(15), 2026; https://doi.org/10.3390/polym17152026 - 24 Jul 2025
Viewed by 988
Abstract
In the rapidly evolving field of biomedical engineering, hydrogels have emerged as highly versatile biomaterials that bridge biology and technology through their high water content, exceptional biocompatibility, and tunable mechanical properties. This review provides an integrated overview of both natural and synthetic hydrogels, [...] Read more.
In the rapidly evolving field of biomedical engineering, hydrogels have emerged as highly versatile biomaterials that bridge biology and technology through their high water content, exceptional biocompatibility, and tunable mechanical properties. This review provides an integrated overview of both natural and synthetic hydrogels, examining their structural properties, fabrication methods, and broad biomedical applications, including drug delivery systems, tissue engineering, wound healing, and regenerative medicine. Natural hydrogels derived from sources such as alginate, gelatin, and chitosan are highlighted for their biodegradability and biocompatibility, though often limited by poor mechanical strength and batch variability. Conversely, synthetic hydrogels offer precise control over physical and chemical characteristics via advanced polymer chemistry, enabling customization for specific biomedical functions, yet may present challenges related to bioactivity and degradability. The review also explores intelligent hydrogel systems with stimuli-responsive and bioactive functionalities, emphasizing their role in next-generation healthcare solutions. In modern medicine, temperature-, pH-, enzyme-, light-, electric field-, magnetic field-, and glucose-responsive hydrogels are among the most promising “smart materials”. Their ability to respond to biological signals makes them uniquely suited for next-generation therapeutics, from responsive drug systems to adaptive tissue scaffolds. Key challenges such as scalability, clinical translation, and regulatory approval are discussed, underscoring the need for interdisciplinary collaboration and continued innovation. Overall, this review fosters a comprehensive understanding of hydrogel technologies and their transformative potential in enhancing patient care through advanced, adaptable, and responsive biomaterial systems. Full article
14 pages, 8428 KiB  
Article
Spin-Orbit-Coupling-Governed Optical Absorption in Bilayer MoS2 via Strain, Twist, and Electric Field Engineering
by Lianmeng Yu, Yingliang Chen, Weibin Zhang, Peizhi Yang and Xiaobo Feng
Nanomaterials 2025, 15(14), 1100; https://doi.org/10.3390/nano15141100 - 16 Jul 2025
Viewed by 300
Abstract
This paper investigates strain-, twist-, and electric-field-tuned optical absorption in bilayer MoS2, emphasizing spin-orbit coupling (SOC). A continuum model reveals competing mechanisms: geometric perturbations (strain/twist) and Stark effects govern one-/two-photon absorption, with critical thresholds (~9% strain, ~2.13° twist) switching spin-independent to [...] Read more.
This paper investigates strain-, twist-, and electric-field-tuned optical absorption in bilayer MoS2, emphasizing spin-orbit coupling (SOC). A continuum model reveals competing mechanisms: geometric perturbations (strain/twist) and Stark effects govern one-/two-photon absorption, with critical thresholds (~9% strain, ~2.13° twist) switching spin-independent to spin-polarized regimes. Strain gradients and twist enhance nonlinear responses through symmetry-breaking effects while electric fields dynamically modulate absorption via band alignment tuning. By linking parameter configurations to absorption characteristics, this work provides a framework for designing tunable spin-resolved optoelectronic devices and advancing light–matter control in 2D materials. Full article
Show Figures

