A Novel Carbon Fiber Composite Material for the Simulation of Damage Evolution in Thick Aquifers
Abstract
1. Introduction
2. Principle of Damage Self-Sensing in the CFSSM
3. Damage Self-Sensing Performance of CFSSM
3.1. Experimental Design and Specimen Preparation
3.2. Microstructure and Mineral Composition of CFSSM
3.3. Effect of Carbon Fiber Content on the Resistivity of CFSSM
3.4. The Corresponding Relationship of D-RCR for CFSSM
4. Simulation Test of Damage and Fracture in Extremely Thick Sandstone Aquifers
4.1. Experimental Background and Design
4.2. Dynamic Characteristics of Fracture Development—Close in Overlying Strat
4.3. Deformation Characteristics of the Very Thick Sandstone Aquifer
4.4. Damage Distribution Characteristics of a Very Thick Sandstone Aquifer
4.5. Damage Evolution Process of a Very Thick Sandstone Aquifer
5. Discussion
5.1. Advantages
5.2. Limitation
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, Y.; Yue, H.; Zhao, Y.; Zhang, S.; Zhang, J.; Wang, Z.; Yang, W. Experimental Study on Ratio Optimization of Similar Materials for Underground Mining of Shendong Coalfield: A Case Study of Shangwan Coal Mine. Processes 2023, 11, 1352. [Google Scholar] [CrossRef]
- Zhang, J.; Qin, X.; Liu, S.; Su, H.; Yang, Z.; Zhang, G. Study on Overburden Fracture and Structural Distribution Evolution Characteristics of Coal Seam Mining in Deep Large Mining Height Working Face. Sustainability 2023, 15, 13365. [Google Scholar] [CrossRef]
- Zhu, W.; Xu, J.; Xu, J.; Chen, D.; Shi, J. Pier-Column Backfill Mining Technology for Controlling Surface Subsidence. Int. J. Rock Mech. Min. Sci. 2017, 96, 58–65. [Google Scholar] [CrossRef]
- Li, H.; Guo, G.; Zha, J. Study on Time-Varying Characteristics of Similar Material Model Strength and the Regulation Measures. Environ. Earth Sci. 2017, 76, 518. [Google Scholar] [CrossRef]
- Zhu, W.; Yu, S.; Xuan, D.; Shan, Z.; Xu, J. Experimental Study on Excavating Strip Coal Pillars Using Caving Zone Backfill Technology. Arab. J. Geosci. 2018, 11, 554. [Google Scholar] [CrossRef]
- Zheng, K.; Xuan, D.; Li, J. Study on Fluid-Solid Characteristics of Grouting Filling Similar-Simulation Materials. Minerals 2022, 12, 502. [Google Scholar] [CrossRef]
- Zha, J.; Li, H.; Guo, G.; Wang, J. Influence of Temperature and Humidity on Similar Material and Its Control Measures. Environ. Earth Sci. 2017, 76, 740. [Google Scholar] [CrossRef]
- Chen, S.; Wang, H.; Zhang, J.; Xing, H.; Wang, H. Experimental Study on Low-Strength Similar-Material Proportioning and Properties for Coal Mining. Adv. Mater. Sci. Eng. 2015, 2015, 696501. [Google Scholar] [CrossRef]
- Wu, G.M.; Bai, H.B.; Wu, L.Y.; He, S.X. Study on the Influence of Bedrock Thickness on Deformation and Failure of Overlying Soil Layer in Thin Bedrock Coal Seam Mining. J. Min. Sci. 2020, 56, 518–528. [Google Scholar] [CrossRef]
- Yang, K.; Fu, Q.; Liu, Q.; He, X.; Lyu, X. Evolution of Mining-Induced Stress in Downward Mining of Short-Distance Multiseam. Geofluids 2022, 2022, 3305734. [Google Scholar] [CrossRef]
- Ding, L.; Liu, Y. Three-Dimensional Physical Simulation on Overlying Strata’s Motion Rule in Shallow Seam. Fresenius Environ. Bull. 2017, 26, 5314–5322. [Google Scholar]
- Xiong, Y.; Kong, D.; Song, G.; He, Y. Failure Mechanism and 3D Physical Modeling Test of Coal Face Pyramid Sliding in Steeply Inclined Working Face: A Case Study. Eng. Fail. Anal. 2024, 159, 108064. [Google Scholar] [CrossRef]
- Zhang, D.; Duan, Y.; Du, W.; Chai, J. Experimental Study on Physical Similar Model of Fault Activation Law Based on Distributed Optical Fiber Monitoring. Shock Vib. 2021, 2021, 4846977. [Google Scholar] [CrossRef]
- Xie, J.; Qu, Q.; Zhu, W.; Wang, X.; Xu, J.; Ning, S.; Hou, T.; Luo, X. Distributed Strain Monitoring of Overburden Delamination Propagation at a Deep Longwall Mine. Int. J. Rock Mech. Min. Sci. 2023, 171, 105589. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Z.; Guo, D. Study on Simulation and Monitoring of Overburden Failure Height of Multifull-Mechanized Caving Mining. In Proceedings of the 2010 Proceedings of the International Conference on Mine Hazards Prevention and Control, Qingdao, China, 15–17 October 2010; Wang, C.Q., Bu, C.S., Guo, W.J., Cheng, W.M., Eds.; Atlantis Press: Paris, France, 2010; Volume 12, p. 548. [Google Scholar]
- Li, L.; Kong, D.; Liu, Q.; Cai, H.; Chen, L. Study on Law and Prediction of Surface Movement and Deformation in Mountain Area under Repeated Mining of Shallow Coal Seam. Bull. Eng. Geol. Environ. 2023, 82, 76. [Google Scholar] [CrossRef]
- Zhang, X. The Application of Image J in Geosciences Image Processing. In Proceedings of the Near-Surface Geophysics And Environment Protection, Changsha, China, 15–18 June 2012; Liu, J., Xu, Y., Dai, Q., Zhu, D., Guo, R., Feng, D., Yan, J., Liu, H., Tong, X., Zhang, D., et al., Eds.; Science Press USA Inc.: Monmouth Junction, NJ, USA, 2012; pp. 383–385. [Google Scholar]
- Li, D.; Zhang, J.; Wang, C.; Jiang, F. Propagation Patterns of Microseismic Waves in Rock Strata during Mining: An Experimental Study. Int. J. Miner. Metall. Mater. 2019, 26, 531–537. [Google Scholar] [CrossRef]
- Xie, J.; Ning, S.; Qu, Q.; Zhu, W.; Zhao, B.; Xu, J. A Carbon Nanocomposite Material Used in the Physical Modelling of the Overburden Subsidence Process. Nanomaterials 2023, 13, 2962. [Google Scholar] [CrossRef]
- Kang, Z.; Zhang, J.; Li, N.; Yang, Y.; Lv, T.; Lu, J. Development of Self-Sensing Cement Composites by Incorporating Hybrid Biochar and Nano Carbon Black. Cem. Concr. Compos. 2024, 153, 105708. [Google Scholar] [CrossRef]
- Ding, S.; Dong, S.; Ashour, A.; Han, B. Development of Sensing Concrete: Principles, Properties and Its Applications. J. Appl. Phys. 2019, 126, 241101. [Google Scholar] [CrossRef]
- Han, B.; Guan, X.; Ou, J. Electrode Design, Measuring Method and Data Acquisition System of Carbon Fiber Cement Paste Piezoresistive Sensors. Sens. Actuator A-Phys. 2007, 135, 360–369. [Google Scholar] [CrossRef]
- Ivorra, S.; Garces, P.; Catala, G.; Andion, L.G.; Zornoza, E. Effect of Silica Fume Particle Size on Mechanical Properties of Short Carbon Fiber Reinforced Concrete. Mater. Des. 2010, 31, 1553–1558. [Google Scholar] [CrossRef]
- Laflamme, S.; Ubertini, F. Self-Sensing Materials for Nondestructive Evaluation. Mater. Eval. 2020, 78, 526–536. [Google Scholar] [CrossRef]
- Vaidya, S.; Allouche, E.N. Strain Sensing of Carbon Fiber Reinforced Geopolymer Concrete. Mater. Struct. 2011, 44, 1467–1475. [Google Scholar] [CrossRef]
- Borke Birgin, H.; D’Alessandro, A.; Favaro, M.; Sangiorgi, C.; Laflamme, S.; Ubertini, F. Field Investigation of Novel Self-Sensing Asphalt Pavement for Weigh-in-Motion Sensing. Smart Mater. Struct. 2022, 31, 085004. [Google Scholar] [CrossRef]
- Chu, H.; Chen, J. The Experimental Study on the Correlation of Resistivity and Damage for Conductive Concrete. Cem. Concr. Compos. 2016, 67, 12–19. [Google Scholar] [CrossRef]
- Dong, W.; Li, W.; Tao, Z.; Wang, K. Piezoresistive Properties of Cement-Based Sensors: Review and Perspective. Constr. Build. Mater. 2019, 203, 146–163. [Google Scholar] [CrossRef]
- Chen, B.; Wu, K.; Yao, W. Conductivity of Carbon Fiber Reinforced Cement-Based Composites. Cem. Concr. Compos. 2004, 26, 291–297. [Google Scholar] [CrossRef]