Figure 1

34 pages, 3610 KiB  
Review
Metal–Organic Frameworks as Fillers in Porous Organic Polymer-Based Hybrid Materials: Innovations in Composition, Processing, and Applications
by Victor Durán-Egido, Daniel García-Giménez, Juan Carlos Martínez-López, Laura Pérez-Vidal and Javier Carretero-González
Polymers 2025, 17(14), 1941; https://doi.org/10.3390/polym17141941 - 15 Jul 2025
Viewed by 739
Abstract
Hybrid materials based on porous organic polymers (POPs) and metal–organic frameworks (MOFs) are increasing attention for advanced separation processes due to the possibility to combine their properties. POPs provide high surface areas, chemical stability, and tunable porosity, while MOFs contribute a high variety [...] Read more.
Hybrid materials based on porous organic polymers (POPs) and metal–organic frameworks (MOFs) are increasing attention for advanced separation processes due to the possibility to combine their properties. POPs provide high surface areas, chemical stability, and tunable porosity, while MOFs contribute a high variety of defined crystalline structures and enhanced separation characteristics. The combination (or hybridization) with PIMs gives rise to mixed-matrix membranes (MMMs) with improved permeability, selectivity, and long-term stability. However, interfacial compatibility remains a key limitation, often addressed through polymer functionalization or controlled dispersion of the MOF phase. MOF/COF hybrids are more used as biochemical sensors with elevated sensitivity, catalytic applications, and wastewater remediation. They are also very well known in the gas sorption and separation field, due to their tunable porosity and high electrical conductivity, which also makes them feasible for energy storage applications. Last but not less important, hybrids with other POPs, such as hyper-crosslinked polymers (HCPs), covalent triazine frameworks (CTFs), or conjugated microporous polymers (CMPs), offer enhanced functionality. MOF/HCP hybrids combine ease of synthesis and chemical robustness with tunable porosity. MOF/CTF hybrids provide superior thermal and chemical stability under harsh conditions, while MOF/CMP hybrids introduce π-conjugation for enhanced conductivity and photocatalytic activity. These and other findings confirm the potential of MOF-POP hybrids as next-generation materials for gas separation and carbon capture applications. Full article
(This article belongs to the Special Issue Organic-Inorganic Hybrid Materials, 4th Edition)
Show Figures

Figure 1

15 pages, 2185 KiB  
Article
High Sensitivity Online Sensor for BTEX in Ambient Air Based on Multiphoton Electron Extraction Spectroscopy
by Uriah H. Sharon, Lea Birkan, Valery Bulatov, Roman Schuetz, Tikhon Filippov and Israel Schechter
Sensors 2025, 25(14), 4268; https://doi.org/10.3390/s25144268 - 9 Jul 2025
Viewed by 449
Abstract
Benzene, toluene, ethylbenzene, and xylene (BTEX) are widespread volatile organic compounds commonly present in fuels and various industrial materials. Their release into the atmosphere significantly contributes to air pollution, prompting strict regulatory concentration limits in ambient air. In this work, we introduce Multiphoton [...] Read more.
Benzene, toluene, ethylbenzene, and xylene (BTEX) are widespread volatile organic compounds commonly present in fuels and various industrial materials. Their release into the atmosphere significantly contributes to air pollution, prompting strict regulatory concentration limits in ambient air. In this work, we introduce Multiphoton Electron Extraction Spectroscopy (MEES) as an innovative technique for the sensitive, selective, and online detection and quantitation of BTEX compounds under ambient conditions. MEES employs tunable UV laser pulses to induce the resonant ionization of target molecules under a high electrical field, with subsequent measurement of the generated photocurrent. We now demonstrate the method’s ability to detect BTEX in ambient air, at part-per-trillion (ppt) concentration range, providing distinct spectral signatures for each compound, including individual xylene isomers. The technique represents a significant advancement in BTEX monitoring, with potential applications in environmental sensing and industrial air quality control. Full article
(This article belongs to the Special Issue Advanced Spectroscopy-Based Sensors and Spectral Analysis Technology)
Show Figures