- Zuo, J.; Yao, W.; Liu, X.; Qin, J. Sensing Properties of Carbon Nanotube–Carbon Fiber/Cement Nanocomposites. J. Test. Eval. 2012, 40, 20120092. [Google Scholar] [CrossRef]
- Segura, I.; Faneca, G.; Torrents, J.M.; Aguado, A. Self-Sensing Concrete Made from Recycled Carbon Fibres. Smart Mater. Struct. 2019, 28, 105045. [Google Scholar] [CrossRef]
- Sun, M.; Li, Z.; Mao, Q.; Shen, D. Study on the Hole Conduction Phenomenon in Carbon Fiber-Reinforced Concrete. Cem. Concr. Res. 1998, 28, 549–554. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Wan, B.; Han, B.; Cai, G.; Li, Z. Properties and Mechanisms of Self-Sensing Carbon Nanofibers/Epoxy Composites for Structural Health Monitoring. Compos. Struct. 2018, 200, 669–678. [Google Scholar] [CrossRef]
- Ou, J. Research and Practice of Intelligent Sensing Technologies in Civil Structural Health Monitoring in the Mainland of China. Proc. SPIE—Int. Soc. Opt. Eng. 2006, 6176, 293–304. [Google Scholar] [CrossRef]
- Han, B.; Yu, X.; Kwon, E. A Self-Sensing Carbon Nanotube/Cement Composite for Traffic Monitoring. Nanotechnology 2009, 20, 445501. [Google Scholar] [CrossRef]
- Xu, J.; Juan, P.; Zhu, W. Movement Laws of the Overlying Strata at the Working Face Ends and Their Effects on the Surface Deformation. Minerals 2022, 12, 1485. [Google Scholar] [CrossRef]
- Chuang, W.; Lei, P.; Bing-Liang, L.; Ni, G.; Li-Ping, Z.; Ke-Zhi, L. Influences of Molding Processes and Different Dispersants on the Dispersion of Chopped Carbon Fibers in Cement Matrix. Heliyon 2018, 4, e00868. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Zhang, Y.; Ma, H. Porosity and Pore Size Distribution Measurement of Cement/Carbon Nanofiber Composites by 1H Low Field Nuclear Magnetic Resonance. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 2014, 29, 82–88. [Google Scholar] [CrossRef]
- Gao, J.; Wang, Z.; Zhang, T.; Zhou, L. Dispersion of Carbon Fibers in Cement-Based Composites with Different Mixing Methods. Constr. Build. Mater. 2017, 134, 220–227. [Google Scholar] [CrossRef]
- Kojima, K.; Kosugi, N.; Jintoku, H.; Kobashi, K.; Okazaki, T. Preparing a Liquid Crystalline Dispersion of Carbon Nanotubes with High Aspect Ratio. Beilstein J. Org. Chem. 2024, 20, 52–58. [Google Scholar] [CrossRef]
No. | Lithology | Ratio Number | Laying Thickness (cm) | Actual Thickness (m) | Actual Depth (m) | Remarks |
---|---|---|---|---|---|---|
8 | Fine sandstone | 437 | 66 | 132 | 592 | Extremely thick aquifer |
7 | Soft rock | 673 | 30 | 60 | 652 | |
6 | Medium sandstone | 455 | 15 | 30 | 682 | |
5 | Soft rock | 673 | 25 | 50 | 732 | |
4 | Medium sandstone | 455 | 10 | 20 | 752 | |
3 | Soft rock | 673 | 15 | 30 | 782 | |
2 | Coal | 773 | 4 | 8 | 790 | 2-2 coal seam |
1 | Soft rock | 673 | 5 | 10 | 800 | Floor |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, B.; Gao, X.; Zhu, W.; Ding, J.; Gao, P. A Novel Carbon Fiber Composite Material for the Simulation of Damage Evolution in Thick Aquifers. Appl. Sci. 2025, 15, 7314. https://doi.org/10.3390/app15137314
Zhao B, Gao X, Zhu W, Ding J, Gao P. A Novel Carbon Fiber Composite Material for the Simulation of Damage Evolution in Thick Aquifers. Applied Sciences. 2025; 15(13):7314. https://doi.org/10.3390/app15137314
Chicago/Turabian StyleZhao, Bozhi, Xing Gao, Weibing Zhu, Jiaxing Ding, and Pengjun Gao. 2025. "A Novel Carbon Fiber Composite Material for the Simulation of Damage Evolution in Thick Aquifers" Applied Sciences 15, no. 13: 7314. https://doi.org/10.3390/app15137314
APA StyleZhao, B., Gao, X., Zhu, W., Ding, J., & Gao, P. (2025). A Novel Carbon Fiber Composite Material for the Simulation of Damage Evolution in Thick Aquifers. Applied Sciences, 15(13), 7314. https://doi.org/10.3390/app15137314