Figure 1

18 pages, 4250 KiB  
Article
A Novel Carbon Fiber Composite Material for the Simulation of Damage Evolution in Thick Aquifers
by Bozhi Zhao, Xing Gao, Weibing Zhu, Jiaxing Ding and Pengjun Gao
Appl. Sci. 2025, 15(13), 7314; https://doi.org/10.3390/app15137314 - 29 Jun 2025
Viewed by 295
Abstract
Simulation experiments are a crucial method for investigating overburden failure, strata movement, and strata control during coal mining. However, traditional similar materials struggle to effectively monitor internal damage, fracturing, and dynamic development processes within the strata during mining. To address this issue, carbon [...] Read more.
Simulation experiments are a crucial method for investigating overburden failure, strata movement, and strata control during coal mining. However, traditional similar materials struggle to effectively monitor internal damage, fracturing, and dynamic development processes within the strata during mining. To address this issue, carbon fibers were introduced into the field of similar material simulation experiments for mining. Leveraging the excellent conductivity and the sensitive feedback of resistivity changes in response to damage of this composite material enabled real-time monitoring of internal damage and fracture patterns within the mining strata during similar simulation experiments, leading to the development of a carbon fiber similar simulation composite material with damage self-sensing properties. This study found that as the carbon fiber content increased, the evolution patterns of the electrical resistance change rate and the damage coefficient of the similar material tended to coincide. When the carbon fiber content in the similar material exceeded 2%, the electrical resistance change rate and the damage coefficient consistently exhibited synchronized growth with identical increments. A similar simulation experiment revealed that after the completion of workface mining, the thick sandstone aquifer did not develop significant cracks and remained stable. In the early stages of mining, damage rapidly accumulated at the bottom of the thick aquifer, approaching the failure threshold. In the middle layers, a step-like increase in the damage coefficient occurred after mining reached a certain width, while the top region was less affected by mining activities, resulting in less significant damage development. The research findings offer new experimental insights into rock layer movement and control studies, providing theoretical guidance for the prediction, early warning, and prevention of dynamic disasters in mines with thick key layers. Full article
Show Figures

Figure 1

17 pages, 1560 KiB  
Review
Revolutionizing Electrospinning: A Review of Alternating Current and Pulsed Voltage Techniques for Nanofiber Production
by Yasir Al Saif and Richárd Cselkó
Processes 2025, 13(7), 2048; https://doi.org/10.3390/pr13072048 - 27 Jun 2025
Viewed by 379
Abstract
Electrospinning has evolved into a vital nanofiber production technique with broad applications across biomedical, environmental, and industrial sectors. Alternating current (AC) and pulsed voltage (PV) electrospinning offer transformative alternatives by utilizing time-varying electric fields to overcome the drawbacks of DC electrospinning by employing [...] Read more.
Electrospinning has evolved into a vital nanofiber production technique with broad applications across biomedical, environmental, and industrial sectors. Alternating current (AC) and pulsed voltage (PV) electrospinning offer transformative alternatives by utilizing time-varying electric fields to overcome the drawbacks of DC electrospinning by employing an oscillating electric field that facilitates balanced charge dynamics, improved jet stability, and collectorless operation, leading to enhanced fiber alignment and significantly higher production rates, with reports exceeding 20 g/h. Conversely, PV electrospinning applies intermittent high-voltage pulses, offering precise control over jet initiation and termination. This method enables the fabrication of ultrafine, bead-free, and structurally uniform fibers, making it particularly suitable for biomedical applications such as controlled drug delivery and tissue scaffolds. Both techniques support tunable fiber morphology, reduced diameter variability, and improved structural uniformity, contributing to the advancement of high-performance nanofiber materials. This review examines the underlying electrohydrodynamic mechanisms, charge transport behavior, equipment configurations, and performance metrics associated with AC and PV electrospinning. It further highlights key innovations, current limitations in scalability and standardization, and prospective research directions. Full article
(This article belongs to the Special Issue Advances in Properties and Applications of Electrospun Fibers)
Show Figures

Figure 1

42 pages, 5637 KiB  
Review
Research Progress on Process Optimization of Metal Materials in Wire Electrical Discharge Machining
by Xinfeng Zhao, Binghui Dong, Shengwen Dong and Wuyi Ming
Metals 2025, 15(7), 706; https://doi.org/10.3390/met15070706 - 25 Jun 2025
Viewed by 731
Abstract
Wire electrical discharge machining (WEDM), as a significant branch of non-traditional machining technologies, is widely applied in fields such as mold manufacturing and aerospace due to its high-precision machining capabilities for hard and complex materials. This paper systematically reviews the research progress in [...] Read more.
Wire electrical discharge machining (WEDM), as a significant branch of non-traditional machining technologies, is widely applied in fields such as mold manufacturing and aerospace due to its high-precision machining capabilities for hard and complex materials. This paper systematically reviews the research progress in WEDM process optimization from two main perspectives: traditional optimization methods and artificial intelligence (AI) techniques. Firstly, it discusses in detail the applications and limitations of traditional optimization methods—such as statistical approaches (Taguchi method and response surface methodology), Adaptive Neuro-Fuzzy Inference Systems, and regression analysis—in parameter control, surface quality improvement, and material removal-rate optimization for cutting metal materials in WEDM. Subsequently, this paper reviews AI-based approaches, traditional machine-learning methods (e.g., neural networks, support vector machines, and random forests), and deep-learning models (e.g., convolutional neural networks and deep neural networks) in aspects such as state recognition, process prediction, multi-objective optimization, and intelligent control. The review systematically compares the advantages and disadvantages of traditional methods and AI models in terms of nonlinear modeling capabilities, adaptability, and generalization. It highlights that the integration of AI by optimization algorithms (such as Genetic Algorithms, particle swarm optimization, and manta ray foraging optimization) offers an effective path toward the intelligent evolution of WEDM processes. Finally, this investigation looks ahead to the key application scenarios and development trends of AI techniques in the WEDM field for cutting metal materials. Full article
Show Figures

Figure 1

12 pages, 2278 KiB  
Communication
An All-Optical Plasmon Modulator with a High Extinction Ratio Based on the Resonance of a Silver Block
by Jimi Fang, Sisi Yang, Xuefang Hu, Changgui Lu and Mengjia Lu
Photonics 2025, 12(7), 646; https://doi.org/10.3390/photonics12070646 - 25 Jun 2025
Viewed by 301
Abstract
Conventional all-optical modulators based on surface plasmon polaritons (SPPs) primarily utilize the nonlinear effect of a given material for modulation. Their performance is heavily dependent on the optical properties of the dielectric materials used and requires high pumping power. However, manipulating SPPs by [...] Read more.
Conventional all-optical modulators based on surface plasmon polaritons (SPPs) primarily utilize the nonlinear effect of a given material for modulation. Their performance is heavily dependent on the optical properties of the dielectric materials used and requires high pumping power. However, manipulating SPPs by controlling electron concentrations offers a material-independent approach suitable for all-optical modulators. In this paper, we propose a hybrid gold–ITO–silver block structure integrated within a Mach–Zehnder interferometer configuration to address this problem. The gold–ITO interface effectively localizes propagating SPPs. The pump light excites localized surface plasmons (LSPs) in the silver block, generating surface electric fields that modulate the electron concentration in the adjacent ITO layer. The extinction ratio is 50.8 dB when the electron concentration changes by 3.3 × 1020 cm−3, indicating that this structure is an all-optical modulator with a high extinction ratio. This approach shows significant promise for reducing pump power and enhancing the performance of all-optical modulators. Full article
Show Figures

Figure 1

15 pages, 5516 KiB  
Article
Preparation and Characterization of Boron–Magnesium–Titanium Ternary Composite Powders
by Yanjun Wang and Yueguang Yu
Coatings 2025, 15(7), 739; https://doi.org/10.3390/coatings15070739 - 20 Jun 2025
Viewed by 453
Abstract
To improve the combustion performance of boron powder, a method was developed for synthesizing boron–magnesium–titanium (B-Mg-Ti) ternary composite powders with controlled metal content. Boron–magnesium (B-Mg) base materials were first prepared via electrical explosion, followed by the incorporation of titanium powder at varying mass [...] Read more.
To improve the combustion performance of boron powder, a method was developed for synthesizing boron–magnesium–titanium (B-Mg-Ti) ternary composite powders with controlled metal content. Boron–magnesium (B-Mg) base materials were first prepared via electrical explosion, followed by the incorporation of titanium powder at varying mass fractions (1 wt.%, 3 wt.%, 5 wt.%, and 7 wt.%) through mechanical ball milling. Field emission scanning electron microscopy (FE-SEM) revealed that the addition of titanium promoted a more uniform dispersion of magnesium within the boron agglomerates. Moreover, nanoscale titanium particles were observed to be embedded on the particle surfaces, confirming successful microscale composite formation. Particle size distribution was measured using a Malvern 3000 laser particle size analyzer, and results showed that the particle size of the ternary composites decreased gradually with increasing titanium content. Specific surface area was determined via the Brunauer–Emmett–Teller (BET) method, with all samples exhibiting values greater than 15 m2/g, indicating good surface reactivity. Furthermore, the rheological behavior of the B-Mg-Ti composite powders, when combined with terminal hydroxyl polybutadiene (HTPB)—a typical binder in solid propellants—was evaluated. Viscosity measurements were conducted using a rotational rheometer at constant temperatures of 20 °C and 70 °C. The results demonstrated a marked decrease in viscosity with increasing titanium content, suggesting that titanium incorporation enhances the flowability of the composite powders. This study systematically evaluated the influence of titanium content on the structural and physicochemical properties of B-Mg-Ti composite powders, thereby providing a valuable experimental foundation for the optimized design of boron-based combustion systems and the enhancement of their processing and application performance. Full article
(This article belongs to the Section Surface Characterization, Deposition and Modification)
Show Figures

Graphical abstract

83 pages, 24821 KiB  
Review
A Review of Research on Precision Rotary Motion Systems and Driving Methods
by Xuecheng Luan, Hanwen Yu, Chunxiao Ding, Ying Zhang, Mingxuan He, Jinglei Zhou and Yandong Liu
Appl. Sci. 2025, 15(12), 6745; https://doi.org/10.3390/app15126745 - 16 Jun 2025
Viewed by 1393
Abstract
As the core component of modern mechanical transmission, the precision rotary motion mechanism and its drive system have wide applications in aerospace, robotics, and other fields. This article systematically reviews the design principles, performance characteristics, and research progress of various rotational motion mechanisms [...] Read more.
As the core component of modern mechanical transmission, the precision rotary motion mechanism and its drive system have wide applications in aerospace, robotics, and other fields. This article systematically reviews the design principles, performance characteristics, and research progress of various rotational motion mechanisms and their driving technologies. The working principles, advantages, disadvantages, and applicable scenarios of gears, drive belts, sprockets, camshafts, ratchet claw mechanisms, and linkage mechanisms were analyzed in terms of traditional mechanisms. In terms of new mechanisms, we focused on exploring the innovative design and application potential of intermittent indexing mechanisms, magnetic gears, 3D-printed spherical gears, and multi-link mechanisms. In addition, the paper compared the performance differences of electric, hydraulic, pneumatic, and piezoelectric drive methods. Research has shown that through material innovation, structural optimization, and intelligent control, there is still significant room for improvement in the load capacity, accuracy, and reliability of precision rotary motion mechanisms, providing theoretical support and practical reference for innovative design and engineering applications of future mechanical transmission technologies. Full article
Show Figures

Figure 1

38 pages, 6561 KiB  
Review
Emerging Trends in Thermo-Optic and Electro-Optic Materials for Tunable Photonic Devices
by Muhammad A. Butt
Materials 2025, 18(12), 2782; https://doi.org/10.3390/ma18122782 - 13 Jun 2025
Cited by 1 | Viewed by 1333
Abstract
Tunable photonic devices are increasingly pivotal in modern optical systems, enabling the dynamic control over light propagation, modulation, and filtering. This review systematically explores two prominent classes of materials, thermo-optic and electro-optic, for their roles in such tunable devices. Thermo-optic materials utilize refractive [...] Read more.
Tunable photonic devices are increasingly pivotal in modern optical systems, enabling the dynamic control over light propagation, modulation, and filtering. This review systematically explores two prominent classes of materials, thermo-optic and electro-optic, for their roles in such tunable devices. Thermo-optic materials utilize refractive index changes induced by temperature variations, offering simple implementation and broad material compatibility, although often at the cost of slower response times. In contrast, electro-optic materials, particularly those exhibiting the Pockels and Kerr effects, enable rapid and precise refractive index modulation under electric fields, making them suitable for high-speed applications. The paper discusses the underlying physical mechanisms, material properties, and typical figures of merit for each category, alongside recent advancements in organic, polymeric, and inorganic systems. Furthermore, integrated photonic platforms and emerging hybrid material systems are highlighted for their potential to enhance performance and scalability. By evaluating the tradeoffs in speed, power consumption, and integration complexity, this review identifies key trends and future directions for deploying thermo-optic and electro-optic materials in the next generation tunable photonic devices. Full article
(This article belongs to the Section Optical and Photonic Materials)
Show Figures

Figure 1

16 pages, 18981 KiB  
Article
Dual-Broadband Topological Photonic Crystal Edge State Based on Liquid Crystal Tunability
by Jinying Zhang, Bingnan Wang, Jiacheng Wang, Xinye Wang and Yexiaotong Zhang
Materials 2025, 18(12), 2778; https://doi.org/10.3390/ma18122778 - 12 Jun 2025
Viewed by 402
Abstract
The rapid advancements in optical communication and sensing technologies have significantly increased the demand for advanced tunable spectral systems. This study presents a dual-band terahertz transmission and manipulation approach by leveraging the topologically protected properties of valley-topological photonic crystal edge states. The designed [...] Read more.
The rapid advancements in optical communication and sensing technologies have significantly increased the demand for advanced tunable spectral systems. This study presents a dual-band terahertz transmission and manipulation approach by leveraging the topologically protected properties of valley-topological photonic crystal edge states. The designed structure facilitates the excitation of the K valley within the range of 0.851–0.934 THz and the K′ valley from 1.604 to 1.686 THz, while also demonstrating anomalous refraction and birefringence. The calculated emission angles, derived through momentum matching, enable transitions between single-wave and dual-wave emissions and allow for precise angle control. The introduction of the liquid crystal material NJU-LDn-4 enables continuous tuning of the dual-band spectral range under a varying electric field, broadening the operating frequency bands to the ranges of 0.757–0.996 THz and 1.426–1.798 THz, respectively. These findings suggest promising applications in tunable filter design, optical communication, photonic computing, optical sensing, and high-resolution imaging, particularly in novel optical devices requiring precise control over spectral characteristics and light propagation. Full article
(This article belongs to the Special Issue Terahertz Materials and Technologies in Materials Science)
Show Figures

Figure 1

13 pages, 3594 KiB  
Article
A Study on the Characterization of Novel Silicon-Based Heterojunctions for Optically Controlled Microwave Switching
by Li Li, Weidong Mu, Jun Jiang, Linglong Zhang, Xiaoxing Fang, Hang Yuan and Qunsheng Cao
Sensors 2025, 25(11), 3531; https://doi.org/10.3390/s25113531 - 4 Jun 2025
Viewed by 483
Abstract
This paper proposes a structural silicon heterojunction photosensitive element with a simple form, low manufacturing cost, and efficient performance, which has a high-intensity photoelectric effect and a high frequency range of use. It can be applied as microwave switches to active frequency selective [...] Read more.
This paper proposes a structural silicon heterojunction photosensitive element with a simple form, low manufacturing cost, and efficient performance, which has a high-intensity photoelectric effect and a high frequency range of use. It can be applied as microwave switches to active frequency selective surfaces (AFSSs) to replace PIN diodes. Meanwhile, we explore the crucial role of pentacene/silicon heterojunction in the photoelectric conversion process. It is found that due to the inherent photovoltaic effect and the built-in electric field interaction between the two materials, the insertion loss of the heterojunction formed is reduced to 4.5 dB, which is 2.5 dB lower than that of the high-resistivity silicon wafer. In order to further reduce the insertion loss, the surface of the silicon wafer is etched and then heterojunction is prepared, which can further reduce insertion loss to within 2.5 dB, and the bandwidth difference between the presence and absence of pump excitation exceeds 10 dB extends to 12 GHz, indicating that the light collecting ability of structural silicon significantly enhances its photoelectric effect. The research results demonstrate the potential of using structural silicon heterojunctions in photoelectric devices, providing new technology for high-performance microwave switches and implementing optically controlled FSSs. Full article
(This article belongs to the Special Issue Microwave Components in Sensing Design and Signal Processing)
Show Figures

Figure 1

Back to TopTop